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Abstract: This book provides comprehensive and accessible coverage of the disciplines 
of philosophy of mathematics and philosophy of logic. After an introduction, the book 
begins with a historical section, consisting of a chapter on the modern period, Kant and his 
intellectual predecessors, a chapter on later empiricism, including Mill and logical 
positivism, and a chapter on Wittgenstein. The next section of the volume consists of seven 
chapters on the views that dominated the philosophy and foundations of mathematics in the 
early decades of the 20th century: logicism, formalism, and intuitionism. They approach 
their subjects from a variety of historical and philosophical perspectives. The next section 
of the volume deals with views that dominated in the later twentieth century and beyond: 
Quine and indispensability, naturalism, nominalism, and structuralism. The next chapter in 
the volume is a detailed and sympathetic treatment of a predicative approach to both the 
philosophy and the foundations of mathematics, which is followed by an extensive 
treatment of the application of mathematics to the sciences. The last six chapters focus on 
logical matters: two chapters are devoted to the central notion of logical consequence, one 
on model theory and the other on proof theory; two chapters deal with the so-called 
paradoxes of relevance, one pro and one contra; and the final two chapters concern second-
order logic (or higher-order logic), again one pro and one contra.

Contents

1.  Philosophy of Mathematics and Its Logic: Introduction 1
2.  A Priority and Application: Philosophy of Mathematics in the Modern Period 29
3.  Later Empiricism and Logical Positivism 50
4.  Wittgenstein on Philosophy of Logic and Mathematics 75
5.  The Logicism of Frege Dedekind and Russell 129
6.  Logicism in the Twenty-first Century 166
7.  Logicism Reconsidered 203
8.  Formalism 236
9.  Intuitionism and Philosophy 318
10. Intuitionism in Mathematics 356
11. Intuitionism Reconsidered 387
12. Quine and the Web of Belief 412
13. Three Forms of Naturalism 437
14. Naturalism Reconsidered 460



15. Nominalism 483
16. Nominalism Reconsidered 515
17. Structuralism 536
18. Structuralism Reconsidered 563
19. Predicativity 590
20. Mathematics—Application and Applicability 625
21. Logical Consequence, Proof Theory, and Model Theory 651
22. Logical Consequence: A Constructivist View 671
23. Relevance in Reasoning 696
24. No Requirement of Relevance 727
25. Higher-order Logic 751
26. Higher-order Logic Reconsidered 781

Preface

This volume provides comprehensive and accessible coverage of the disciplines of 
philosophy of mathematics and philosophy of logic, including an overview of the major 
problems, positions, and battle lines. In line with the underlying theme of the series, each 
author was given a free hand to develop his or her distinctive viewpoint. Thus, the various 
chapters are not neutral. Readers see exposition and criticism, as well as substantial 
development of philosophical positions. I am pleased to report that each chapter breaks 
new ground. The volume not only presents the disciplines of philosophy of mathematics 
and philosophy of logic, but advances them as well.
For many of the major positions in the philosophy of mathematics and logic, the book 
contains at least two chapters, at least one sympathetic to the view and one critical. Of 
course, this does not guarantee that every major viewpoint is given a sympathetic 
treatment. For example, one of my own pet positions, ante rem structuralism, comes in for 
heavy criticism in two of the chapters, and is not defended anywhere (except briefly in 
chapter 1). In light of the depth and extent of the disciplines today, no single volume, or 
series of volumes, can provide extensive and sympathetic coverage of even the major 
positions on offer. And there would hardly be a point to such an undertaking, since the 
disciplines are ever evolving. New positions and new criticisms of old positions emerge 
with each issue of each major philosophy journal. Most of the chapters contain an 
extensive bibliography. In total, this volume provides a clear picture of the state of the art.
There is some overlap between the chapters. This is to be expected in a work of this scope, 
and it was explicitly encouraged. Authors often draw interesting, but distinctive, 
conclusions from the same material. There is, of course, no sharp separation between the 
philosophy of mathematics and the philosophy of logic. The main issues and views of 



either discipline permeate those of the other. Just about every chapter deals with matters 
mathematical and matters logical.
After the Introduction (chapter 1), the book begins with a historical section, consisting of 
three chapters. Chapter 2 deals with the modern period—Kant and his intellectual 
predecessors; chapter 3 concerns later empiricism, including John Stuart Mill and logical 
positivism; and chapter 4 focuses on Ludwig Wittgenstein.
The volume then turns to the “big three” views that dominated the philosophy and 
foundations of mathematics in the early decades of the twentieth century: logicism, 
formalism, and intuitionism. There are three chapters on logicism, one dealing with the 
emergence of the program in the work of Frege, Russell, and Dedekind (chapter 5); one on 
neologicism, the contemporary legacy of Fregean logicism (chapter 6); and one called 
“Logicism Reconsidered,” which provides a technical assessment of the program in its first 
century (chapter 7). This is followed by a lengthy chapter on formalism, covering its 
historical and philosophical aspects (chapter 8). Two of the three chapters on intuitionism 
overlap considerably. The first (chapter 9) provides the philosophical background to 
intuitionism, through the work of L. E. J. Brouwer, Arend Heyting, and others. The second 
(chapter 10) takes a more explicitly mathematical perspective. Chapter 11, “Intuitionism 
Reconsidered,” focuses largely on technical issues concerning the logic.
The next section of the volume deals with views that dominated in the later twentieth 
century and beyond. Chapter 12 provides a sympathetic reconstruction of Quinean holism 
and indispensability. This is followed by two chapters that focus directly on naturalism. 
Chapter 13 lays out the principles of some prominent naturalists, and chapter 14 is critical 
of the main themes of naturalism. Next up are nominalism and structuralism, which get 
two chapters each. One of these is sympathetic to at least one variation on the view in 
question, and the other “reconsiders.”
Chapter 19 is a detailed and sympathetic treatment of a predicative approach to both the 
philosophy and the foundations of mathematics. This is followed by an extensive treatment 
of the application of mathematics to the sciences; chapter 20 lays out different senses in 
which mathematics is to be applied, and draws some surprising philosophical conclusions.
The last six chapters of the volume focus more directly on logical matters, in three pairs. 
There are two chapters devoted to the central notion of logical consequence. Chapter 21 
presents and defends the role of semantic notions and model theory, and chapter 22 takes a 
more “constructive” approach, leading to proof theory. The next two chapters deal with the 
so-called paradoxes of relevance, chapter 23 arguing that the proper notion of logical 
consequence carries a notion of relevance, and chapter 24 arguing against this. The final 
two chapters concern higher-order logic. Chapter 25 presents higher-order logic and 
provides an overview of its various uses in foundational studies. Of course, chapter 26 
reconsiders.
Throughout the process of assembling this book, I benefited considerably from the sage 
advice of my editor, Peter Ohlin, of Oxford University Press, USA, and from my 



colleagues and friends, at Ohio State, St. Andrews, and other institutions. Thanks 
especially to Penelope Maddy and Michael Detlefsen.
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1 Philosophy of Mathematics and Its Logic: Introduction
Stewart Shapiro 

1. Motivation, or What We Are Up to

From the beginning, Western philosophy has had a fascination with mathematics. The 
entrance to Plato's Academy is said to have been marked with the words "Let no one 
ignorant of geometry enter here." Some major historical mathematicians, such as René 
Descartes, Gottfried Leibniz, and Blaise Pascal, were also major philosophers. In more 
recent times, there are Bernard Bolzano, Alfred North Whitehead, David Hilbert, Gottlob 
Frege, Alonzo Church, Kurt Gödel, and Alfred Tarski. Until very recently, just about every 
philosopher was aware of the state of mathematics and took it seriously for philosophical 
attention.
Often, the relationship went beyond fascination. Impressed with the certainty and depth of 
mathematics, Plato made mathematical ontology the model for his Forms, and 
mathematical knowledge the model for knowledge generally—to the extent of 
downplaying or outright neglecting information gleaned from the senses. A similar theme 
reemerged in the dream of traditional rationalists of extending what 
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they took to be the methodology of mathematics to all scientific and philosophical 
knowledge. For some rationalists, the goal was to emulate Euclid's Elements of Geometry, 
providing axioms and demonstrations of philosophical principles. Empiricists, the main 
opponents of rationalism, realized that their orientation to knowledge does not seem to 
make much sense of mathematics, and they went to some lengths to accommodate 
mathematics—often distorting it beyond recognition (see Parsons [1983, essay 1]).
Mathematics is a central part of our best efforts at knowledge. It plays an important role in 
virtually every scientific effort, no matter what part of the world it is aimed at. There is 
scarcely a natural or a social science that does not have substantial mathematics 
prerequisites. The burden on any complete philosophy of mathematics is to show how 
mathematics is applied to the material world, and to show how the methodology of 
mathematics (whatever it may be) fits into the methodology of the sciences (whatever it 
may be). (See chapter 20 in this volume.)
In addition to its role in science, mathematics itself seems to be a knowledge-gathering 
activity. We speak of what theorems a given person knows and does not know. Thus, the 
philosophy of mathematics is, at least in part, a branch of epistemology. However, 
mathematics is at least prima facie different from other epistemic endeavors. Basic 
mathematical principles, such as "7 + 5 = 12" or "there are infinitely many prime 
numbers," are sometimes held up as paradigms of necessary truths and, a priori, infallible 
knowledge. It is beyond question that these propositions enjoy a high degree of certainty—
however this certainty is to be expounded. How can these propositions be false? How can 
any rational being doubt them? Indeed, mathematics seems essential to any sort of 
reasoning at all. Suppose, in the manner of Descartes's first Meditation, that one manages 
to doubt, or pretend to doubt, the basic principles of mathematics. Can he go on to think at 
all?
In these respects, at least, logic is like mathematics. At least some of the basic principles of 
logic are, or seem to be, absolutely necessary and a priori knowable. If one doubts the 
basic principles of logic, then, perhaps by definition, she cannot go on to think coherently 
at all. Prima facie, to think coherently just is to think logically.
Like mathematics, logic has also been a central focus of philosophy, almost from the very 
beginning. Aristotle is still listed among the four or five most influential logicians ever, 
and logic received attention throughout the ancient and medieval intellectual worlds. 
Today, of course, logic is a thriving branch of both mathematics and philosophy.
It is incumbent on any complete philosophy of mathematics and any complete philosophy 
of logic to account for their at least apparent necessity and apriority. Broadly speaking, 
there are two options. The straightforward way to show that a given discipline appears a 
certain way is to demonstrate that it is that way. Thus the philosopher can articulate the 



notions of necessity and apriority, and then show how they apply to mathematics and/or 
logic. Alternatively, the philosopher can 
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argue that mathematics and/or logic does not enjoy these properties. On this option, 
however, the philosopher still needs to show why it appears that mathematics and/or logic 
is necessary and a priori. She cannot simply ignore the long-standing belief concerning the 
special status of these disciplines. There must be something about mathematics and/or 
logic that has led so many to hold, perhaps mistakenly, that they are necessary and a priori 
knowable.
The conflict between rationalism and empiricism reflects some tension in the traditional 
views concerning mathematics, if not logic. Mathematics seems necessary and a priori, and 
yet it has something to do with the physical world. How is this possible? How can we learn 
something important about the physical world by a priori reflection in our comfortable 
armchairs? As noted above, mathematics is essential to any scientific understanding of the 
world, and science is empirical if anything is—rationalism notwithstanding. Immanuel 
Kant's thesis that arithmetic and geometry are synthetic a priori was a heroic attempt to 
reconcile these features of mathematics. According to Kant, mathematics relates to the 
forms of ordinary perception in space and time. On this view, mathematics applies to the 
physical world because it concerns the ways that we perceive the physical world. 
Mathematics concerns the underlying structure and presuppositions of the natural sciences. 
This is how mathematics gets "applied." It is necessary because we cannot structure the 
physical world in any other way. Mathematical knowledge is a priori because we can 
uncover these presuppositions without any particular experience (chapter 2 of this volume). 
This set the stage for over two centuries of fruitful philosophy.

2. Global Matters

For any field of study X, the main purposes of the philosophy of X are to interpret X and to 
illuminate the place of X in the overall intellectual enterprise. The philosopher of 
mathematics immediately encounters sweeping issues, typically concerning all of 
mathematics. Most of these questions come from general philosophy: matters of ontology, 
epistemology, and logic. What, if anything, is mathematics about? How is mathematics 
pursued? Do we know mathematics and, if so, how do we know mathematics? What is the 
methodology of mathematics, and to what extent is this methodology reliable? What is the 
proper logic for mathematics? To what extent are the principles of mathematics objective 
and independent of the mind, language, and social structure of mathematicians? Some 



problems and issues on the agenda of contemporary philosophy have remarkably clean 
formulations when applied to mathematics. Examples include matters of ontology, logic, 
objectivity, knowledge, and mind.
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The philosopher of logic encounters a similar range of issues, with perhaps less emphasis 
on ontology. Given the role of deduction in mathematics, the philosophy of mathematics 
and the philosophy of logic are intertwined, to the point that there is not much use in 
separating them out.
A mathematician who adopts a philosophy of mathematics should gain something by this: 
an orientation toward the work, some insight into the role of mathematics, and at least a 
tentative guide to the direction of mathematics—What sorts of problems are important? 
What questions should be posed? What methodologies are reasonable? What is likely to 
succeed? And so on?
One global issue concerns whether mathematical objects—numbers, points, functions, sets
—exist and, if they do, whether they are independent of the mathematician, her mind, her 
language, and so on. Define realism in ontology to be the view that at least some 
mathematical objects exist objectively. According to ontological realism, mathematical 
objects are prima facie abstract, acausal, indestructible, eternal, and not part of space and 
time. Since mathematical objects share these properties with Platonic Forms, realism in 
ontology is sometimes called "Platonism."
Realism in ontology does account for, or at least recapitulate, the necessity of mathematics. 
If the subject matter of mathematics is as these realists say it is, then the truths of 
mathematics are independent of anything contingent about the physical universe and 
anything contingent about the human mind, the community of mathematicians, and so on. 
What of apriority? The connection with Plato might suggest the existence of a quasi-
mystical connection between humans and the abstract and detached mathematical realm. 
However, such a connection is denied by most contemporary philosophers. As a 
philosophy of mathematics, "platonism" is often written with a lowercase 'p,' probably to 
mark some distance from the master on matters of epistemology. Without this quasi-
mystical connection to the mathematical realm, the ontological realist is left with a deep 
epistemic problem. If mathematical objects are in fact abstract, and thus causally isolated 
from the mathematician, then how is it possible for this mathematician to gain knowledge 
of them? It is close to a piece of incorrigible data that we do have at least some 
mathematical knowledge. If the realist in ontology is correct, how is this possible?
Georg Kreisel is often credited with shifting attention from the existence of mathematical 
objects to the objectivity of mathematical truth. Define realism in truth-value to be the 
view that mathematical statements have objective truth-values independent of the minds, 
languages, conventions, and such of mathematicians. The opposition to this view is anti-



realism in truth-value, the thesis that if mathematical statements have truth-values at all, 
these truth-values are dependent on the mathematician.
There is a prima facie alliance between realism in truth-value and realism in ontology. 
Realism in truth-value is an attempt to develop a view that mathematics 
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deals with objective features of the world. Accordingly, mathematics has the objectivity of 
a science. Mathematical (and everyday) discourse has variables that range over numbers, 
and numerals are singular terms. Realism in ontology is just the view that this discourse is 
to be taken at face value. Singular terms denote objects, and thus numerals denote 
numbers. According to our two realisms, mathematicians mean what they say, and most of 
what they say is true. In short, realism in ontology is the default or the first guess of the 
realist in truth-value.
Nevertheless, a survey of the recent literature reveals that there is no consensus on the 
logical connections between the two realist theses or their negations. Each of the four 
possible positions is articulated and defended by established philosophers of mathematics. 
There are thorough realists (Gödel [1944, 1964], Crispin Wright [1983] and chapter 6 in 
this volume, Penelope Maddy [1990], Michael Resnik [1997], Shapiro [1997]); thorough 
anti-realists (Michael Dummett [1973, 1977]) realists in truth-value who are anti-realists in 
ontology (Geoffrey Hellman [1989] and chapter 17 in this volume, Charles Chihara [1990] 
and chapter 15 in this volume); and realists in ontology who are anti-realists in truth-value 
(Neil Tennant [1987, 1997]).
A closely related matter concerns the relationship between philosophy of mathematics and 
the practice of mathematics. In recent history, there have been disputes concerning some 
principles and inferences within mathematics. One example is the law of excluded middle, 
the principle that for every sentence, either it or its negation is true. In symbols: AV¬A. For 
a second example, a definition is impredicative if it refers to a class that contains the object 
being defined. The usual definition of "the least upper bound" is impredicative because it 
defines a particular upper bound by referring to the set of all upper bounds. Such principles 
have been criticized on philosophical grounds, typically by anti-realists in ontology. For 
example, if mathematical objects are mental constructions or creations, then impredicative 
definitions are circular. One cannot create or construct an object by referring to a class of 
objects that already contains the item being created or constructed. Realists defended the 
principles. On that view, a definition does not represent a recipe for creating or 
constructing a mathematical object. Rather, a definition is a characterization or description 
of an object that already exists. For a realist in ontology, there is nothing illicit in 
definitions that refer to classes containing the item in question (see Gödel [1944]). 
Characterizing "the least upper bound" of a set is no different from defining the "elder 
poop" to be "the oldest member of the Faculty."



As far as contemporary mathematics is concerned, the aforementioned disputes are over, 
for the most part. The law of excluded middle and impredicative definitions are central 
items in the mathematician's toolbox—to the extent that many practitioners are not aware 
when these items have been invoked. But this battle was not fought and won on 
philosophical grounds. Mathematicians did not temporarily don philosophical hats and 
decide that numbers, say, really do 
end p.7

exist independent of the mathematician and, for that reason, decide that it is acceptable to 
engage in the once disputed methodologies. If anything, the dialectic went in the opposite 
direction, from mathematics to philosophy. The practices in question were found to be 
conducive to the practice of mathematics, as mathematics—and thus to the sciences (but 
see chapters 9, 10, and 19 in this volume).
There is nevertheless a rich and growing research program to see just how much 
mathematics can be obtained if the restrictions are enforced (chapter 19 in this volume). 
The research is valuable in its own right, as a study of the logical power of the various 
once questionable principles. The results are also used to support the underlying 
philosophies of mathematics and logic.

3. Local Matters

The issues and questions mentioned above concern all of mathematics and, in some cases, 
all of science. The contemporary philosopher of mathematics has some more narrow foci 
as well. One group of issues concerns attempts to interpret specific mathematical or 
scientific results. Many examples come from mathematical logic, and engage issues in the 
philosophy of logic. The compactness theorem and the Löwenheim-Skolem theorems 
entail that if a first-order theory has an infinite model at all, then it has a model of every 
infinite cardinality. Thus, there are unintended, denumerable models of set theory and real 
analysis. This is despite the fact that we can prove in set theory that the "universe" is 
uncountable. Arithmetic, the theory of the natural numbers, has uncountable models—
despite the fact that by definition a set is countable if and only if it is not larger than the set 
of natural numbers. What, if anything, do these results say about the human ability to 
characterize and communicate various concepts, such as notions of cardinality? Skolem 
(e.g., [1922, 1941]) himself took the results to confirm his view that virtually all 
mathematical notions are "relative" in some sense. No set is countable or finite simpliciter, 
but only countable or finite relative to some domain or model. Hilary Putnam [1980] 
espouses a similar relativity. Other philosophers resist the relativity, sometimes by 



insisting that first-order model theory does not capture the semantics of informal 
mathematical discourse. This issue may have ramifications concerning the proper logic for 
mathematics. Perhaps the limitative theorems are an artifact of an incorrect logic (chapters 
25 and 26 in this volume).
The wealth of independence results in set theory provide another batch of issues for the 
philosopher. It turns out that many interesting and important mathematical questions are 
independent of the basic assertions of set theory. One example is Cantor's continuum 
hypothesis that there are no sets that are strictly 
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larger than the set of natural numbers and strictly smaller than the set of real numbers. 
Neither the continuum hypothesis nor its negation can be proved in the standard 
axiomatizations of set theory. What does this independence say about mathematical 
concepts? Do we have another sort of relativity on offer? Can we only say that a given set 
is the size of a certain cardinality relative to an interpretation of set theory? Some 
philosophers hold that these results indicate an indeterminacy concerning mathematical 
truth. There is no fact of the matter concerning, say, the continuum hypothesis. These 
philosophers are thus anti-realists in truth-value. The issue here has ramifications 
concerning the practice of mathematics. If one holds that the continuum hypothesis has a 
determinate truth-value, he or she may devote effort to determining this truth-value. If, 
instead, someone holds that the continuum hypothesis does not have a determinate truth-
value, then he is free to adopt it or not, based on what makes for the most convenient set 
theory. It is not clear whether the criteria that the realist might adopt to decide the 
continuum hypothesis are different from the criteria the anti-realist would use for 
determining what makes for the most convenient theory.
A third example is Gödel's incompleteness theorem that the set of arithmetic truths is not 
effective. Some take this result to refute mechanism, the thesis that the human mind 
operates like a machine. Gödel himself held that either the mind is not a machine or there 
are arithmetic questions that are "absolutely undecidable," questions that are unanswerable 
by us humans (see Gödel [1951], Shapiro [1998]). On the other hand, Webb [1980] takes 
the incompleteness results to support mechanism.
To some extent, some questions concerning the applications of mathematics are among this 
group of issues. What can a theorem of mathematics tell us about the natural world studied 
in science? To what extent can we prove things about knots, bridge stability, chess 
endgames, and economic trends? There are (or were) philosophers who take mathematics 
to be no more than a meaningless game played with symbols (chapter 8 in this volume), 
but everyone else holds that mathematics has some sort of meaning. What is this meaning, 
and how does it relate to the meaning of ordinary nonmathematical discourse? What can a 



theorem tell us about the physical world, about human knowability, about the abilities-in-
principle of programmed computers, and so on?
Another group of issues consists of attempts to articulate and interpret particular 
mathematical theories and concepts. One example is the foundational work in arithmetic 
and analysis. Sometimes, this sort of activity has ramifications for mathematics itself, and 
thus challenges and blurs the boundary between mathematics and its philosophy. 
Interesting and powerful research techniques are often suggested by foundational work that 
forges connections between mathematical fields. In addition to mathematical logic, 
consider the embedding of the natural numbers in the complex plane, via analytic number 
theory. Foundational activity has spawned whole branches of mathematics.
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Sometimes developments within mathematics lead to unclarity concerning what a certain 
concept is. The example developed in Lakatos [1976] is a case in point. A series of "proofs 
and refutations" left interesting and important questions over what a polyhedron is. For 
another example, work leading to the foundations of analysis led mathematicians to focus 
on just what a function is, ultimately yielding the modern notion of function as arbitrary 
correspondence. The questions are at least partly ontological.
This group of issues underscores the interpretive nature of philosophy of mathematics. We 
need to figure out what a given mathematical concept is, and what a stretch of 
mathematical discourse says. The Lakatos study, for example, begins with a "proof" 
consisting of a thought experiment in which one removes a face of a given polyhedron, 
stretches the remainder out on a flat surface, and then draws lines, cuts, and removes the 
various parts—keeping certain tallies along the way. It is not clear a priori how this 
blatantly dynamic discourse is to be understood. What is the logical form of the discourse 
and what is its logic? What is its ontology? Much of the subsequent 
mathematical/philosophical work addresses just these questions.
Similarly, can one tell from surface grammar alone that an expression like "dx" is not a 
singular term denoting a mathematical object, while in some circumstances, "dy/dx" does 
denote something—but the denoted item is a function, not a quotient? The history of 
analysis shows a long and tortuous task of showing just what expressions like this mean.
Of course, mathematics can often go on quite well without this interpretive work, and 
sometimes the interpretive work is premature and is a distraction at best. Berkeley's 
famous, penetrating critique of analysis was largely ignored among mathematicians—so 
long as they knew "how to go on," as Ludwig Wittgenstein might put it. In the present 
context, the question is whether the mathematician must stop mathematics until he has a 
semantics for his discourse fully worked out. Surely not. On occasion, however, tensions 
within mathematics lead to the interpretive philosophical/semantic enterprise. Sometimes, 
the mathematician is not sure how to "go on as before," nor is he sure just what the 



concepts are. Moreover, we are never certain that the interpretive project is accurate and 
complete, and that other problems are not lurking ahead.

4. A Potpourri of Positions

I now present sketches of some main positions in the philosophy of mathematics. The list 
is not exhaustive, nor does the coverage do justice to the subtle and deep work of 
proponents of each view. Nevertheless, I hope it serves as a useful 
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guide to both the chapters that follow and to at least some of the literature in contemporary 
philosophy of mathematics. Of course, the reader should not hold the advocates of the 
views to the particular articulation that I give here, especially if the articulation sounds too 
implausible to be advocated by any sane thinker.

4.1. Logicism: a Matter of Meaning

According to Alberto Coffa [1991], a major item on the agenda of Western philosophy 
throughout the nineteenth century was to account for the (at least) apparent necessity and a 
priori nature of mathematics and logic, and to account for the applications of mathematics, 
without invoking anything like Kantian intuition. According to Coffa, the most fruitful 
development on this was the "semantic tradition," running through the work of Bolzano, 
Frege, the early Wittgenstein, and culminating with the Vienna Circle. The main theme—
or insight, if you will—was to locate the source of necessity and a priori knowledge in the 
use of language. Philosophers thus turned their attention to linguistic matters concerning 
the pursuit of mathematics. What do mathematical assertions mean? What is their logical 
form? What is the best semantics for mathematical language? The members of the 
semantic tradition developed and honed many of the tools and concepts still in use today in 
mathematical logic, and in Western philosophy generally. Michael Dummett calls this 
trend in the history of philosophy the linguistic turn.
An important program of the semantic tradition was to show that at least some basic 
principles of mathematics are analytic, in the sense that the propositions are true in virtue 
of meaning. Once we understood terms like "natural number," "successor function," 
"addition," and "multiplication," we would thereby see that the basic principles of 
arithmetic, such as the Peano postulates, are true. If the program could be carried out, it 



would show that mathematical truth is necessary—to the extent that analytic truth, so 
construed, is necessary. Given what the words mean, mathematical propositions have to be 
true, independent of any contingencies in the material world. And mathematical knowledge 
is a priori—to the extent that knowledge of meanings is a priori. Presumably, speakers of 
the language know the meanings of words a priori, and thus we know mathematical 
propositions a priori.
The most articulate version of this program is logicism, the view that at least some 
mathematical propositions are true in virtue of their logical forms (chapter 5 in this 
volume). According to the logicist, arithmetic truth, for example, is a species of logical 
truth. The most detailed developments are those of Frege [1884, 1893] and Alfred North 
Whitehead and Bertrand Russell [1910]. Unlike Russell, Frege was a realist in ontology, in 
that he took the natural numbers to be objects. Thus, for Frege at least, logic has an 
ontology—there are "logical objects."
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In a first attempt to define the general notion of cardinal number, Frege [1884, §63] 
proposed the following principle, which has become known as "Hume's principle": 
For any concepts F, G, the number of F's is identical to the number of G's if and only if F 
and G are equinumerous. 
Two concepts are equinumerous if they can be put in one-to-one correspondence. Frege 
showed how to define equinumerosity without invoking natural numbers. His definition is 
easily cast in what is today recognized as pure second-order logic. If second-order logic is 
logic (chapter 25 in this volume), then Frege succeeded in reducing Hume's principle, at 
least, to logic.
Nevertheless, Frege balked at taking Hume's principle as the ultimate foundation for 
arithmetic because Hume's principle only fixes identities of the form "the number of 
F's = the number of G's." The principle does not determine the truth-value of sentences in 
the form "the number of F's = t," where t is an arbitrary singular term. This became known 
as the Caesar problem. It is not that anyone would confuse a natural number with the 
Roman general Julius Caesar, but the underlying idea is that we have not succeeded in 
characterizing the natural numbers as objects unless and until we can determine how and 
why any given natural number is the same as or different from any object whatsoever. The 
distinctness of numbers and human beings should be a consequence of the theory, and not 
just a matter of intuition.
Frege went on to provide explicit definitions of individual natural numbers, and of the 
concept "natural number," in terms of extensions of concepts. The number 2, for example, 
is the extension (or collection) of all concepts that hold of exactly two elements. The 
inconsistency in Frege's theory of extensions, as shown by Russell's paradox, marked a 
tragic end to Frege's logicist program.



Russell and Whitehead [1910] traced the inconsistency in Frege's system to the 
impredicativity in his theory of extensions (and, for that matter, in Hume's principle). They 
sought to develop mathematics on a safer, predicative foundation. Their system proved to 
be too weak, and ad hoc adjustments were made, greatly reducing the attraction of the 
program. There is a thriving research program under way to see how much mathematics 
can be recovered on a predicative basis (chapter 19 in this volume).
Variations of Frege's original approach are vigorously pursued today in the work of Crispin 
Wright, beginning with [1983], and others like Bob Hale [1987] and Neil Tennant ([1987, 
1997]) (chapter 6 in this volume). The idea is to bypass the treatment of extensions and to 
work with (fully impredicative) Hume's principle, or something like it, directly. Hume's 
principle is consistent with second-order logic if second-order arithmetic is consistent (see 
Boolos [1987] and Hodes [1984]), so at least the program will not fall apart like Frege's 
did. But what is the philosophical point? On the neologicist approach, Hume's principle is 
taken to 
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be an explanation of the concept of "number." Advocates of the program argue that even if 
Hume's principle is not itself analytic—true in virtue of meaning—it can become known a 
priori, once one has acquired a grasp of the concept of cardinal number. Hume's principle 
is akin to an implicit definition. Frege's own technical development shows that the Peano 
postulates can be derived from Hume's principle in a standard, higher-order logic. Indeed, 
the only essential use that Frege made of extensions was to derive Hume's principle—
everything else concerning numbers follows from that. Thus the basic propositions of 
arithmetic enjoy the same privileged epistemic status had by Hume's principle (assuming 
that second-order deduction preserves this status). Neologicism is a reconstructive program 
showing how arithmetic propositions can become known.
The neologicist (and Fregean) development makes essential use of the fact that 
impredicativity of Hume's principle is impredicative in the sense that the variable F in the 
locution "the number of F's" is instantiated with concepts that themselves are defined in 
terms of numbers. Without this feature, the derivation of the Peano axioms from Hume's 
principle would fail. This impredicativity is consonant with the ontological realism adopted 
by Frege and his neologicist followers. Indeed, the neologicist holds that the left-hand side 
of an instance of Hume's principle has the same truth conditions as its right-hand side, but 
the left-hand side gives the proper logical form. Locutions like "the number of F's" are 
genuine singular terms denoting numbers.
The neologicist project, as developed thus far, only applies basic arithmetic and the natural 
numbers. An important item on the agenda is to extend the treatment to cover other areas 
of mathematics, such as real analysis, functional analysis, geometry, and set theory. The 
program involves the search for abstraction principles rich enough to characterize more 



powerful mathematical theories (see, e.g., Hale [2000a, 2000b] and Shapiro [2000a, 
2003]).

4.2. Empiricism, Naturalism, and Indispensability

Coffa [1982] provides a brief historical sketch of the semantic tradition, outlining its aims 
and accomplishments. Its final sentence is "And then came Quine." Despite the continued 
pursuit of variants of logicism (chapter 26 in this volume), the standard concepts 
underlying the program are in a state of ill repute in some quarters, notably much of North 
America. Many philosophers no longer pay serious attention to notions of meaning, 
analyticity, and a priori knowledge. To be precise, such notions are not given a primary 
role in the epistemology of mathematics, or anything else for that matter, by many 
contemporary philosophers. W. V. O. Quine (e.g., [1951, 1960]) is usually credited with 
initiating widespread skepticism concerning these erstwhile philosophical staples.
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Quine, of course, does not deny that the truth-value of a given sentence is determined by 
both the use of language and the way the world is. To know that "Paris is in France," one 
must know something about the use of the words "Paris," "is," and "France," and one must 
know some geography. Quine's view is that the linguistic and factual components of a 
given sentence cannot be sharply distinguished, and thus there is no determinate notion of 
a sentence being true solely in virtue of language (analytic), as opposed to a sentence 
whose truth depends on the way the world is (synthetic).
Then how is mathematics known? Quine is a thoroughgoing empiricist, in the tradition of 
John Stuart Mill (chapter 3 in this volume). His positive view is that all of our beliefs 
constitute a seamless web answerable to, and only to, sensory stimulation. There is no 
difference in kind between mundane beliefs about material objects, the far reaches of 
esoteric science, mathematics, logic, and even so-called truths-by-definition (e.g., "no 
bachelor is married"). The word "seamless" in Quine's metaphor suggests that everything 
in the web is logically connected to everything else in the web, at least in principle. 
Moreover, no part of the web is knowable a priori.
This picture gives rise to a now common argument for realism. Quine and others, such as 
Putnam [1971], propose a hypothetical-deductive epistemology for mathematics. Their 
argument begins with the observation that virtually all of science is formulated in 
mathematical terms. Thus, mathematics is "confirmed" to the extent that science is. 
Because mathematics is indispensable for science, and science is well confirmed and 



(approximately) true, mathematics is well confirmed and true as well. This is sometimes 
called the indispensability argument.
Thus, Quine and Putnam are realists in truth-value, holding that some statements of 
mathematics have objective and nonvacuous truth-values independent of the language, 
mind, and form of life of the mathematician and scientist (assuming that science enjoys 
this objectivity). Quine, at least, is also a realist in ontology. He accepts the Fregean (and 
neologicist) view that "existence" is univocal. There is no ground for distinguishing terms 
that refer to medium-sized physical objects, terms that refer to microscopic and 
submicroscopic physical objects, and terms that refer to numbers. According to Quine and 
Putnam, all of the items in our ontology—apples, baseballs, electrons, and numbers—are 
theoretical posits. We accept the existence of all and only those items that occur in our best 
accounts of the material universe. Despite the fact that numbers and functions are not 
located in space and time, we know about numbers and functions the same way we know 
about physical objects—via the role of terms referring to such entities in mature, well-
confirmed theories.
Indispensability arguments are anathema to those, like the logicists, logical positivists, and 
neologicists, who maintain the traditional views that mathematics is absolutely necessary 
and/or analytic and/or knowable a priori. On such views, mathematical knowledge cannot 
be dependent on anything as blatantly 
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empirical and contingent as everyday discourse and natural science. The noble science of 
mathematics is independent of all of that. From the opposing Quinean perspective, 
mathematics and logic do not enjoy the necessity traditionally believed to hold of them; 
and mathematics and logic are not knowable a priori.
Indeed, for Quine, nothing is knowable a priori. The thesis is that everything in the web—
the mundane beliefs about the physical world, the scientific theories, the mathematics, the 
logic, the connections of meaning—is up for revision if the "data" become sufficiently 
recalcitrant. From this perspective, mathematics is of a piece with highly confirmed 
scientific theories, such as the fundamental laws of gravitation. Mathematics appears to be 
necessary and a priori knowable (only) because it lies at the "center" of the web of belief, 
farthest from direct observation. Since mathematics permeates the web of belief, the 
scientist is least likely to suggest revisions in mathematics in light of recalcitrant "data." 
That is to say, because mathematics is invoked in virtually every science, its rejection is 
extremely unlikely, but the rejection of mathematics cannot be ruled out in principle. No 
belief is incorrigible. No knowledge is a priori, all knowledge is ultimately based on 
experience (see Colyvan [2001], and chapter 12 in this volume).
The seamless web is of a piece with Quine's naturalism, characterized as "the 
abandonment of first philosophy" and "the recognition that it is within science itself … that 



reality is to be identified and described" ([1981, p. 72]). The idea is to see philosophy as 
continuous with the sciences, not prior to them in any epistemological or foundational 
sense. If anything, the naturalist holds that science is prior to philosophy. Naturalized  
epistemology is the application of this theme to the study of knowledge. The philosopher 
sees the human knower as a thoroughly natural being within the physical universe. Any 
faculty that the philosopher invokes to explain knowledge must involve only natural 
processes amenable to ordinary scientific scrutiny.
Naturalized epistemology exacerbates the standard epistemic problems with realism in 
ontology. The challenge is to show how a physical being in a physical universe can come 
to know about abstracta like mathematical objects (see Field [1989, essay 7]). Since 
abstract objects are causally inert, we do not observe them but, nevertheless, we still (seem 
to) know something about them. The Quinean meets this challenge with claims about the 
role of mathematics in science. Articulations of the Quinean picture thus should, but 
usually do not, provide a careful explanation of the application of mathematics to science, 
rather than just noting the existence of this applicability (chapter 20 in this volume). This 
explanation would shed light on the abstract, non-spatiotemporal nature of mathematical 
objects, and the relationships between such objects and ordinary and scientific material 
objects. How is it that talk of numbers and functions can shed light on tables, bridge 
stability, and market stability? Such an analysis would go a long way toward defending the 
Quinean picture of a web of belief.
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Once again, it is a central tenet of the naturalistically minded philosopher that there is no 
first philosophy that stands prior to science, ready to either justify or criticize it. Science 
guides philosophy, not the other way around. There is no agreement among naturalists that 
the same goes for mathematics. Quine himself accepts mathematics (as true) only to the 
extent that it is applied in the sciences. In particular, he does not accept the basic assertions 
of higher set theory because they do not, at present, have any empirical applications. 
Moreover, he advises mathematicians to conform their practice to his version of naturalism 
by adopting a weaker and less interesting, but better understood, set theory than the one 
they prefer to work with.
Mathematicians themselves do not follow the epistemology suggested by the Quinean 
picture. They do not look for confirmation in science before publishing their results in 
mathematics journals, or before claiming that their theorems are true. Thus, Quine's picture 
does not account for mathematics as practiced. Some philosophers, such as Burgess [1983] 
and Maddy [1990, 1997], apply naturalism to mathematics directly, and thereby declare 
that mathematics is, and ought to be, insulated from much traditional philosophical inquiry, 
or any other probes that are not to be resolved by mathematicians qua mathematicians. On 



such views, philosophy of mathematics—naturalist or otherwise—should not be in the 
business of either justifying or criticizing mathematics (chapters 13 and 14 in this volume).

4.3. No Mathematical Objects

The most popular way to reject realism in ontology is to flat out deny that mathematics has 
a subject matter. The nominalist argues that there are no numbers, points, functions, sets, 
and so on. The burden on advocates of such views is to make sense of mathematics and its 
applications without assuming a mathematical ontology. This is indicated in the title of 
Burgess and Rosen's study of nominalism, A Subject with No Object [1997].
A variation on this theme that played an important role in the history of our subject is 
formalism. An extreme version of this view, which is sometimes called "game formalism," 
holds that the essence of mathematics is the following of meaningless rules. Mathematics 
is likened to the play of a game like chess, where characters written on paper play the role 
of pieces to be moved. All that matters to the pursuit of mathematics is that the rules have 
been followed correctly. As far as the philosophical perspective is concerned, the formulas 
may as well be meaningless.
Opponents of game formalism claim that mathematics is inherently informal and perhaps 
even nonmechanical. Mathematical language has meaning, and it is a gross distortion to 
attempt to ignore this. At best, formalism focuses on a small 
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aspect of mathematics, the fact that logical consequence is formal. It deliberately leaves 
aside what is essential to the enterprise.
A different formalist philosophy of mathematics was presented by Haskell Curry (e.g., 
[1958]). The program depends on a historical thesis that as a branch of mathematics 
develops, it becomes more and more rigorous in its methodology, the end result being the 
codification of the branch in formal deductive systems. Curry claimed that assertions of a 
mature mathematical theory are to be construed not so much as the results of moves in a 
particular formal deductive system (as a game formalist might say), but rather as assertions 
about a formal system. An assertion at the end of a research paper would be understood in 
the form "such and such is a theorem in this formal system." For Curry, then, mathematics 
is an objective science, and it has a subject matter—formal systems. In effect, mathematics 
is metamathematics. (See chapter 8 in this volume for a more developed account of 
formalism.)
On the contemporary scene, one prominent version of nominalism is fictionalism, as 
developed, for example, by Hartry Field [1980]. Numbers, points, and sets have the same 



philosophical status as the entities presented in works of fiction. According to the 
fictionalist, the number 6 is the same kind of thing as Dr. Watson or Miss Marple.
According to Field, mathematical language should be understood at face value. Its 
assertions have vacuous truth-values. For example, "all natural numbers are prime" comes 
out true, since there are no natural numbers. Similarly, "there is a prime number greater 
than 10" is false, and both Fermat's last theorem and the Goldbach conjecture are true. Of 
course, Field does not exhort mathematicians to settle their open questions via this vacuity. 
Unlike Quine, Field has no proposals for changing the methodology of mathematics. His 
view concerns how the results of mathematics should be interpreted, and the role of these 
results in the scientific enterprise. For Field, the goal of mathematics is not to assert the 
true. The only mathematical knowledge that matters is knowledge of logical consequences 
(see Field [1984]).
Field regards the Quine/Putnam indispensability argument to be the only serious 
consideration in favor of ontological realism. His overall orientation is thus broadly 
Quinean—in direct opposition to the long-standing belief that mathematical knowledge is a 
priori. As we have seen, more traditional philosophers—and most mathematicians—regard 
indispensability as irrelevant to mathematical knowledge. In contrast, for thinkers like 
Field, once one has undermined the indispensability argument, there is no longer any 
serious reason to believe in the existence of mathematical objects.
Call a scientific theory "nominalistic" if it is free of mathematical presuppositions. As 
Quine and Putnam pointed out, most of the theories developed in scientific practice are not 
nominalistic, and so begins the indispensability argument. The first aspect of Field's 
program is to develop nominalistic versions of 
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various scientific theories. Of course, Field does not do this for every prominent scientific 
theory. To do so, he would have to understand every prominent scientific theory, a task 
that no human can accomplish anymore. Field gives one example—Newtonian 
gravitational theory—in some detail, to illustrate a technique that can supposedly be 
extended to other scientific work.
The second aspect of Field's program is to show that the nominalistic theories are sufficient 
for attaining the scientific goal of determining truths about the physical universe (i.e., 
accounting for observations). Let P be a nominalistic scientific theory and let S be a 
mathematical theory together with some "bridge principles" that connect the mathematical 
terminology with the physical terminology. Define S to be conservative over P if for any 
sentence Φ in the language of the nominalistic theory, if Φ is a consequence of P + S, then 
Φ is a consequence of P alone. Thus, if the mathematical theory is conservative over the 
nominalist one, then any physical consequence we get via the mathematics we could get 
from the nominalistic physics alone. This would show that mathematics is dispensable in 



principle, even if it is practically necessary. Field shows that standard mathematical 
theories and bridge principles are conservative over his nominalistic Newtonian theory, at 
least if the conservativeness is understood in model-theoretic terms: if Φ holds in all 
models of P + S, then Φ holds in all models of P.
The sizable philosophical literature generated by Field [1980] includes arguments that 
Field's technique does not generalize to more contemporary theories like quantum 
mechanics (Malament [1982]); arguments that Field's distinction between abstract and 
concrete does not stand up, or that it does not play the role needed to sustain Field's 
fictionalism (Resnik [1985]); and arguments that Field's nominalistic theories are not 
conservative in the philosophically relevant sense (Shapiro [1983]). The collection by Field 
[1989] contains replies to some of these objections.
Another common anti-realist proposal is to reconstrue mathematical assertions in modal 
terms. The philosopher understands mathematical assertions to be about what is possible, 
or about what would be the case if objects of a certain sort existed. The main innovation in 
Chihara [1990] is a modal primitive, a "constructibility quantifier." If Φ is a formula and x 
a certain type of variable, then Chihara's system contains a formula that reads "it is 
possible to construct an x such that Φ." According to Chihara, constructibility quantifiers 
do not mark what Quine calls "ontological commitment." Common sense supports this—to 
the extent that the notion of ontological commitment is part of common sense. If someone 
says that it is possible to construct a new ballpark in Boston, she is not asserting the 
existence of any ballpark, nor is she asserting the existence of a strange entity called a 
"possible ballpark." She only speaks of what it is possible to do.
The formal language developed in Chihara [1990] includes variables that range over open  
sentences (i.e., sentences with free variables), and these open-sentence variables can be 
bound by constructibility quantifiers. With keen attention to detail, 
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Chihara develops arithmetic, analysis, functional analysis, and so on in his system, 
following the parallel development of these mathematical fields in simple (impredicative) 
type theory.
Unlike Field, Chihara is a realist in truth-value. He holds that the relevant modal 
statements have objective and nonvacuous truth-values that hold or fail independent of the 
mind, language, conventions, and such of the mathematical community. Mathematics 
comes out objective, even if it has no ontology. Chihara's program shows initial promise 
on the epistemic front. Perhaps it is easier to account for how the mathematician comes to 
know about what is possible, or about what sentences can be constructed, than it is to 
account for how the mathematician knows about a Platonic realm of objects. (See chapters 
15 and 16 in this volume.)



4.4. Intuitionism

Unlike fictionalists, traditional intuitionists, such as L. E. J. Brouwer (e.g., [1912, 1948]) 
and Arend Heyting (e.g., [1930, 1956]), held that mathematics has a subject matter: 
mathematical objects, such as numbers, do exist. However, Brouwer and Heyting insisted 
that these objects are mind-dependent. Natural numbers and real numbers are mental 
constructions or are the result of mental constructions. In mathematics, to exist is to be 
constructed. Thus Brouwer and Heyting are anti-realists in ontology, denying the objective 
existence of mathematical objects. Some of their writing seems to imply that each person 
constructs his own mathematical realm. Communication between mathematicians consists 
in exchanging notes about their individual constructive activities. This would make 
mathematics subjective. It is more common, however, for these intuitionists, especially 
Brouwer, to hold that mathematics concerns the forms of mental construction as such (see 
Posy [1984]). This follows a Kantian theme, reviving the thesis that mathematics is 
synthetic a priori.
This perspective has consequences concerning the proper practice of mathematics. Most 
notably, the intuitionist demurs from the law of excluded middle—(AV¬A)—and other 
inferences based on it. According to Brouwer and Heyting, these methodological principles 
are symptomatic of faith in the transcendental existence of mathematical objects and/or the 
transcendental truth of mathematical statements. For the intuitionist, every mathematical 
assertion must correspond to a construction. For example, let P be a property of natural 
numbers. For an intuitionist, the content of the assertion that not every number has the 
property P—the formula ¬ xPx—is that it is refutable that one can find a construction 
showing that P holds of each number. The content of the assertion that there is a number 
for which P fails— x ¬Px—is that one can construct a number x and 
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show that P does not hold of x. The latter formula cannot be inferred from the former 
because, clearly, it is possible to show that a property cannot hold universally without 
constructing a number for which it fails. In contrast, from the realist's perspective, the 
content of ¬ xPx is simply that it is false that P holds universally, and x ¬Px means that 
there is a number for which P fails. Both formulas refer to numbers themselves; neither has 
anything to do with the knowledge-gathering abilities of mathematicians, or any other 
mental feature of them. From the realist's point of view, the two formulas are equivalent. 
The inference from ¬ xPx to x ¬Px is a direct consequence of excluded middle.
Some contemporary intuitionists, such as Michael Dummett ([1973, 1977]) and Neil 
Tennant ([1987, 1997]), take a different route to roughly the same revisionist conclusion. 



Their proposed logic is similar to that of Brouwer and Heyting, but their supporting 
arguments and philosophy are different. Dummett begins with reflections on language 
acquisition and use, and the role of language in communication. One who understands a 
sentence must grasp its meaning, and one who learns a sentence thereby learns its meaning. 
As Dummett puts it, "a model of meaning is a model of understanding." This at least 
suggests that the meaning of a statement is somehow determined by its use. Someone who 
understands the meaning of any sentence of a language must be able to manifest that 
understanding in behavior. Since language is an instrument of communication, an 
individual cannot communicate what he cannot be observed to communicate.
Dummett argues that there is a natural route from this "manifestation requirement" to what 
we call here anti-realism in truth-value, and a route from there to the rejection of classical 
logic—and thus a demand for major revisions in mathematics.
Most semantic theories are compositional in the sense that the semantic content of a 
compound statement is analyzed in terms of the semantic content of its parts. Tarskian 
semantics, for example, is compositional, because the satisfaction of a complex formula is 
defined in terms of the satisfaction of its subformulas. Dummett's proposal is that the 
lessons of the manifestation requirement be incorporated into a compositional semantics. 
Instead of providing satisfaction conditions of each formula, Dummett proposes that the 
proper semantics supplies proof or computation conditions. He thus adopts what has been 
called "Heyting semantics." Here are three clauses: 
A proof of a formula in the form Φ V Ψ is a proof of Φ or a proof of Ψ. 
A proof of a formula in the form Φ → Ψ is a procedure that can be proved to transform any 
proof of Φ into a proof of Ψ. 
A proof of a formula in the form ¬Φ is a procedure that can be proved to transform any 
proof of Φ into a proof of absurdity; a proof of ¬Φ is a proof that there can be no proof of 
Φ. 
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Heyting and Dummett argue that on a semantics like this, the law of excluded middle is not 
universally upheld. A proof of a sentence of the form Φ V¬Φ consists of a proof of Φ or a 
proof that there can be no proof of Φ. The intuitionist claims that one cannot maintain this 
disjunction, in advance, for every sentence Φ.
A large body of research in mathematical logic shows how intuitionistic mathematics 
differs from its classical counterpart. Many mathematicians hold that the intuitionistic 
restrictions would cripple their discipline (see, e.g., Paul Bernays [1935]). For some 
philosophers of mathematics, the revision of mathematics is too high a price to pay. If a 
philosophy entails that there is something wrong with what the mathematicians do, then the 
philosophy is rejected out of hand. According to them, intuitionism can be safely ignored. 
A less dogmatic approach would be to take Dummett's arguments as a challenge to answer 



the criticisms he brings. Dummett argues that classical logic, and mathematics as practiced, 
do not enjoy a certain kind of justification, a justification one might think a logic and 
mathematics ought to have. Perhaps a defender of classical mathematics, such as a 
Quinean holist or a Maddy-style naturalist, can concede this, but argue that logic and 
mathematics do not need this kind of justification. We leave the debate at this juncture. 
(See chapters 9 and 10 in this volume.)

4.5. Structuralism

According to another popular philosophy of mathematics, the subject matter of arithmetic, 
for example, is the pattern common to any infinite system of objects that has a 
distinguished initial object, and a successor relation or operation that satisfies the induction 
principle. The arabic numerals exemplify this natural number structure, as do sequences of 
characters on a finite alphabet in lexical order, an infinite sequence of distinct moments of 
time, and so on. A natural number, such as 6, is a place in the natural number structure, the 
seventh place (if the structure starts with zero). Similarly, real analysis is about the real 
number structure, set theory is about the set-theoretic hierarchy structure, topology is about 
topological structures, and so on.
According to the structuralist, the application of mathematics to science occurs, in part, by 
discovering or postulating that certain structures are exemplified in the material world. 
Mathematics is to material reality as pattern is to patterned. Since a structure is a one-over-
many of sorts, a structure is like a traditional universal, or property.
There are several ontological views concerning structures, corresponding roughly to 
traditional views concerning universals. One is that the natural number structure, for 
example, exists independent of whether it has instances in the 
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physical world—or any other world, for that matter. Let us call this ante rem structuralism, 
after the analogous view concerning universals (see Shapiro [1997] and Resnik [1997]; see 
also Parsons [1990]). Another view is that there is no more to the natural number structure 
than the systems of objects that exemplify this structure. Destroy the systems, and the 
structure goes with them. From this perspective, either structures do not exist at all—in 
which case we have a version of nominalism—or the existence of structures is tied to the 
existence of their "instances," the systems that exemplify the structures. Views like this are 
sometimes dubbed eliminative structuralism (see Benacerraf [1965]).
According to ante rem structuralism, statements of mathematics are understood at face 
value. An apparent singular term, such as "2," is a genuine singular term, denoting a place 



in the natural number structure. For the eliminative structuralist, by contrast, these apparent 
singular terms are actually bound variables. For example, "2 + 3 = 5" comes to something 
like "in any natural number system S, any object in the 2-place of S that is S-added to the 
object in the 3-place of S is the object in the 5-place of S." Eliminative structuralism is a 
structuralism without structures.
Taken at face value, eliminative structuralism requires a large ontology to keep 
mathematics from being vacuous. For example, if there are only finitely many objects in 
the universe, then the natural number structure is not exemplified, and thus universally 
quantified statements of arithmetic are all vacuously true. Real and complex analysis and 
Euclidean geometry require a continuum of objects, and set theory requires a proper class 
(or at least an inaccessible cardinal number) of objects. For the ante rem structuralist, the 
structures themselves, and the places in the structures, provide the "ontology."
Benacerraf [1965], an early advocate of eliminative structuralism, made much of the fact 
that the set-theoretic hierarchy contains many exemplifications of the natural number 
structure. He concluded from this that numbers are not objects. This conclusion, however, 
depends on what it is to be an object—an interesting philosophical question in its own 
right. The ante rem structuralist readily accommodates the multiple realizability of the 
natural number structure: some items in the set-theoretic hierarchy, construed as objects, 
are organized into systems, and some of these systems exemplify the natural number 
structure. That is, ante rem structuralism accounts for the fact that mathematical structures 
are exemplified by other mathematical objects. Indeed, the natural number structure is 
exemplified by various systems of natural numbers, such as the even numbers and the 
prime numbers. From the ante rem perspective, this is straightforward: the natural 
numbers, as places in the natural number structure, exist. Some of them are organized into 
systems, and some of these systems exemplify the natural number structure.
On the ante rem view, the main epistemological question becomes: How do we know 
about structures? On the eliminative versions, the question is: How do 
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we know about what holds in all systems of a certain type? Structuralists have developed 
several strategies for resolving the epistemic problems. The psychological mechanism of 
pattern recognition may be invoked for at least small, finite structures. By encountering 
instances of a given pattern, we obtain knowledge of the pattern itself. More sophisticated 
structures are apprehended via a Quine-style postulation (Resnik), and more robust forms 
of abstraction and implicit definition (Shapiro).
None of the structuralisms invoked so far provide for a reduction of the ontological burden 
of mathematics. The ontology of ante rem structuralism is as large and extensive as that of 
traditional realism in ontology. Indeed, ante rem structuralism is a realism in ontology. 
Only the nature of the ontology is in question. Eliminative structuralism also requires a 



large ontology to keep the various branches of mathematics from lapsing into vacuity. 
Surely there are not enough physical objects to keep structuralism from being vacuous 
when it comes to functional analysis or set theory. Thus, eliminative structuralism requires 
a large ontology of nonconcrete objects, and so it is not consistent with ontological anti-
realism.
Hellman's [1989] modal structuralism is a variation of the underlying theme of eliminative 
structuralism which opts for a thorough ontological anti-realism. Instead of asserting that 
arithmetic is about all systems of a certain type, the modal structuralist says that arithmetic 
is about all possible systems of that type. A sum like "2 + 3 = 5" comes to "in any possible 
natural number system S, any object in the 2-place of S that is S-added to the object in the 
3-place of S is the object in the 5-place of S" or "necessarily, in any natural number system 
S, any object in the 2-place of S that is S-added to the object in the 3-place of S is the object 
in the 5-place of S." The modal structuralist agrees with the eliminative structuralist that 
apparent singular terms, such as numerals, are disguised bound variables, but for the modal 
structuralist these variables occur inside the scope of a modal operator.
The modal structuralist faces an attenuated threat of vacuity similar to that of the 
eliminative structuralist. Instead of asserting that there are systems satisfying the natural 
number structure, for example, the modalist needs to affirm that such systems are possible. 
The key issue here is to articulate the underlying modality. (See chapters 17 and 18 in this 
volume.)

5. Logic

The above survey broached a number of issues concerning logic and the philosophy of 
logic. The debate over intuitionism invokes the general validity, within mathematics, of the 
law of excluded middle and other inferences based on it 
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(chapters 9- 11 in this volume), and questions concerning impredicativity emerged from a 
version of logicism.
There is traffic in the other direction as well, from logic to the philosophy of mathematics. 
Perhaps the primary issue in the philosophy of logic concerns the nature, or natures, of 
logical consequence. There is, first, a deductive notion of consequence: a proposition Φ 
follows from a set Γ of propositions if Φ can be justified fully on the basis of the members 
of Γ. This is often understood in terms of a chain of legitimate, gap-free inferences that 
leads from members of Γ to Φ. A similar, perhaps identical, idea underlies Frege's 
development of logic in defense of logicism, and occurs also in neologicism. To show that 



a given mathematical proposition is knowable a priori and independent of intuition, we 
have to give a gap-free proof of it. There is also a semantic, model-theoretic notion of 
consequence: Φ follows from Γ if Φ is true in every interpretation (or model) of the 
language in which the members of Γ are true. Deductive systems introduced in logic books 
capture, or model, the deductive notion of consequence, and model-theoretic semantics 
captures, or tries to capture, the semantic notion.
There are substantial philosophical issues concerning the legitimacy of the model-theoretic 
notion of consequence and over which, if either, of the notions is primary. Of course, the 
resolution of these issues depends on prior questions concerning the nature of logic and the 
goals of logical study (chapters 21 and 22 in this volume). If both notions of consequence 
are legitimate, we can ask about relations between them. Surely it must be the case that if a 
proposition Φ follows deductively from a set Γ, then Φ is true under every interpretation of 
the language in which Γ is true. If not, then there is a chain of legitimate, gap-free 
inferences that can take us from truth to falsehood. Perish the thought. However, the 
converse seems less crucial. It may well be that there is a semantically valid argument 
whose conclusion cannot be deduced from its premises.
Issues surrounding higher-order logic, which were also broached briefly in the foregoing 
survey, turn on matters relating to the nature(s) of logical consequence. Second-order logic 
is inherently incomplete, in the sense that there is no effective deductive system that is both 
sound and complete for it. Does this disqualify it as logic, or is there some role for second-
order logic to play? What does this say about the underlying nature of mathematics? (See 
chapters 25 and 26 in this volume).
Finally, there is a tradition, dating back to antiquity and very much alive today, that 
maintains that a proposition Φ cannot be a logical consequence of a set Γ unless Φ is 
somehow relevant to Γ. On the contemporary scene, the main targets of relevance logic are 
the so-called paradoxes of implication. One of these is the thesis that a logical truth follows 
from any set of premises whatsoever, and another is ex falso quodlibet, the thesis that any 
conclusion follows from a contradiction. The extent to which such inferences occur in 
mathematics is itself a subject of debate (chapters 23 and 24 in this volume.)
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2. A Priority and Application: Philosophy of Mathematics in the Modern 
Period
Lisa Shabel 

In the modern period1—which might be thought to have begun with a new conception of 
the natural world as uniquely quantifiable—the term "science" was used to denote a 
systematic body of knowledge based on a set of self-evident first principles. Mathematics 
was understood to be the science that systematized our knowledge of magnitude, or 
quantity. But the mathematical notion of magnitude, and 
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the methods used to investigate it, underwent a period of radical transformation during the 
early modern period: Descartes's new analytic methods for solving geometric problems, 
Vieta's and Fermat's systems of "specious arithmetic," and Newton's and Leibniz's 
independent discoveries of the calculus are just a few of the developments in mathematical 
practice that witness this transformation. These innovations in mathematical practice 
inspired similarly radical innovations in the philosophy of mathematics: philosophers were 



confronted with a changing mathematical landscape, and their assessment of the 
ontological and epistemological terrain reveals that both the basic mathematical notions 
and the philosophers' tools for comprehending and explaining those notions were in 
transition.
While mathematical methods were becoming decidedly more analytical and abstract, they 
nevertheless remained anchored by a concrete conception of magnitude, the object of 
mathematics. Ultimately, mathematics was meant to provide a quantitative description of 
any quantifiable entity: the number of cups on the table, the volume and surface area of a 
particular cup, the amount of liquid the cup contains, the temperature of the liquid, and so 
on. The term "magnitude" was used to describe both the quantifiable entity and the 
quantity it was determined to have. That is, for the moderns, magnitudes have magnitude.2 

In the seventeenth and eighteenth centuries, modern mathematical practices had not yet 
become sufficiently abstract so as to fully detach the latter notion from the former: 
mathematics was not yet about number or shape (much less set or manifold) conceived 
independently from numbered or shaped things. This is not to suggest that the modern 
mathematician lacked the resources to represent such quantifiables in abstract 
mathematical form; indeed, the period was rich in such representational innovation. The 
point is, rather, that modern mathematical ontology included both abstract mathematical 
representations and their concrete referents. Accordingly, modern mathematical 
epistemology could not rest with an account of our cognitive ability to manipulate 
mathematical abstractions but had also to explain the way in which these abstractions made 
contact with the natural world.
The state of modern mathematical practice called for a modern philosopher of mathematics 
to answer two interrelated questions. Given that mathematical ontology includes 
quantifiable empirical objects, how to explain the paradigmatic features of pure 
mathematical reasoning: universality, certainty, necessity. And, without giving up the 
special status of pure mathematical reasoning, how to explain the ability of pure 
mathematics to come into contact with and describe the 
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empirically accessible natural world.3 The first question comes to a demand for apriority: a 
viable philosophical account of early modern mathematics must explain the apriority of 
mathematical reasoning. The second question comes to a demand for applicability: a viable 
philosophical account of early modern mathematics must explain the applicability of 
mathematical reasoning. Ultimately, then, the early modern philosopher of mathematics 
sought to provide an explanation of the relation between the mathematical features of the 
objects of the natural world and our paradigmatically a priori cognition thereof, thereby 
satisfying both demands.



At the end of the modern period, Kant attempts to meet these demands with his doctrine of 
Transcendental Idealism, including arguments for the synthetic a priori status of 
mathematical cognition. In the course of defending his own theory of how we come to 
cognize the mathematical world, Kant distinguishes two strains of thought in his 
predecessors' competing accounts of mathematical cognition, which he determines to be 
inadequate and misguided.4 Taking the science of Euclidean geometry, an exemplar of pure 
mathematical reasoning, to provide substantive cognition of space, spatial relations, and 
empirically real spatial objects, Kant claims that prior attempts to account for our cognitive 
grasp of geometry and its objects "come into conflict with the principles of experience."5 

On Kant's view, both the "mathematical investigators of nature" (who suppose that the 
spatial domain of geometric investigation is an eternal and infinite subsisting real entity) 
and the "metaphysicians of nature" (who suppose that the spatial domain of geometric 
investigation comprises relations among confused representations of real entities that are 
themselves ultimately nonspatial) fail to provide a viable account of early modern 
mathematics in the sense described above. In particular, the "mathematicians" fail to meet 
the applicability demand, and the "metaphysicians" fail to meet the apriority demand.6 

Kant's claim, of course, is that his own theory of synthetic a priori mathematical cognition 
meets with greater success.
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In what follows, I will discuss these three major attempts to provide a viable philosophical 
account of early modern mathematical practice. Descartes and Newton stand as examples 
of the "mathematicians"; Leibniz exemplifies the "metaphysicians"; and Kant sees himself 
as correcting the common error that, on his view, leads both "mathematician" and 
"metaphysician" astray. I will begin by providing a brief account of a relevant aspect of 
early modern mathematical practice, in order to situate our philosophers in their historical 
and mathematical context.

1. Representational Methods in Mathematical Practice

As noted above, the modern mathematician's task included systematizing the science of 
quantity. This required, first and foremost, a systematic method for representing real, 
quantifiable objects mathematically, as well as a systematic method for manipulating such 
representations. The real, quantifiable objects were conceived to include both discrete 
magnitudes, or those that could be represented numerically and manipulated arithmetically, 
and continuous magnitudes, or those that could be represented spatially and manipulated 
geometrically. These categories, however, were neither fully determinate nor mutually 



exclusive; they did not serve to demarcate two distinct sets of real, quantifiable objects 
because, for example, a given magnitude might be considered with respect to both shape 
and number, and thus might be treated geometrically for one purpose and arithmetically for 
another. Mathematical progress required a representational system that was adequate to 
symbolize any and all quantifiable features of the natural world in such a way that 
comparisons could be easily made among them. Moreover, mathematical progress required 
that such a representational system be as abstract and general as possible while 
nevertheless retaining its purchase on the concrete and particular quantifiables of the 
natural world.
For a simple example, consider a bag of marbles. A geometric diagram of a sphere can be 
taken to represent the shape of any individual marble and, indeed, any spherically shaped 
object. This sort of representation can be mathematically manipulated using classical 
techniques of Euclidean solid geometry, but its intermathematical utility is limited: while a 
diagram of a sphere can be useful in plainly geometric reasoning about spheres (and cross 
sections thereof, tangents thereto, etc.), it is impotent for the purpose of more abstract 
reasoning, such as might be required mathematically to compare the sphere to nonspatial 
magnitudes. A qualitative geometric diagram can represent a magnitude qua spatial object, 
but cannot aid us in abstracting from spatiality in order to represent it as a discrete 
quantity. 
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Moreover, while a number can be taken to represent the determinate ratio of all of the 
marbles in the bag to a single marble, it can do so only upon specification of a marble as 
the unit of measure. On the modern conception, a number "arises" upon consideration of a 
group of things of a particular kind in relation to a single thing of that kind and thus is, in a 
sense, context-sensitive: the use of number as a quantitative tool is inextricably tied to the 
choice of unit, which is not fixed. On this conception, it follows that numbers are 
representationally inflexible: it is difficult to see how to make quantitative comparisons 
among magnitudes of different kinds. More generally, on this conception the possibility of 
a notion of number that ranges beyond the positive integers appears remote.
Early modern innovations in representational flexibility began with Descartes's observation 
that we can represent and compare magnitudes uniformly and in the simplest possible 
terms by formulating ratios and proportions between and among their "dimensions." "By 
'dimension,'" Descartes writes, "we mean simply a mode or aspect in respect of which 
some subject is considered to be measurable."7 According to Descartes, dimensionality 
comprises countless quantitative features which include length, breadth, and depth, but also 
weight, speed, the order of parts to whole (counting), and the division of whole into parts 
(measuring). More importantly, a finite straight line segment is identified as the most 
versatile tool for representing any dimension of magnitude; any and all quantitative 



dimensions can be represented simply and uniformly via configurations and ratios of 
straight line segments.8 Notably, in Descartes's system the unit segment, to which any other 
representative segment stands in relation, is problem-specific: for solution of a particular 
problem "we may adopt as unit either one of the magnitudes already given or any other 
magnitude, and this will be the common measure of all the others."9 Once the unit 
magnitude is chosen and represented as a particular finite line segment, representations of 
all other relevant magnitudes can be constructed in relation to that unit.10 
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To solve a mathematical problem, one thus begins by identifying and representing the 
magnitudes involved, no matter whether they be determinate or indeterminate, known or 
unknown, geometric or arithmetic, extended or multitudinous, continuous or discrete. One 
chooses a unit of measure and conceives each relevant magnitude in general terms—in 
abstraction from the object or group of objects that is ordered or measured but in relation to 
the chosen unit—by following Descartes's technical constructive procedures. Algebraic 
symbols can then be used as a heuristic aid for manipulating the line segments, and 
algebraic equations formulated to express the mathematical relations in which the 
segments stand to one another.11 Famously, the Cartesian representational system liberates 
formerly heterogeneous magnitudes: on the Cartesian system, the multiplication of two line 
segments yields another line segment, rather than the area of a rectangle. It follows that 
products, quotients, and roots of linear magnitudes can be construed to stand in proportion 
to the magnitudes themselves; likewise, the degree of algebraic variables need not be taken 
to indicate strictly geometric dimensionality.
Descartes's own use of his representational system was primarily directed at solving 
problems in geometry,12 though he certainly thought it adequate for other mathematical 
manipulations. Modern mathematicians who adopted the Cartesian system emphasized its 
utility across mathematical disciplines, and used straight lines to represent numbers for 
arithmetic and number-theoretic purposes. Once a single straight line is designated as 
unity, any positive integer can be straightforwardly represented as a simple concatenation 
of units. One advantage of the Cartesian representational system is that it allows the notion 
of number to expand beyond the positive integers so constructed: numbers can now be 
conceived as ratios between line segments of any arbitrary length and a chosen unit. 
Rational numbers are identified as those segments that are (geometrically) commensurable 
with unity, and irrational numbers those that are incommensurable. These representational 
innovations witness a number concept in transition: the moderns are able to treat rational 
and irrational magnitudes numerically, but the notion of number remains tied to the 
geometric concept of commensurability. Importantly, the moderns are unable to use the 
Cartesian representational system to conceive negative quantities, a disadvantage of the 



system. Consequently, negative quantities are variously deemed "absurd," "privative of 
true," "wanting reality," and "not real."
Actual mathematical progress in the modern period might be said to outpace the 
fundamental and foundational tools and concepts available to mathematicians 
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at the time. Geometric problems far more sophisticated than the ancients could have 
imagined are solved on ancient geometric foundations; algebraic methods are developed 
and fruitfully applied long before algebra is conceived to be a mathematical discipline in 
its own right, with its own domain of problems distinct from those of arithmetic and 
geometry; number-theoretic investigations and the discovery of the calculus proceed 
despite the foundational inadequacy of a number concept that cannot handle negative or 
infinitesimal quantities with logical rigor.13 In this sense, early modern mathematical 
practice awaits deep philosophical response in the nineteenth century, when logical and 
mathematical foundations are reassessed in the face of the striking developments in 
mathematical practice in the seventeenth and eighteenth centuries. The early modern 
philosopher remains occupied by the more basic philosophical problems raised by a newly 
mathematized natural world.14 It is to those problems, and their solutions, that we now turn.

2. "Mathematicians," "Metaphysicians," and the "Natural Light"

In the Fifth Meditation of his Meditations on First Philosophy, Descartes famously argues 
that we have a clear and distinct perception of the essence of material substance, and that 
that essence is pure extension. According to Descartes, our clear and distinct perception of 
the immutable and eternal natures of all material objects, which we find represented in our 
idea of extension, is the basis for sure and certain knowledge of those objects. This 
knowledge is systematized by our pure mathematics, in particular by geometry, which thus 
provides us with an a priori 
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science of the nature of the corporeal world. For Descartes, then, the essential nature of the 
material world is perfectly mathematical and perfectly knowable.15 
Descartes begins his Fifth (and penultimate) Meditation, "The Essence of Material Things, 
and the Existence of God Considered a Second Time," by proposing to investigate 
"whether any certainty can be achieved regarding material objects."16 Before demonstrating 
that we have certain knowledge of the real existence of material things, as he will do in the 



Sixth (and final) Meditation, Descartes must first investigate his ideas of material things: 
"But before I inquire whether any such things exist outside me, I must consider the ideas of 
these things, in so far as they exist in my thought, and see which of them are distinct, and 
which confused."17 He proceeds to show that his clear and distinct ideas of extension 
provide insight into "that corporeal nature which is the subject-matter of pure 
mathematics."18 
First, Descartes confirms the clarity and distinctness of his idea of quantity, in particular 
"the extension of the quantity (or rather of the thing which is quantified) in length, breadth, 
and depth." He continues, "I also enumerate various parts of the thing, and to these parts I 
assign various sizes, shapes, positions and local motions; and to the motions I assign 
various durations."19 The clarity and distinctness of our general idea of quantity is best 
understood by considering the mathematically fundamental representations discussed 
above, in section 1. For Descartes, particular quantities are imaginable via line segments; 
lengths, breadths, and depths, as well as enumerations of parts, sizes, shapes, positions, 
motions and durations, are, qua quantities, all mathematically represented with straight line 
segments, relations among straight line segments, and algebraic equations expressing those 
relations. These precise and perspicuous mathematical symbols witness the 
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quantitative properties they symbolize. But our perception of both these symbols and the 
real quantitative properties they symbolize depends on our having clear and distinct 
perception of pure extension and its modes—that is, on an idea of quantity in general that 
is accessible to our intellect.
Descartes claims further that his perception of particular features of quantity is in harmony 
with his very own nature, "like noticing for the first time things which were long present 
within me although I had never turned my mental gaze on them before."20 This is a claim 
that is buttressed by the "wax argument" of the Second Meditation. There Descartes 
identifies extension, or extendedness, as that feature of the wax that makes it a material 
thing, its nature or essence. More important, perhaps, he identifies his own intellect as that 
cognitive tool that allows him to perceive the extendedness of all material things: 
Descartes's perception of the essential feature of material substance is due neither to 
sensation nor to imagination, but to a "purely mental scrutiny" which enables his clear and 
distinct perception of pure extension.
Descartes combines these results with his more general (and independently demonstrated) 
conclusions that what he clearly and distinctly perceives is true; that his idea of God is 
innate; that God exists; and that God is no deceiver. Since Descartes has claimed that he 
clearly and distinctly perceives the quantitative features of material objects, it follows that 
these quantitative properties are "true"—that is, that material objects (if they exist) really 
do have the quantitative properties Descartes perceives them to have. The existence of a 



nondeceiving God underwrites Descartes's perception in a strong sense: his intellectual 
capacity for clear and distinct perception is a God-given "natural light" providing him with 
the ability to access mathematical truths, God's own "free creations."21 
Upon demonstrating in the Sixth Meditation that material substance exists and is really 
distinct from immaterial substance, Descartes completes his Meditative project. In the 
process of pursuing his broad metaphysical and epistemological goals, Descartes can be 
understood to have articulated a philosophy of mathematics according to which we have a 
priori knowledge of mathematical truths about real, extramental material substance. In 
particular, our intellect affords us clear and distinct perception of the quantitative features 
of mind-independent entities, which we represent to ourselves via ideas of extension. 
Moreover, we know that our ideas of extension perfectly describe the really extended 
material world—that is, that our ideas of extension are in harmony with the really extended 
matter that is their object.22 Descartes's epistemological and metaphysical conclusions 
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vis-à-vis mathematical objects are thus entwined: he has identified a mental faculty, the 
rational intellect, to be a cognitive tool for accessing mind-independent material natures. 
Since, on Descartes's view, those natures are quantitative and mathematically describable, 
he conceives the "natural light of reason" to illuminate the metaphysically essential 
features of the mind-independent world and to provide us with "full and certain 
knowledge … concerning the whole of that corporeal nature which is the subject-matter of 
pure mathematics."23 
It appears that if Descartes's arguments are accepted, his rationalist philosophy of 
mathematics satisfies both of the demands on a viable account of early modern 
mathematical practice, identified above. He accounts for the apriority of mathematics with 
his theory that the intellect, a faculty of mind independent of the bodily faculties of 
imagination and sensation, provides direct access to innate mathematical ideas of eternal 
and immutable natures. He accounts for the applicability of mathematical reasoning by 
identifying the essence of the natural material world with pure extension, the very object of 
our innate mathematical ideas: an explanation of how a priori mathematics applies to the 
natural world is easily forthcoming from a theory that directly identifies the essential 
features of the natural world with the subject matter of pure mathematics. Since, on 
Descartes's view, our a priori mathematical knowledge systematizes mathematical truths 
about a mind-independent and really extended natural world, he thus appears to have 
satisfied both the apriority and the applicability demands. It will follow from Kant's 
critique, however, that a theory like Descartes's goes too far in satisfying the applicability 
demand: the mathematical sciences as Descartes understands them apply far beyond the 
bounds of what Kant takes to be the limits of our "possible experience." To see why this is 



so, it will be helpful to consider the views of another "mathematician," and Kant's real 
target, Isaac Newton.
Newton did not concede all (or even many) of Descartes's metaphysical and physical 
conclusions; indeed, he spends much of his famous essay "On the Gravity and Equilibrium 
of Fluids"24 disputing Descartes's theory of space. On Descartes's view, space is not distinct 
from the extended material world of spatial things: 
There is no real distinction between space, or internal place, and the corporeal substance 
contained in it; the only difference lies in the way in which we are accustomed to conceive 
of them. For in reality the extension in length, breadth and depth which constitutes a space 
is exactly the same as that which constitutes a body.25 
Thus, for Descartes, any knowledge we acquire via geometrical cognition of space is, 
likewise, knowledge of bodily extension. By contrast, Newton conceives space 
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to be distinct from bodies, arguing that we can clearly conceive of extension independent 
of bodies: "… we have an exceptionally clear idea of extension, abstracting the 
dispositions and properties of a body so that there remains only the uniform and unlimited 
stretching out of space in length, breadth and depth."26 It follows that, for Newton, our 
geometrical cognition of space affords us knowledge of an entity that is infinitely 
extended, continuous, motionless, eternal, and immutable, but that is not itself corporeal 
and that can be conceived as empty of bodies. Moreover, space is a unified whole of 
strictly contiguous parts: the single infinite space encompasses every possible spatial figure 
and position that a bodily object might "materially delineate."27 Bodies, for Newton, are the 
movable and impenetrable entities that occupy space, and thus provide us with corporeal 
instances of spatial parts.
Thus, Descartes and Newton disagree in a deep sense about how to understand the 
ontology of space and matter, about whether extension can be distinguished from corporeal 
reality, and thus about whether we have claims to mathematical knowledge of space that 
are distinct from our claims to mathematical knowledge of spatial things.28 For Descartes, 
our knowledge of quantifiable things just is knowledge of the nature of quantity in general, 
whereas for Newton our knowledge of quantifiable things (which occupy parts of space) is 
acquired via knowledge of the general nature of extension, knowledge of how parts of 
space relate to space conceived as an infinite whole. But Descartes and Newton 
nevertheless agree in their accounts of how we come to acquire knowledge of what they 
both conceive to be an extramental reality that is the ultimate subject matter of pure 
mathematics. Newton follows Descartes in positing a faculty of understanding as the real 
source of mathematical cognition, a tool with which we can comprehend the eternal and 
immutable nature of extension, which he conceives as infinite space.29 While sensation 
allows us to represent "materially delineated" bits of extension (i.e., bodies), and 



imagination allows us to represent indefinitely great extension, according to Newton only 
the faculty of understanding can clearly represent the true and general nature of 
space/extension.30 
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Newton, like Descartes, thus accounts for our applicable a priori mathematical cognition 
by claiming that we have a clear perception of the mathematical features of an extramental 
natural world. Both Descartes and Newton conceive this clear perception of the 
mathematical features of an extramental natural world to be illuminated by the natural  
light of reason, a metaphor for the sense in which our faculty of understanding is, on their 
views, an acute mental vision bestowed by a nondeceiving God.31 As before, it appears that 
Newton's account of mathematical cognition satisfies both the apriority and the 
applicability demands: according to Newton, we have the necessary cognitive tools to 
acquire a priori knowledge of the mathematical features of the natural world. As noted, 
however, Kant considered Newton's account of mathematical cognition—representative of 
what he took to be the "mathematician's" position—to be deeply inadequate. He considered 
Leibniz's alternative account— representative of what he took to be the "metaphysician's" 
position—just as problematic, as we will see in detail below.
Famously, Leibniz claims that the ultimate constituents of reality, the true substances, are 
monads: partless, simple, sizeless entities that have perceptual states, like minds. It follows 
that, for Leibniz, no extended thing is an ultimate constituent of reality and the extended 
natural world is merely a "phenomenon": our perceptions of a spatial material world are 
confused representations of a metaphysically fundamental realm of nonspatial monads. 
Space, time, and "the other entities of pure mathematics" are "always mere abstractions." 
Their perfect uniformity indicates that they are not intrinsic denominations, internal 
properties of things, but extrinsic denominations, orderings or relations among things: 
"[Space] is a relationship: an order, not only among existents, but also among possibles as 
though they existed. But its truth and reality are grounded in God, like all eternal truths."32 

While it might be accurate to say that, on Leibniz's view, mathematics describes relations 
among material entities, it is important to remember that for Leibniz material entities are 
exhausted by our confused phenomenal representations of a perceptually inaccessible 
underlying reality. This underlying monadic realm is populated by entities that are not 
mathematically describable; monads as Leibniz understands them cannot be identified with 
mathematical points, either 
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geometric or numeric. Given his monadology, Leibniz thus owes us an account of the 
status of mathematical claims to knowledge: Since our metaphysical knowledge of reality 



does not include mathematical knowledge, how do we acquire mathematical knowledge, 
and what is it about?
Leibniz expresses an important component of his mature philosophy of mathematics in a 
letter to Queen Sophie Charlotte of Prussia,33 his student, friend, and epistolary 
interlocutor. There he explains his position that an internal "common sense" allows us to 
form those clear and distinct notions that are for Leibniz the ultimate subject matter of pure 
mathematics, such as number and shape. These are ideas of qualities more "manifest" than 
those sensible and "occult" qualities we access via the clear but confused notions of a 
single sense, such as colors, sounds, and odors. The notions we acquire through the 
"common sense" describe qualities accessible to more than one external sense: "Such is the 
idea of number, which is found equally in sounds, colors, and tactile qualities. It is in this 
way that we also perceive shapes which are common to colors and tactile qualities. …"34 

Leibniz further identifies the imagination as the faculty of mind that operates on the clear 
and distinct notions of the common sense, the ideas that arise from the perception of 
qualities common to more than a single external sense, to produce our conceptions of 
mathematical objects: 
… these clear and distinct ideas [of the common sense], subject to imagination, are the 
objects of the mathematical sciences, namely arithmetic and geometry, which are pure 
mathematical sciences, and the objects of these sciences as they are applied to nature, 
which make up applied (mixtes) mathematics.35 
He adds, however, that sense and imagination must be augmented by understanding in 
order to attain a full conception of mathematical objects and "to build sciences from them." 
It is, according to Leibniz, the understanding or reason that assures that the mathematical 
sciences are demonstrative and that mathematical truths are universally true, for without 
the application of such a "higher" faculty of reasoning, the mathematical sciences would 
consist merely of observations and inductive generalizations therefrom. Indeed, Leibniz 
claims that despite the fact that our notions of mathematical objects originate in sensible 
experience, nevertheless a demonstrative mathematical truth is fully "independent of the 
truth or the existence of sensible and material things outside of us." Thus, for Leibniz, 
mathematical truths describe features of our sensible experience despite finding their 
justification in the understanding alone.
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Leibniz resolves this apparent tension—between the sensible source of our notions of 
mathematical objects and the intelligible source of our justification of mathematical truths
—with recourse to the "natural light" of reason. The "natural light" of reason is solely 
responsible for our recognition of the necessary truth of the axioms of mathematics and for 
the force of demonstrations based on such axioms. Mathematical demonstration thus 
depends solely on "intelligible notions and truths, which alone are capable of allowing us 



to judge what is necessary."36 For Leibniz, then, our pure mathematical knowledge is 
formal knowledge of the logic of mathematical relations, which are not directly dependent 
on any sensible data. This pure mathematical knowledge might be described as verified by 
our sensible experience, but ultimately our ideas of the mathematical features of sensible 
things conform to the mathematical necessities that we understand by the natural light: 
[Experience is] useful for verifying our reasonings as by a kind of proof. … But, to return 
to necessary truths, it is generally true that we know them only by this natural light, and 
not at all by the experiences of the senses.37 
According to Leibniz, we have intelligible knowledge by the "natural light" of "what must 
be" and "what cannot be otherwise"—that is to say, of necessary (mathematical) truths 
such as the law of noncontradiction and the axioms of geometry. We can apply these laws 
to particular sensible qualities with our "common sense," which represents for us particular 
ideas of magnitude and multitude, thereby instancing universal mathematical truths. But, 
on this picture, we can discover necessary truths about many more things than we can 
possibly imagine, in Leibniz's sense: there are mathematical objects about which we can 
deduce mathematical truths but which our "common sense" cannot access. For example, 
even though "one finds ordinarily that two lines that continually approach finally 
intersect," the geometer nevertheless makes use of asymptotes, "extraordinary lines … that 
when extended to infinity approach continually and yet never intersect."38 Likewise, the 
arithmetician operates with negative magnitudes, the analyst with infinitesimally small 
magnitudes, the algebraist with imaginary roots of magnitudes. Leibniz calls such notions 
"useful fictions," that is, notions which cannot be found in nature and which may seem 
even to contradict our sensible experience, but which nevertheless have obvious 
mathematical utility. He is in a unique position to account for them, despite the general 
inadequacies of modern symbolic systems to do so, because of another aspect of his 
approach to mathematics: his formalism.
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Leibniz's formalist attitude toward mathematical reasoning allows him to conceive the 
symbols of arithmetic, algebra, and analysis independently from the geometric figures they 
were originally devised to stand for, thus allowing those symbols to be manipulated 
formally with only "intermittent attention" paid to the figures that are their referent.39 The 
use of "fictional" mathematical notions is thus warranted rather than deemed absurd, since, 
on Leibniz's view, mathematical formalisms are detachable from their domain of 
application. In this respect, Leibniz can construe the objects of mathematical reasoning 
more abstractly than could either Descartes or Newton, both of whom used formal 
symbolic manipulation only as an aid to fundamentally geometric reasoning. Since 
Leibniz, by contrast, identifies the systematization of logical reasoning as the primary aim 
of the mathematical sciences, and separates his claims to mathematical knowledge from his 



claims to metaphysical knowledge, he can disregard the suggestion that metaphysical 
absurdities arise out of the use of effective mathematical symbolisms, thus initiating a 
transition to a more abstract and formal conception of the mathematical sciences.40 
How, then, does Leibniz's account of mathematical cognition fare in the face of our two 
demands? His account seems to satisfy the apriority demand, since the role of the 
understanding in a mathematical context is specifically to provide us with knowledge of 
the mathematical axioms and the laws of logic. On Leibniz's view, then, our claims to 
mathematical knowledge are a priori because they are all founded on and deduced from 
universal and necessary truths known to us by the "natural light." Moreover, according to 
Leibniz, these claims to mathematical knowledge find application in the natural world: the 
clear and distinct deliverances of the "common sense" demarcate the domain of 
mathematical applicability. That our "common sense" notions are not notions of a 
metaphysically fundamental monadic realm is of no bother to Leibniz's account of 
mathematical cognition: despite the fact that what is metaphysically fundamental is for 
Leibniz not mathematically describable, we nevertheless have substantive mathematical 
knowledge of relations among objects of the phenomenal natural world.
We are now in a position to understand and appreciate Kant's critique of the philosophies 
articulated by the "mathematician" and the "metaphysician" who preceded him, and to 
explicate his alternative account of mathematical cognition.
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3. Kant's Response

A coherent philosophy of mathematics—including an account of prevailing mathematical 
practice and an articulation of the epistemological and metaphysical conditions on the 
success of such practice—is a vital component of Kant's critical project. In an important 
portion of the "Transcendental Aesthetic,"41 Kant provides the general outlines of his 
philosophy of mathematics, and touts its virtues, by drawing a contrast between his view 
and those held by his predecessors. Kant's claims in this section are that the 
"metaphysician's" account of mathematical cognition has failed the apriority demand; that 
the "mathematician's" account has failed the applicability demand; and that his own view 
satisfies both.
Famously, Kant's own view includes the doctrine of Transcendental Idealism, according to 
which space and time are the pure forms of our sensible intuition, and the sources of 
synthetic a priori cognitions.42 Mathematics, geometry in particular, provides a "splendid 
example" of such cognitions: according to Kant, geometry is the science of our pure 
cognition of space and its relations, and provides us with a priori knowledge of the spatial 
form of the objects of our possible experience, those sensible things about which we can 



make objectively valid judgments.43 As we will see in more detail below, Kant claims that 
his own account fully satisfies both the apriority and the applicability demands. According 
to Kant, mathematical cognition is cognition of our own intuitive capacities, of our own 
pure intuitions. Since Kant argues that our intuition of space is prior to and independent of 
our experience of empirical spatial objects, geometric cognition is paradigmatically a 
priori; thus his account satisfies the apriority demand. But, on Kant's view, mathematical 
cognition is also cognition of the empirical objects that we represent as having 
spatiotemporal form, that is, of the objects of our possible experience. Inasmuch as we 
have a priori geometric cognition of space, we have a priori geometric cognition of the 
spatial form of real spatial objects. The domain of our a priori mathematical cognition 
extends beyond the pure intuition of space to the formal conditions under which we 
represent empirical objects as being in space, thus allowing a priori mathematical cognition 
to find application in the realm of real empirical objects. Importantly, for Kant our a priori 
mathematical cognition extends to, but not beyond, the bounds of possible experience: a 
priori 
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mathematical cognition applies to all and only the spatiotemporal objects of a possible 
experience.
Kant defends his own account of mathematical cognition with positive arguments in its 
favor (some of which we will examine below) as well as with his critique of competing 
accounts. Having proclaimed the transcendental ideality of space and time, and offered an 
associated account of the apriority and applicability of our mathematical cognition, he 
objects that "Those, however, who assert the absolute reality of space and time, whether 
they assume it to be subsisting or merely inhering, must themselves come into conflict with 
the principles of experience."44 Kant here takes both of his opponents to defend the 
absolute reality of space; on this basis, he judges that both opponents fail to solve the 
problem of identifying the a priori principles of our experience of the natural world.45 But 
the details of Kant's critique, and the contrasting ways in which his opponents fail where 
he succeeds, emerge only upon discussion of what distinguishes those who "assume 
[space] to be subsisting," the "mathematical investigators of nature," from those who 
"assume [space] to be … merely inhering," the "metaphysicians of nature." We will begin 
by examining Kant's objections to the "metaphysicians," proceed to his objections to the 
"mathematicians," and, finally, rehearse his own view.
Kant claims that Leibniz, Wolff, and other "metaphysicians of nature" hold "space and 
time to be relations of appearances … that are abstracted from experience though 
confusedly represented in this abstraction. …"46 On this view, according to Kant, our 
notions of space and time, the alleged source of our mathematical cognition, are "only 
creatures of the imagination, the origin of which must really be sought in experience." The 



representations that lie at the basis of mathematical reasoning and cognition are abstracted 
by the imagination from or out of our sensible contact with appearances, and thus have an 
empirical origin. On this view, space and time are "only inhering" because they are 
relations among objects and not self-subsisting entities; our representations of space and 
time are constructed by abstraction from spatiotemporal relata. Note that from Kant's 
perspective, space and time are on this relationist view nevertheless "absolutely real": the 
objects or appearances that stand in such spatiotemporal relations are conceived to be the 
source of our notions of space and time and, thus, to be "absolutely real," that is, 
independent of what Kant takes to be transcendental conditions on experience. It follows 
from the metaphysicians' view that the subject matter of mathematics is derived from our 
experience of the natural world, and is not a factor in our own construction of that 
experience.
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Kant admits that on such an account, mathematical cognition does not exceed what he 
takes to be the limits of possible experience: if mathematical cognition derives directly 
from our engagement with the realm of appearances, then our application of mathematical 
cognition to all and only appearances seems guaranteed. This is a virtue of the 
metaphysicians' account and explains the sense in which Kant accepts it as satisfying the 
applicability demand. But the metaphysicians' account has, according to Kant, the fatal 
defect of not satisfying the apriority demand. As Kant puts it, the metaphysicians "must 
dispute the validity or at least the apodictic certainty of a priori mathematical doctrines in 
regard to real things (e.g., in space), since this certainty does not occur a posteriori. …" 
Here Kant claims that because the original source of mathematical cognition is, on the 
metaphysicians' view, experiential, our geometric cognition of the spatial features of 
empirical objects must be a posteriori. This might seem not to be a problem for the 
metaphysician; he could reply to Kant's criticism by reiterating his account of our a priori 
knowledge of the laws and axioms of formal mathematics, available to us via the 
understanding. Thus the metaphysician would claim to satisfy the apriority demand by 
having given an account according to which some mathematical cognition is a priori (e.g., 
knowledge of laws, axioms, and theorems derivable therefrom) while some is a posteriori 
(e.g., knowledge of the mathematical features of real objects to which those theorems 
might be thought to apply).
But this sort of response misses the real thrust of Kant's criticism. Kant claims that the 
metaphysicians "can neither offer any ground for the possibility of a priori mathematical 
cognitions … nor can they bring the propositions of experience into necessary accord with 
those assertions." According to Kant, the metaphysicians' account serves to detach the two 
primary features of mathematical cognition—apriority and applicability—in such a way 
that there is no explanatory or meaningful harmony between the universal and a priori 



mathematical laws known by the understanding and the substantive but a posteriori 
mathematical cognition of the natural world acquired via the "common sense." Kant's 
charge is that formal a priori mathematical cognition as the metaphysician understands it is 
altogether isolated from the domain of objects taken to be mathematically and scientifically 
describable; universal and a priori mathematical truths can only be about "useful fictions" 
and not "real things." If our account of a priori mathematical cognition does not give us a 
priori knowledge of the objects of our possible experience, then our account has failed the 
apriority demand, at least as Kant conceives it.
Proceeding to the "mathematicians," Kant claims that "they must assume two eternal and 
infinite self-subsisting non-entities (space and time) which exist (yet without there being 
anything real) only in order to comprehend everything real within themselves." Kant here 
describes Newton's absolutist view that space is a container existing independently of the 
real spatial objects it contains, though is not itself a real empirical entity. Kant's assessment 
of this view is brief; he writes 
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that "[The mathematicians] succeed in opening the field of appearances for mathematical 
assertions. However, they themselves become very confused through precisely these 
conditions if the understanding would go beyond this field." In the first sentence, Kant 
makes clear that he understands the strength of the mathematicians' account to be its 
defense of our ability to achieve a priori insight into the mathematical features of the 
empirical natural world. Whereas the metaphysician could only explain a posteriori 
knowledge of such features, the mathematician proffers apriority via our perfect 
understanding of extension. Thus, on the mathematicians' account we have a priori 
mathematical knowledge of the field of appearances, of all of the objects that are contained 
within the domain of mathematical applicability. In the second sentence, however, Kant 
identifies the defect in the mathematicians' account: on this view, our a priori mathematical 
knowledge is applicable to all—but not only—appearances. It attempts to extend our a 
priori mathematical knowledge beyond the domain of appearances without explanation or 
justification of that extension. That is, in positing our special knowledge of an absolutely 
real and self-subsisting space or extension, the mathematician makes a claim to valid 
mathematical knowledge of entities that cannot themselves be described as within the 
realm of our possible experience. Given the mathematicians' absolutist conception of 
space, our achieving a priori knowledge of the mathematical features of the spatiotemporal 
natural world (e.g., knowledge of the geometry of spatial objects) requires that we also 
achieve a priori knowledge of the features of the supranatural world (e.g., knowledge of 
space itself, conceived independently from both our understanding and the objects it is 
thought to contain). Kant considers this to be a kind of "confusion": the "mathematician" 
achieves apriority only by extending the domain of applicability beyond the bounds of our 



possible experience. For Kant, the cost of apriority cannot (and need not) be that high. 
Thus, Kant takes the mathematicians' account to fail the applicability demand in a special 
sense: on the mathematicians' account, a priori mathematical cognition is applicable, but it 
is applicable beyond acceptable limits, that is, beyond the limits of our possible experience 
and knowledge of nature.
Kant thus charges that both of his opponents "come into conflict with the principles of 
experience," albeit in different ways. The metaphysician conflicts with the alleged apriority 
of those principles as applied to experience; the mathematician with the limits of their 
domain of applicability. While Kant's predecessors each satisfied only one of the two 
demands on a successful account of mathematical cognition, Kant considers his own 
theory to satisfy both the apriority and the applicability demands without conflicting with 
the principles of experience. As noted above, his theory hinges on his claim that space and 
time are pure forms of sensible intuition and sources of synthetic a priori cognitions. In the 
case of space, our pure intuition of space is the source of our claims to geometric 
knowledge: we have an a priori representation of space that is the ground for geometric 
reasoning and cognition. Kant's defense of this notorious claim is 
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complex and beyond the scope of this chapter;47 it will suffice for our purposes to consider 
the sense in which Kant's theory of space provides him with an account of mathematical 
cognition that satisfies both the apriority and the applicability demands.
Kant's argument runs roughly as follows. Because space and time are forms of sensibility 
and cognitive sources of a priori mathematical principles, space and time "determine their 
own boundaries" and "apply to objects only so far as they are considered as 
appearances. … Those alone are the field of their validity, beyond which no further 
objective use of them takes place." Kant is making a claim about the connection between 
our way of intuiting, representing, and knowing the structure of space and our way of 
intuiting, representing, and knowing the features of the objects we experience to be in 
space: the former determines the latter. For this reason, Kant claims that our a priori 
representation of space determines its own domain of applicability, its "field of validity." 
Insofar as our a priori mathematical cognition has its source in our sensible faculty, 
including our a priori representation of space, such cognition can be objectively valid with 
respect to all and only those objects we can sense, the realm of appearances or objects of 
our "possible experience." Thus, for Kant, mathematics is a body of synthetic a priori 
cognition providing us with knowledge of both (1) the pure conditions on our sensible 
representations and, by this means, (2) the objects that appear to us under those conditions. 
As Kant says, geometry (which is available to us via our a priori representation of space) 
provides the paradigm example. In the first sense, geometry is the science of a cognitive 
capacity, in particular, a capacity to represent spatial relations; geometry is the unique 



science that describes the various ways in which that capacity is both warranted and 
constrained. In the second sense, as explained in Kant's transcendental philosophy, 
geometry is the science of the natural or empirical objects that we conceive to stand in such 
spatial relations as we are conditioned to represent. Thus, geometry can inform us as to the 
proper function of our cognitive capacity for pure spatial intuition while also providing us 
with knowledge of the spatial form of those objects we intuit as empirically real spatial 
things.
Because, for Kant, mathematics provides us with knowledge of the pure conditions on our 
sensible representations, mathematical cognition is a priori. Being knowledge of the 
cognitive conditions on our having sensible experience, mathematics is cognition that is 
necessarily acquired prior to and independent from such experience. Because, for Kant, 
mathematics provides us with knowledge of the objects that appear to us under such 
cognitive conditions, mathematical cognition is applicable to the natural empirical world. 
Being knowledge of the formal features of sensible spatiotemporal objects, mathematics is 
cognition that is necessarily about the things that inhabit the natural world, at least insofar 
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as we represent them. If we are willing to accept this last caveat—that the natural world 
comprises all and only those things that we have the cognitive capacity to represent—then 
we can secure the "certainty of experiential cognition": our a priori mathematical claims 
have direct and complete purchase on (our experience of) the natural world. Kant thus 
claims to have provided an account of mathematical cognition that satisfies both the 
apriority and the applicability demands with which we began—and that, moreover, does 
not conflict with, but rather helps to establish, the "principles of experience."
[unnumbered footnote]
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3. Later Empiricism and Logical Positivism*
John Skorupski 

1. The Historical and Philosophical Context



The empiricist approaches to mathematics discussed in this chapter belong to an era of 
philosophy which we can begin to see as a whole. It stretches from Kant's Critiques of the 
1780s to the twentieth-century analytic movements which ended, broadly speaking, in the 
1950s—in and largely as a result of the work of Quine.1 
Seeing this period historically is by no means saying that its ideas are dead; it just helps in 
understanding the ideas. That applies to the two versions of empiricism that were most 
prominent in this late modern period: the radical empiricism of Mill and the "logical" 
empiricism associated with Vienna Circle positivism of the late 1920s and early 1930s. 
Mill and the logical positivists shared the empiricist doctrine that no informative 
proposition is a priori. Thus they rejected two main tenets of Kantian epistemology: the 
claims that the possibility of knowledge requires that there be synthetic a priori 
propositions and that there are such 
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propositions. But as to the status of logic and mathematics, they differed sharply. Mill took 
logic and mathematics to consist of informative universal truths and denied that they are a 
priori; the positivists held logic and mathematics to be a priori and denied that they 
contained informative truths. Furthermore, in working out the doctrine that logic and 
mathematics are exact and a priori because they are—in their sense—"analytic," the logical 
positivists renewed vital elements of Kantian thought even as they denied Kant's doctrine 
that mathematics has informative content.
To bring out the contrast between these two empiricisms, and to address the element of 
continuity just noted between the views of Kant and those of logical positivism, we should 
take note of an influential conception of knowledge. Genuine knowing is of something 
wholly distinct from the knowing itself—something to which cognition must conform if it 
is to be knowledge. Cognition is receptive. It is not formative or constitutive of its objects. 
All this seems inherent in the very idea of knowledge; but there have been many 
conceptions of knowledge, of which this "mirroring" conception is only one. As far as 
empiricism in our late modern period is concerned, the mirroring conception may seem 
inherent in the naturalistic starting point that Mill and logical positivists share. They take it 
for granted that cognition is a natural process within the natural world; it conforms to its 
object by reflecting information received from it. And the information-receiving processes 
by which it does this—the senses—must themselves be fully characterizable within a 
scientific theory of the world.
Clearly the cognitive status of logic and mathematics is a central challenge for this 
conception of knowledge. For as Kant famously noted, on this conception a priori 
knowledge seems impossible: 
Up to now it has been assumed that all our cognition must conform to the objects; but all 
attempts to find out something about them a priori through concepts that would extend our 



cognition have, on this presupposition, come to nothing. Hence let us try whether we do 
not get farther with the problems of metaphysics by assuming that the objects must 
conform to our cognition. …  
This attempt is Kant's "Copernican revolution": 
If intuition [sensory cognition of objects] has to conform to the constitution of objects, then 
I do not see how we can know anything of them a priori; but if the object (as an object of 
the senses) conforms to the constitution of our faculty of intuition, then I can very well 
represent this possibility to myself.2 
Kant holds that knowing requires a framework to which every knowable object must 
conform. He locates it in the a priori structures of our sensibility and bases 
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the synthetic a priori character of arithmetic and geometry on these. The resulting 
transcendental idealism about our cognition is inconsistent with a naturalistic view, 
according to which knowers and their knowledge are, straightforwardly, only a part of the 
world they know: it demotes the naturalistic philosopher's "empirical" view of our place in 
nature to just one viewpoint out of two—and not the one in which the apriority of 
mathematics can be elucidated.
Viennese empiricism was not as distant from the Kantian or "Critical"3 tradition as was 
Mill.4 
Specifically, logical positivists agreed with the general Critical idea that knowledge is 
possible only within an a priori framework to which knowable objects must conform. But 
the way they worked it out differed fundamentally from Kant's transcendental - idealist 
interpretation. For them, the necessary framework was provided not by forms of intuition 
or (necessary) categories of understanding, but by a system of conventions. Knowledge, 
they agreed, required an a priori framework; there was, however, no unique framework that 
it required. The conventions that provided the framework could vary. Moreover, contra 
transcendental idealism, there was no meaningful distinction to be made between objects 
as they could be known and objects as they really were. There was no significant 
standpoint outside the empirical standpoint—only free choices of framework.5 Things were 
as they could in principle be known to be within a framework stipulated a priori: that was 
the import of their "verificationist" conception of meaning. And this conception opened up, 
as they thought, a new account of the apriority of logic and mathematics. Logic and 
mathematics owed their apriority, their exactness, and their certainty to the fact that they 
belonged to the framework of conventions. By the same token, they were empty of content. 
Content can exist, and can be conveyed, only within a framework. This conventionalist 
doctrine was influential well beyond the Vienna Circle; it became a cornerstone of the 
twentieth-century analytic tradition as a whole, and gave that whole tradition its Critical 
aspect.



In contrast, no such scheme/content distinction is made by Mill (and this goes far toward 
explaining the low esteem in which his view was held in this tradition's heyday). "Our 
thoughts are true," he said, "when they are made to correspond with Phaenomena"—in 
other words, with what we are or could be aware of through the senses, the observable 
facts. And this applies to logic and mathematics, of which he takes a straightforwardly 
universalist view. These 
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are, he thinks, empirical sciences which deal with the most general laws of nature.6 
It is also worth noting that in both cases, that of Mill and that of logical positivism, their 
naturalism stands in apparent tension with some of their other doctrines. Mill's System of  
Logic (1843) propounds a "naturalised epistemology" which includes a thoroughly 
naturalistic treatment of semantics and the methodology of science; yet in his Examination  
of Sir William Hamilton's Philosophy (1865) he puts forward a phenomenalist analysis of 
matter as permanent possibility of sensation. He saw no inconsistency in this. But he was 
not sure what to say about the mind. Can the mind also be resolved into "a series of 
feelings, with a background of possibilities of feeling?" Mill is unwilling to accept "the 
common theory of Mind, as a so-called substance," yet the fact that self-consciousness is 
involved in memory and expectation drives him to "ascribe a reality to the Ego—to my 
own Mind—different from that real existence as a Permanent Possibility, which is the only 
reality I acknowledge in Matter."7 This could have led him in a transcendental direction: if 
self-consciousness has this nonsubstantial yet irreducible kind of reality, can it impose an 
objectivity-constituting framework on its own experience? Yet, despite these qualms, Mill 
seems more poised to go in the Machian direction which followed than in the Kantian 
direction which preceded. Mach takes reality to consist of elements that can indifferently 
be construed as mental or physical, treats the self as a "thought-economical construct," and 
views mathematics as a universal empirical science. The Examination is a stage on the 
road to that view.
If Mill's naturalism is challenged by his uncertainty about the status of the self-conscious 
subject, isn't that of the logical positivists challenged by their "Critical" stance? If 
cognition is a purely natural process, how can it have a constitutive role in determining the 
objectivity of content?
To answer this question, we must distinguish between naturalism and what I will call 
"realism," using the term to refer to a correspondence conception of what it is for a 
proposition to be true—or, indeed, of what it is to be a proposition. The Millian view of 
logic and mathematics results (as we shall see) from combining naturalism and realism. In 
contrast, the scheme/content distinction made by the logical 
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positivists requires rejection of that correspondence conception. Conventionalism is in fact 
not just nonrealist, it is anti-realist—it requires an epistemic (in the positivists' case, 
verificationist) conception of meaning. It was in this sense that Wittgenstein and Carnap 
"offered in the early 1930s the first genuine alternative to Kant's conception of the a 
priori".8 The new conception of meaning was the crucial innovation by which they were 
able to combine naturalism with a conception of logic and mathematics as exact and a 
priori—because it allowed them, as we shall see, to put forward a new doctrine of 
analyticity.
One can express empiricism as the view that no factual proposition is a priori. What does 
"factual" mean, though, if we try to refine vague phrases like "about the world?" Mill 
thinks of facts in the correspondence theorist's way, as truthmakers. But for the logical 
positivists, "fact" is elucidated in terms of "true factual statement," and factual statements 
exist only within a fixed logico-mathematical framework. They are the nonanalytic 
statements in a total scientific theory. Viennese empiricism does not come, as in the case of 
Mill, from a combination of naturalism and realism. So where does it come from?
In his impressive pre-logical-positivist work, The General Theory of Knowledge, Moritz 
Schlick had formulated naturalism as follows: 
According to our hypothesis the entire world is in principle open to designation by [the 
conceptual system of physics]. Nature is all; all that is real is natural. Mind, the life of 
consciousness, is not the opposite of nature, but a sector of the totality of the natural.9 
But for logical positivism in its developed form this could not be a "hypothesis." The 
apparently substantive proposition that the natural facts are all the facts there are, reduces 
to a definitional truth: the true propositions, or contents, within a given linguistic scheme 
are a subset of the contents expressible within that scheme. Thus it is also a definitional 
truth that our knowledge is either "knowledge" of the scheme (which the positivists would 
not regard as genuine knowledge, knowledge of content) or factual knowledge based on 
sense experience.
To round off the historical picture: Quine's empiricism has affinities to both the Millian 
and the Viennese versions. Mill and Quine obviously differ in important ways. Mill is an 
inductivist and phenomenalist, Quine is an abductivist and physicalist; Mill rejects 
abstracta, Quine countenances them. Yet there are resemblances that are at least as 
important. For both of them, logic and mathematics are a part of science, known by the a 
posteriori methods of science. They have a similar conception of "naturalized 
epistemology," though Quine gives (in the opinion of most philosophers today) a better 
methodology of science than Mill, and obviously has a more advanced conception of the 
scope of logic 
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and higher mathematics. Nevertheless, Quine's view is also in important ways continuous 
with logical positivism. It is, one might say, logical positivism without the "two dogmas of 
empiricism." The scheme/content distinction is one of these dogmas, and Quine decisively 
rejects it.10 Whereas Mill gets his universalism about logic and mathematics from 
combining naturalism and realism, Quine gets it from combining naturalism with rejection 
of the scheme/content distinction. But that does not mean he rejects the verificationism that 
made the distinction possible. A verificationist conception of language and reality was 
crucial to the twentieth-century version of the Critical tradition—in holistic form (the unit 
of meaning is the theory) it endures in Quine's thinking.

2. Analyticity in Mill and in Logical Positivism

Central to the differences between these empiricisms is the notion of analyticity. Three 
different conceptions of analyticity will matter to us: the Kant/Mill and the Kant/Frege 
conceptions, as I will call them, and the "implicit-definition conception," as I will call it, of 
the logical positivists.
Mill does not use the "analytic/synthetic" terminology. He distinguishes instead between 
"verbal" and "real" propositions and "merely apparent" and "real inferences." He notes, 
however, that this distinction coincides with Kant's distinction between analytic and 
synthetic judgments, "the former being those which can be evolved from the meaning of 
the terms used."11 Thus we can use the Kantian terminology in describing his views. The 
crucial point in the Kant/Mill notion is that an analytic proposition conveys no information, 
and an analytic inference moves to no new assertion—its conclusion has been literally 
asserted in its premises. Mill takes this notion very strictly. In effect, on his view, an 
analytic inference must have the form 

•
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Inferences reducible to this form by explicit definitions of terms are analytic, and analytic 
propositions are the corresponding conditionals of such inferences.12 With regard to 
propositions and inferences that are analytic in this sense, no question arises about how 
acceptance of them is justified, because there is no content there to justify. Hence Mill's 
terminology: merely verbal, merely apparent.



Compare the Kant/Frege account. This characterizes analyticity as deducibility, with 
explicit definitions, from logic.13 Thus it is true by definition that logic itself is analytic. 
But the definition does nothing to show that logic is empty of content, or that there is no 
philosophical question to raise about the justification of deduction. For a philosopher who 
believes that logic is simply too basic for questions about its justification to arise, the point 
may pose no problem. But from an empiricist standpoint this belief is dogmatic. For 
empiricism says that no proposition that has content is a priori. Likewise, from an 
empiricist point of view, logicism, however successful, would cut no epistemological ice 
unless accompanied by a philosophical elucidation of the contentlessness of logic. This the 
Kant/Frege concept of analyticity does not do.
On Mill's account some propositions and inferences of logic will be analytic in the 
Kant/Mill sense. He holds that asserting a conjunction, A and B, is asserting A and 
asserting B. He defines "A or B" as "If not A, then B, and if not B, then A"; and he takes 
"If A, then B" to mean "The proposition B is a legitimate inference from the proposition 
A." He discusses generality in a way which is insightful in detail but hard to interpret 
overall; it fits with much of what he says to treat a universal proposition as asserting a 
license to infer. We can then stipulate that a universal proposition is analytic if and only if 
all its substitution instances are analytic. For example, "All ABs are A" says "Any 
proposition of the form 'X is legitimately inferable from the corresponding proposition of 
the form 'X is A and B'." And each substitution instance of this is analytic.14 
Mill takes "It is not the case that A" to be equivalent in meaning to "It is false that A". If 
we further assume the equivalence in meaning of "A" and "It is true that A," the principle 
of contradiction becomes the principle of exclusion—as he puts it, "the same proposition 
cannot at the same time be false and true." He makes analogous remarks about excluded 
middle, which turns—on these definitions—into 
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the principle of bivalence: "Either it is true that P or it is false that P." He holds these 
principles, bivalence and exclusion, to be synthetic—"real" or "instructive"—propositions. 
And the question is how they can be a priori.
From a Kantian point of view, if Mill's analysis of logic is sound it puts logic in the same 
synthetic a priori class as mathematics; and the answer to how it can be a priori will then 
have to be the same. The apriority of logic will have to rest on the form of our intuition. 
Bivalence and exclusion, like other synthetic a priori truths, will be restricted to the domain 
of phenomena. They cannot be known to hold, as Kant himself believed, of things-in-
themselves. This conclusion would undercut the epistemological aims of logicism just as 
much as Mill's empiricism does. Showing that mathematics is logic, and thus analytic in 
the Kant/Frege sense, would not show that it is analytic in the Kant/Mill sense, and thus 



empty of content. It would not show, without appeal to a priori intuition, how mathematics 
could be a priori—since logic itself would now be seen to rest on a priori intuition.
But when we turn to logical positivism, we find a conception of analyticity that is distinct 
from both the Kant/Mill and the Kant/Frege account. Fundamental to it is the notion of 
implicit definition. Its main source seems to be the thinking about the status of geometry 
done at the turn of the twentieth century, notably by Hilbert and Poincaré. Moritz Schlick 
was among the first to appreciate its full philosophical potential. In his General Theory of  
Knowledge he holds, like Mill, that "Every judgement we make is either definitional or 
cognitive." But he thinks that "the radical empiricism of John Stuart Mill" has no way of 
"saving the certainty and rigor of knowledge in the face of the fact that cognition comes 
about through fleeting, blurred experiences."15 It is here that implicit definition comes to 
the rescue. It can show how concepts can be given a meaning in a way that does not found 
them directly on "immediate experience." Their sharpness can then be guaranteed 
independently of the degree of sharpness in our experience. "We would no longer have to 
be dismayed by the fact that our experiences are in eternal flux; rigorously exact thought 
could still exist."16 
Hilbert17 had provided a set of axioms for Euclidean geometry and suggested that the 
primitive terms used in them—"point," "straight line," "plane," "between," "outside of"—
should be thought of as implicitly defined thereby. A definition of this kind is 'implicit' in 
that no explicit metalinguistic stipulation about meaning is made, whereas in a definition 
such as " 'Square' means' plane figure bounded by four equal rectilinear sides' " we have an 
explicit stipulation of synonymy. Treating axiom sentences as implicit definitions can be 
thought of as stipulating that they are to be understood as denoting, taken together, any 
entities which systematically satisfy them. Schlick also recognizes what he calls "concrete 
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definitions," as against "logical definition proper"; these are required to complete the 
account of the meanings of terms which appear in the axioms.18 
In a concrete definition the meaning of a simple concept is ostensively exhibited in 
experience—for example, the note "A" is concretely defined by sounding a tuning fork. 
Pure geometry becomes physical geometry when its primitive concepts are "coordinated" 
by means of concrete definitions with physical facts. Schlick holds that such coordinations 
essentially involve conventions, in a sense which he ascribes to Poincaré.19 The 
coordination is between an implicit definition and a concrete definition—for example, of 
"point" by ostending a grain of sand, or "straight line" by ostending a taut string. We must 
also determine units of measurement: crucially, Schlick holds that this determination is 
also a matter of convention. Thus a unit length could be defined by a particular taut string, 
or a rigid rod, which is then laid against other straight lines to measure their length. 
Schlick's example is the unit of time measurement. We can define a day as the period the 



earth takes to rotate about its axis (the sidereal day). We could equally have chosen "the 
pulse beats of the Dalai Lama" as units. But 
the rate at which the processes of nature run their course would then depend on the health 
of the Dalai Lama; for example, if he had a fever and a faster pulse beat, we would have to 
ascribe a slower pace to natural processes, and the laws of nature would take an extremely 
complicated form. 
We choose the metric which yields the simplest laws. So, for example, the sidereal day 
may come to be abandoned as a unit of measurement—it may be more "practical" 
to assert that, as a consequence of friction due to the ebb and flow of the tides, the rotation 
of the earth gradually slows down and hence sidereal days grow longer. Were we not to 
accept this, we would have to ascribe a gradual acceleration to all other natural processes 
and the laws of nature would no longer assume the simplest form.20 
Thus the simplicity of the total system of laws of nature taken as a whole is the only 
criterion for choosing units of measurement.
Given that the axioms are implicit definitions, Schlick thinks that the theorems are 
definitions, too: 
In the class of definitions in the wider sense, we include also those propositions that can be 
derived by pure logic from definitions. Epistemologically, such derived propositions are 
the same as definitions, since … they are interchangeable with them. From this standpoint 
purely conceptual sciences, such as 
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arithmetic, actually consist exclusively of definitions; they tell us nothing that is in 
principle new, nothing that goes beyond the axioms.21 
Now an explicit definition is a rule of substitution, not a proposition, so it cannot play the 
role of premise or conclusion. But an implicit definition is a stipulation that a certain set of 
object-language sentences is to be so understood as to be true. (We will come back to this.) 
What does Schlick say, though, about the status of the "pure logic" by which the theorems 
of the axiom system are derived? If the truths of this logic are not contentless—because 
they are a posteriori or synthetic a priori—then neither are those of pure geometry. We 
must reapply the same treatment to logic itself, treating its axiomatized principles as 
implicit definitions of the primitive logical constants. It seems that Schlick has something 
like this in mind when he says that the principles of contradiction and excluded middle 
"merely determine the nature of negation" and "may be looked upon as its definition."22 

3. The Empiricist Argument in Mill



Now that we have set out the three conceptions of analyticity that concern us, let us turn to 
their role in empiricist argument. We start with Mill.
The view that logic and mathematics are a priori because they are entirely empty of content 
is one of the rival views Mill considers. He calls it "Nominalism." Against it he argues by 
direct semantic analysis that logic and mathematics contain synthetic inferences. The 
central failure of the Nominalists, he thinks, is that they fail to make his distinction 
between connotation and denotation of terms—"seeking for their meaning exclusively in 
what they denote."23 Thus, for example, contrary to the Nominalists, arithmetical identities 
such as "2 + 1 = 3" are real propositions because the terms flanking the equality have 
different connotations. But Mill also argues indirectly. If logic did not contain synthetic 
inferences, in the Mill/Kant sense, valid deductive reasoning could not produce new 
knowledge. The conclusion of any valid deduction would literally be asserted in the 
premises. In that case, in knowing that each proposition asserted in the premises was true, 
one would already know the truth of the conclusion. (Mill allows for definitional 
substitution, so this argument requires the principle that if sentences A and B are 
definitionally substitutable, knowing the truth expressed by 
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A is knowing the truth expressed by B.) He is impatient with metaphorical talk about 
conclusions being implicitly contained in premises: 
It is impossible to attach any serious scientific value to such a mere salvo, as the distinction 
drawn between being involved by implication in the premises and being directly asserted 
in them.24 
Deduction plainly produces new knowledge, and therefore logic must contain synthetic 
("real") inferences. Mill applies the same dual argument, direct and indirect, to the case of 
mathematics.
Mill also considers two other rival views: "Conceptualism" and "Realism." Realists hold 
that logical and mathematical knowledge is knowledge of universals existing in a mind-
independent abstract domain; the terms that make up sentences are signs that stand for such 
universals. Conceptualists hold that the objects studied by logic are concepts and 
judgments conceived as psychological states and acts.
Realism is the view Mill takes least seriously, thinking it extinct (he did not know that 
something like it was destined for revival). But there was probably a deeper reason: 
although both Nominalists and Conceptualists hold that logic and mathematics can be 
known nonempirically, they both accept that no instructive proposition about a mind-
independent world can be so known. Realism, in contrast, abandons this constraint, and in 
doing so, abandons one of the things Mill found most obvious.
Conceptualism had been given a new lease on life by the increasing influence of Kantian 
ideas. In the System of Logic Mill responds to it by emphasizing the distinction between 



judgment and the content of judgment as strongly as any "Realist" would; in the 
Examination he returns to it and engages with it more extensively.25 Conceptualists 
emphasize the role of intuition as against induction in our acceptance of logical and 
mathematical claims. Mill takes such appeals to be appeals to what we can imagine 
experiencing (as against what we do experience); and he accepts that we are justified in 
basing many arithmetical or geometrical claims on such appeals. But he thinks that that 
justification is itself a posteriori. Experiential imagination is indeed a largely reliable guide 
to real possibilities—however, that is itself no more than an empirical truth. Mill also 
considers the Kantian point that "Experience tells us, indeed, what is, but not that it must 
necessarily be so, and not otherwise." So if we have insight into the necessary truth of 
certain propositions, that insight cannot be based on experience and must be a priori. In 
response, he rejects any metaphysical distinction between necessary and contingent truth; 
like Quine he thinks the highest kind of necessity is natural 
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necessity. The only other sense of "necessary truth" he is prepared to concede is 
"proposition the negation of which is not only false but inconceivable": 
This, therefore, is the principle asserted: that propositions, the negation of which is 
inconceivable, or in other words, which we cannot figure to ourselves as being false, must 
rest on evidence of a higher and more cogent description than any which experience can 
afford.26 
In response, in the System of Logic, Mill largely dwells on associationist explanations of 
inconceivability. But in the Examination he makes the underlying epistemological basis of 
his reply clearer: 
 … even assuming that inconceivability is not solely the consequence of limited 
experience, but that some incapacities of conceiving are inherent in the mind, and 
inseparable from it; this would not entitle us to infer, that what we are thus incapable of 
conceiving cannot exist. Such an inference would only be warrantable, if we could know a 
priori that we must have been created capable of conceiving whatever is capable of 
existing: that the universe of thought and that of reality … must have been framed in 
complete correspondence with one another. … That this is really the case has been laid 
down expressly in some systems of philosophy, by implication in more … but an 
assumption more destitute of evidence could scarcely be made. … 27 
The Conceptualist needs to show, and show a priori, that what we are "incapable of 
conceiving cannot exist."
The "mirroring" idea of knowledge that I mentioned at the beginning is clearly crucial in 
this line of thought: genuine knowing is of something distinct from the knowing itself—to 
which the knowing must conform if it is indeed knowledge. Mill applies the point single-
mindedly to the most fundamental synthetic truths. To prove that "a contradiction is 



unthinkable" is not to prove it "impossible in point of fact." It is the latter, not the former, 
claim which is required to vindicate "the thinking process." "Our thoughts are true when 
they are made to correspond with phaenomena": 
If there were any law necessitating us to think a relation between phaenomena which does 
not in fact exist between the phaenomena, then certainly the thinking process would be 
proved invalid, because we should be compelled by it to think true something which would 
really be false.28 
This, then, is Mill's general epistemological framework. It has simplicity and power, and it 
clearly requires him to treat mathematics and logic itself as belonging to 
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our empirical knowledge. Mill's more detailed accounts of geometry and arithmetic reflect 
more specific concerns: he wants to show how these sciences fit into an inductivist 
epistemology and nominalist (in our contemporary sense) ontology. These aims are prima 
facie distinct from the general empiricist framework we have just described. It is a matter 
of debate whether they follow from it; if they do not, they may seem less powerful as self-
standing philosophical claims than does Mill's general epistemological framework itself. 
Does naturalistic empiricism force nominalism? Does it force inductivism? Neither point is 
obvious. It may be that these positions stem from Mill's combination of naturalism and 
realism, rather than from naturalism alone. But let us sketch in some details of Mill's 
account.
The System of Logic develops a rather elegant historical picture of "the inductive process." 
Humanity begins with "spontaneous" and "unscientific" inductions about particular, 
apparently unconnected, natural phenomena. Generalizations accumulate, interweave, and 
are found to stand the test of time or are corrected by further experience. As they 
accumulate and interweave, they justify the second-order inductive conclusion that all 
phenomena are subject to uniformity and, more specifically, that all have discoverable 
sufficient conditions. This conclusion in turn provides (Mill believes) the grounding 
assumption for a new style of reasoning about nature—eliminative induction, which he 
formulates in his "Methods of Empirical Inquiry." The improved scientific induction which 
results from this style of reasoning spills back onto the principle of uniformity on which it 
rests, raising its certainty. That in turn raises our confidence in the totality of particular 
enumerative inductions from which the principle is derived. Thus the amount of 
confidence with which one can rely on the "inductive process" as a whole depends on the 
point which has been reached in its natural history.
How does logical and mathematical knowledge fit into this? Mill thinks it comes from 
those earliest "spontaneous" and "unscientific" enumerative inductions which are 
retrospectively confirmed by the success of the inductive process. Thus he considers the 
principle of exclusion, that "the same proposition cannot at the same time be false and 



true," to be "one of our first and most familiar generalisations from experience."29 The 
same goes for the parallels postulate. But this account of how one comes to believe such 
principles may well strike one as quite implausible. What kinds of instances could these 
generalizations involve?30 Even in his own inductivist terms Mill might have found a little 
more wiggle room. He could have agreed that our acceptance of these principles is based 
on intuition, that is, 'inconceivability of the negation'—but that (as in the case of geometry) 
the reliability of the conceivability test is itself ultimately a posteriori. This approach 
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might have led him to a more pragmatist, or conservative holist, view. His argument now 
would be that through the progress of science, theoretical grounds remote from experience 
might lead us to reject a proposition supported by the conceivability test. However, to take 
this line he would have to find some way of defending a theory of the default authority of 
intuition.
Mill tries to give a nominalist analysis of both geometry and arithmetic. Geometrical 
objects—points, lines, planes—are ideal or "fictional" limits of ideally constructible 
material entities; Euclidean propositions are thus true of physical space only in the limit. 
The real empirical assertion underlying an axiom such as "Two straight lines cannot 
enclose a space" is something like "The more closely two lines approach absolute 
breadthlessness and straightness, the smaller the space they enclose". Likewise, the real 
content of the geometrical assertion that rectangles exist emerges, on a Millian view, as 
"The construction of a plane surface approximating to any required degree of accuracy to a 
Euclidean rectangle is compatible with the geometry of space." (Mill did not doubt that 
these Euclidean propositions of physical geometry were true.) Note the essential reference 
made here to laws of space: such constructions may be empirically impossible for us as 
natural beings, or incompatible with the laws of matter.
The nominalist analysis of arithmetic faces Mill with far greater difficulties, which he 
probably did not fully appreciate. Number terms denote "aggregates" (or "collections" or 
"agglomerations") and connote certain attributes of aggregates. He does not say that they 
denote those attributes of the aggregates, so he seems to think of them as general rather 
than singular. For example, being a five is an attribute of all aggregates composed of five 
elements. We are to think of these aggregates as identified by the elements that make them 
up, so that the aggregate denoted by "the cards in that pack," which is a 52, is not the same 
as the aggregate denoted by "the suits in that pack," which is a four. Yet aggregates are not 
sets; Mill's nominalism requires that they be concrete entities individuated by a principle of 
aggregation.
This account escapes some of the rather unfair criticisms Frege later made of it, but 
nonetheless it certainly isn't clear that it can provide an adequate ontological base for 
number theory. To pursue that question we would have to (1) develop a theory of what 



aggregates are and (2) admit clearly that number theory must allow for possible as well 
actual aggregates—the possibility in question being a highly idealized one. Consider terms 
like "the cars in the parking lot" or "the books on the shelf." I might say "The books took 
up all the space on the shelf, but I couldn't see how many there were." Thus here "the 
books" seems to refer to a perceptible entity, and its attribute of number is also perceptible 
in principle, though not in this case. But plainly this does not apply to physical aggregates 
whose elements are widely separated in space and time, such as all the utterances of a 
particular sound, or to aggregates which are not physical, such as the number of figures of 
the syllogism. Reflection on this leads to the conclusion that 
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aggregates should be thought of as products of acts of aggregation or collection. It is the 
collecting that has to be concrete, not the things collected. One can think of collection as 
the making of a mental or physical list. The basic process with which number theory is 
concerned is the making and dividing of such lists, not the existence or otherwise of their 
intentional content. And the laws of number are the laws of listmaking and dividing. 
Turning to (2), however, we must obviously allow for more numbers than are given to us 
by actual lists, or by lists that we, even in collective relays, could produce. The idealized 
listmaker must be able to make uncountable lists.
Making an uncountable list sounds uncomfortably close to counting the uncountable. Still, 
this is an interesting line of thought which is very much in the Millian spirit, though it goes 
far beyond the basic ideas Mill supplies.31 It could draw on resources provided by 
formalism and constructivism. But, as already noted, it is actually not evident how much 
should turn, for an epistemological empiricist, on the apparent ontological distinction 
between possible concrete aggregates and actual abstract sets; thus the prospects for a 
Millian ontology of number theory should not be linked too closely to the prospects for 
radical Millian empiricism. And finally, now that we have sketched Mill's account of 
geometry and arithmetic, it is worth noting that he gives no attention to the ontology of 
logic. If the empirical laws of geometry concern "geometrically possible" constructions, 
and those of arithmetic concern "arithmetically possible" collections, what do the empirical 
laws of logic concern? Do they concern the "logically possible" truths? What kind of 
concrete objects are truths? Or do they concern negation and implication? What kind of 
concrete objects could these be? Can there be empirical laws that do not deal with a 
distinctive subject matter?

4. Logical Positivism



We saw the view of mathematics and logic as a system of implicit definitions being 
developed by Schlick. In the 1920s this implicit-definition conception of analyticity begins 
to appear in the thinking of Wittgenstein and Carnap.
In its intention, Wittgenstein's idea of apriority as tautology in the Tractatus had been in 
line with the Kant/Mill notion of analyticity. That is, it was meant to show rigorously that 
tautologous inference is purely formal, empty of content, wholly noninstructive. True, it 
did so only if bivalence and exclusion are somehow purely formal or empty. A Millian 
could justly point out that the Tractatus's doctrine of 'bipolarity' as a condition of the sense 
of propositions takes that 
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dogmatically for granted. But now, in his conversations with the Vienna Circle, 
Wittgenstein rejects the idea that tautology is the essence of the a priori: 
That inference is a priori means only that syntax decides whether an inference is correct or 
not. Tautologies are only one way of showing what is syntactical.32 
He still holds that such inferences are noninstructive, but the way in which this is now to 
be explained is much simpler.33 Analytic sentences have no declarative content because 
they simply articulate rules of the language. The a priori is still the analytic, but we have a 
new view of what is analytic.
Yet this new view is philosophically challenging, in a way that the Kant/Mill criterion of 
analyticity, at least when understood strictly, is not. How can syntax "decide" whether an 
inference is correct or not? Doesn't that depend on whether the inference is truth-
preserving? The answer must be that syntax decides what is truth-preserving. But the 
natural objection is that we can't just stipulate that a sentence is true, or an inference rule is 
truth-preserving: truth is not up to us, it is not for us to stipulate it.
Let us go back to the case of geometry. What, exactly, is "up to us" here? 

(1) 
 
We can freely lay down uninterpreted axioms and rules of inference, and analyze their 
formal consequences. The question of their truth or validity does not then arise. 

(2) 
 
We can stipulate that the terms occurring in the axiom- sentences are to be understood 
to have (unspecified) referents of which the sentences are true. 

Certainly (2) is up to us. But does this activity of ours suffice to confer meaning on the 
sentences? Only, according to the natural objection, if it determines a unique set of 
referents of which the sentences are true. For if more than one interpretation makes the 
axioms true, then we haven't specified what referents are intended, and if no interpretation 
makes them true, then we haven't found an interpretation at all. It follows that stipulation, 
as in (2), only gives us metalinguistic knowledge—knowledge that the axioms should be 
thought of as expressing something or other that's true. To know what the axioms say, and 



that it is true, we would need to know what objects they are about and that those objects 
satisfy them. That knowledge may be a priori or a posteriori. Either way, it is not the 
stipulation that delivers it. Thus the stipulation at most gives us a constraint on how certain 
words are going to be used.
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It follows that the notion of an implicit definition cannot explain the nature of a priori 
knowledge. The point applies wherever we are considering an implicit-definitions 
approach—be it the theory of logic or the theory of phlogiston. One can stipulate that 
certain sentences containing the words "if" and "not," or the word "phlogiston," are to be 
so understood as to be true. But only if the world co-operates does that confer meaning on 
them. Take the sentence "Phlogiston is driven off whenever a metal or combustible 
material is heated." We can stipulate that either the word "phlogiston" in this sentence has 
a referent that makes the sentence true or it has no referent. It is then a priori that either the 
sentence is true or it lacks truth-value. Thus we do not know a priori that there is a true 
proposition (content) to the effect that phlogiston is driven off whenever a metal or 
combustible material is heated. Indeed what is actually the case is that (depending on one's 
semantic views) there either is no such proposition or, if there is, it is not true. Similarly 
with the stipulation that the sentence "Not-not p if and only if p" should be so understood 
as to be true. What is a priori, on this stipulation, is that either that sentence is true or it 
lacks truth-value. It does not follow from this alone that there is an priori true proposition 
that not-not p if and only if p. If we have a priori knowledge of that proposition, it is not 
the implicit-definition account of analyticity that gives it to us.
According to this objection, the only way to show an inference to be purely verbal or 
empty would be the Mill/Kant way. The objection seems decisive, but the logical 
positivists did not accept it. Their view rested on a rethinking of language, truth, and logic 
which was truly revolutionary and would, if sound, refute it.
It is natural to think that particular languages are merely contingent vehicles for the 
expression of contents of thought—concepts, propositions, epistemic norms, and so on. 
Thought-contents themselves are a language-independent domain about which there are 
language-independent truths. The Vienna School denied this. There is no such domain of 
thought-contents. There are no language-independent facts or norms constituting it. There 
are only rules of particular languages and "empirical" or "natural" facts expressible by true 
sentences in a particular language. That a particular set of linguistic rules exists is itself an 
empirical fact; on the other hand, without some set of rules there can be no expression of 
empirical facts. All discourse and thought is language-relative.
One can sum up this "linguistic turn" as follows: 



1. 
 
Significant discourse or thought presupposes a determinate language: a framework of 
rules which renders it possible and at the same time fixes its "limits" (what sentences 
have sense). 

2. 
 
These rules confer ('empirical' or 'factual') content on a given sentence by determining 
when it is assertible within the framework. 
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3. 
 
The rules themselves are arbitrary or free conventions. 

4. 
 
Sentences in the language which simply express or record these rules are empty of 
content. 

The notion of a linguistic rule elucidates—or, better, just replaces—the classical 
philosophical notion of the a priori. This radically new Critical standpoint was expounded 
by Wittgenstein in his conversations with the Vienna Circle and developed in independent, 
divergent ways by him and by Carnap, among others, from the late 1920s on. It implied the 
end of philosophy, which should be replaced by the systematic activity of describing or 
laying down rules of "logical syntax" (Carnap) or, alternatively, kept at bay by 
administering unsystematic reminders of "logical grammar" wherever it threatened to 
break out (Wittgenstein).34 
The meaning of a sentence, on this new view, is determined by the conditions in which it is 
assertible, and this determination occurs only in the framework of language-rules. 
"Verificationism" is the familiar name for this, but it should be noted that a definition of 
truth in terms of verifiability is not essential to it. The essential point is that the meaning, 
and thus the truth-value, of a sentence is internal to a framework.35 Whether or not an 
assertion is licensed is determined by data of experience plus the conventions constituting 
the framework; these conventions are its "syntax." Epistemology reduces to syntax: the set 
of conventions licensing moves within the language. There is nothing beyond these 
conventions. There are no extralinguistic, or nonconventional, norms. "There are only 
empirical facts and decisions." And just as truth is internal to the conventions, so is 
existence.
We can now see the Viennese reply to the natural objection mentioned earlier in this 
section. It is a generalization of Schlick's treatment of implicit and concrete definitions. 
Once geometrical axioms have been set down and coordinated with experience by 
ostensive and metric conventions, there is no further question about the unique existence of 
appropriate geometrical objects. A priori knowledge is knowledge of the rules—and that 
can include existential knowledge, since existence is internal to the rules. Likewise, if we 
simply stipulate that phlogiston is driven off whenever a metal or combustible material is 



heated, there is no further question about whether it exists. And in the case of logic itself 
the same point 
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applies. The only questions concern the pragmatic convenience of this or that language.
 Can an ostensive definition come into collision with the other rules for the use of a 
word? It might appear so; but rules can't collide, unless they contradict each other. That 
aside, it is rules that determine a meaning; there isn't a meaning that they are answerable 
to and could contradict. 
 Grammar is not accountable to any reality. It is grammatical rules that determine 
meaning (constitute it), and so they themselves are not answerable to any meaning and to 
that extent are arbitrary.36 
 In logic, there are no morals. Everyone is at liberty to build up his own logic (i.e., his 
own form of language) as he wishes. All that is required of him is that if he wishes to 
discuss it, he must state his methods clearly, and give syntactical rules instead of 
philosophical arguments.37 

The application to mathematics now looks simple: it is simply that mathematics as a whole 
belongs to the framework.38 At a stroke we have preserved empiricism while catering to 
Schlick's search for certainty and rigor.39 But now we must turn to the formidable 
difficulties, which can be considered under three headings. 

1. 
 
Can mathematics be shown to be part of the linguistic framework? 

2. 
 
How do we tell whether a sentence expresses a linguistic rule or conveys an empirical 
assertion (i.e., whether it is analytic or synthetic)? 

3. 
 
How tenable is the "linguistic turn" Is it true that? "There are only empirical facts and 
(linguistic) decisions?" 

5. Criticisms of Logical Positivism and of Millian Empiricism

How can we show that mathematics belongs to the linguistic framework? One might think, 
prima facie, that the framework should be specified by explicit individual stipulation of 
each sentence or inference rule contained in it. But if all logic and mathematics is to be 
included in the framework, this cannot be done. It 
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is not even possible to specify a procedure that effectively decides whether any given 
sentence belongs to the framework.
What, then, about giving an effective axiomatization of the framework—that is, stipulating 
that any theorem of the axiom system is to be counted a convention? With a fully 
determinate metalogic we would have a fully determinate specification of the analytic 
sentences in the object-language—so this would answer question (2) as well as question 
(1). But this approach gives rise to deep questions.
What is the status of the metalogic? Consider a sentence to the effect that an object-
language sentence is derivable in the system. Is it itself part of the framework? Presumably 
it has to be, on pain of allowing that there really are nonconventional, and thus nonanalytic, 
logical truths. This sort of problem eventually led Wittgenstein to his famous rule-
following considerations.40 The point at stake is not merely that the metalogic itself must 
be regarded as a set of conventions. Consider the metalanguage sentence "Given the 
metalogic we have stipulated, sentence S is derivable in the object-language." Does this 
sentence express a stipulation? It seems that the only possible answer for the logical 
positivist is that it does—this is the view that Michael Dummett has called 'radical 
conventionalism'. The only alternative available within logical positivism would be the 
thesis that it is an empirical sentence41 —but that idea would undermine the 
framework/empirical content distinction. What belongs to the framework would become an 
empirical matter, but empirical matters are supposed to be determinate only in the context 
of a determinate framework. Yet the radical-conventionalist answer also puts in question 
the determinacy of the framework.42 There are, on this view, no rails to guide us; at every 
step, in applying the framework we make new decisions. The framework cannot be 
specified "in advance"; indeed, no unique framework is "given" at any time. Also 
noteworthy in this context is Güdel's incompleteness theorem of 1931 (of which Carnap 
and Wittgenstein were aware): true nonprovable propositions can be formulated within the 
language of any consistent, effectively specified axiomatization of arithmetic. It reinforces
—in a highly unexpected way—the general point that language frameworks as envisaged 
by logical positivism cannot be formally specified.
Quine famously raised question (2). He asks whether threads of fact and convention can be 
neatly separated out of our fabric of sentences. In part, his critique consists in a far-
reaching assault on the very notion of synonymy, which if effective would undermine the 
analytic/synthetic distinction as such and not 
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just the logical positivists' understanding of it. The Mill/Kant conception, for example, 
assumes that we can identify a conclusion sentence as saying the same thing as a premise 



sentence. But if Quine's arguments against synonymy are sound, they undermine that 
assumption (along with much else). For even when the conclusion sentence is type-
identical to the premise sentence, there is no "fact of the matter" as to whether it has the 
same meaning.
Suppose, however, that these very radical arguments against synonymy can be set aside. 
Then it can look as though what Quine is saying boils down to a point about the difficulty 
of establishing exact meanings in naturally evolving languages. Carnap took it that way, 
and insisted in response that "analytic" was definable only relative to a clearly specified 
framework. Natural language could in principle be sharpened or just replaced by 
completely free language construction. The question of what language to construct is then 
practical, in the sense that it should simply reflect our overall aims. These aims may tend to 
cost-effectiveness in intellectual effort, or to nostalgic sentiment in preserving old ways of 
talking; but whatever they may be, it is certainly not the task of a specialist adviser from 
Carnap Language-Construction Industries to moralize about them.
How should Quine reply? After all, he still adheres to the language-relative view 
propounded by the logical positivists: experience and convention alone determine 
"meaning," insofar as we can talk about "meaning." He does not reject verificationism; it's 
just that his verificationism takes the "unit of meaning" to be the theory rather than the 
sentence. Thus truth and existence remain internal to the fabric of sentences, which means 
that the natural objection to implicit-definition conventionalism, considered above in 
section 2, does not arise. Thus, if Quine's all-out assault on meaning is set aside, the point 
that remains must be that Carnapian linguistic constructions simply won't stay rigid in use. 
Any fabric we use is always stretched and restretched on an inextricable mix of experience, 
theory, and convention—and mathematics is just a part of that fabric.
But if verificationism, and with it the language-relative view, is abandoned, then the 
implicit-definitions conception of analyticity will succumb not just to these Quinean points 
but also to the more fundamental objection just mentioned.43 For the positivist defense 
against that objection crucially depended on the idea that truth and existence are 
themselves internal to a language framework.
In considering question (1), we noted that defending the framework idea seems to call for a 
radical conventionalism which accepts that the framework is always "open," or "in process 
of construction." But now we should also consider question (3): Is it tenable to hold that 
there are only empirical facts and linguistic decisions? More generally, we can ask what 
status any empiricist can give to epistemological principles. The options seem to reduce to 
treating them in the 
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logical positivist manner as implicitly definitional of their subject matter, or treating them 
as statements of fact. On the latter view, for example, the principle of inference to the 



simplest explanation would be a factual sentence about the world: "The world is simple." 
Enumerative induction would be the factual sentence that the world is induction-friendly. 
But Mill and Quine seem to approach the matter differently. Their naturalizing approach to 
epistemology seems to consist in appealing to how we actually reason. As Mill put it, "The 
laws of our rational faculty, like those of every other natural agency, are only learnt by 
seeing the agent at work."44 Is this a kind of psychologism, open to the familiar objections? 
Can it explain the normativity of epistemology?
If we observe rational agents at work, we find that as well as issuing rules, they make 
factual and normative claims—and in both cases discuss their truth-value. It does not seem, 
to prima facie observation, that the thinking agent does nothing other than make 
observation statements, apply rules, and express feelings. So why should one impose the 
rule/fact dichotomy on this observed trichotomy—factual, stipulative, and normative? Why 
do all declarative sentences have to be licensed by experiential data? What prevents the 
empiricist from accepting that as well as stipulations and statements of fact there are 
declarative, truth-apt, purely normative sentences? We characterized empiricism as the 
view that no factual sentence is a priori. But must all truth-apt sentences be factual?
It seems that what is in play here is not observation of thinkers at work, but a metaphysical 
commitment to the factuality of content, which then combines with the empiricist's 
naturalistic view of what facts there are. Where does this commitment come from? One 
might see it in Mill's case as coming from the correspondence conception of truth and the 
mirroring conception of knowledge that goes with it. But the correspondence conception is 
not supposed to be present in logical positivism. So where does the idea that content must 
be factual come from there? One interpretation is that it comes from an unargued 
assumption that all knowledge must be scientific knowledge. But then that just looks like 
scientistic prejudice.
Once we have observed that normative judgment is inherent in what the thinking agent 
does, we see it everywhere. In ethics and aesthetics, of course, but also in epistemology, 
both at the level of general principles and at the level of specific judgments of what, in the 
light of the data, there is sufficient reason to believe. And as Wittgenstein eventually 
argued, any judgment about the right way to apply a rule is neither factual nor stipulative, 
but normative.
So why not explore the possibility that logic and mathematics are themselves normative? 
In a way this would continue the Critical idea. The idea would now be that as well as 
factual propositions about objects and their properties, there are normative propositions 
which are not, at least in the same sense, about the 
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properties of objects as against norms for reasoning about objects. A normative, as against 
a universalist, view of logic would say that logic has no subject matter of its own. It is not 



a set of factual propositions about a specific domain of objects. It codifies norms governing 
our thinking about all objects. Factual propositions are seen, on this approach, as internal 
not to rules of language but to norms of reason. Logicism would be a way of showing that 
mathematics is normative, too, though it might not be the only way. This normative view 
would still be in an important way empiricist, in that it retained the thesis that no factual 
statement is a priori; but it would drop the dogmas of realism and verificationism. It might 
be the best way for empiricist descendants of Mill or logical positivism to go.
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4. Wittgenstein on Philosophy of Logic and Mathematics
Juliet Floyd 

Ludwig Wittgenstein (1889-1951) wrote as much on philosophy of mathematics and logic 
as he did on any other topic, leaving at his death thousands of pages of manuscripts, 
typescripts, notebooks, and correspondence containing remarks on (among others) 
Brouwer, Cantor, Dedekind, Frege, Hilbert, Poincaré, Skolem, Ramsey, Russell, Gödel, 
and Turing. He published in his lifetime only a short review (1913) and the Tractatus  
Logico-Philosophicus (1921), a work whose impact on subsequent analytic philosophy's 
preoccupation with characterizing the nature of logic was formative.1 Wittgenstein's 
reactions to the empiricistic reception of his early work in the Vienna Circle and in work of 
Russell and Ramsey led to further efforts to clarify and adapt his perspective, stimulated in 
significant part by developments in the foundations of mathematics of the 1920s and 
1930s; these 
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never issued in a second work, though he drafted and redrafted writings more or less 
continuously for the rest of his life.
After his death large extracts of writings from his early (1908-1925), middle (1929-1934), 
and later (1934-1951) philosophy were published. These include his 1913 correspondence 
with Russell (see CL), 1914 dictations to Moore (MN), his Notebooks 1914-1916 (NB), 
transcriptions of some of his conversations with the Vienna Circle (WVC), student notes of 
his Cambridge lectures and dictations (1930-1947), and many other typescripts and 
manuscripts, the most widely studied of which are Philosophical Investigations (PI) and 
Remarks on the Foundations of Mathematics (RFM). Not until 2000 did a scholarly edition 
of his middle period manuscripts (WA) and a CD-ROM of his whole Nachlass appear 
(1993- , 2000), thereby making a more complete record of his writings accessible to 
scholars. Since Wittgenstein often drafted multiple versions of his remarks, reinserting 
them into new contexts in later manuscripts, and since his later, "interlocutory" multilogue 
style of writing is so sensitive to context, this new presentation of the corpus has the 
potential to unsettle current understandings of his work, especially since a fair number of 
remarks on mathematics and logic have yet to be carefully scrutinized by interpreters.2 

Nevertheless, because of the wide circulation of the previously edited volumes there is a 



substantial and fairly settled body of later writings that has exercised a significant and 
continuous influence on philosophy since the 1950s.
Wittgenstein's discussions of mathematics and logic take place against the background of a 
complex, wide-ranging investigation of our notions of language, logic, and concept  
possession, and the fruitfulness of his work for the philosophy of mathematics has arisen 
primarily through his ability to excavate, reformulate, and critically appraise the most 
natural idealizing assumptions about the expression of knowledge, meaning, and thought in 
language on which philosophical analyses of the nature of mathematics, logic, and truth 
have traditionally depended. His probing questions brought to light tendencies implicit in 
many traditional epistemological and ontological accounts to gloss over, miscast, and/or 
underrate the complexity of the effects of linguistic expression on our understanding of 
what conceptual structure and meaning consist in. Though he held, like Frege and Russell, 
that a proper understanding of the logic of language would subvert the role that Kant had 
tried to reserve for a priori intuition in accounting for the objectivity, significance, and 
applicability of mathematics, his focus on the linguistic expression of thought in language 
ultimately led him to question the general philosophical significance of their logicist 
analyses of arithmetic. His resistance to logicism ultimately turned on a diverse, 
multifaceted exploration of the questions "What is logic?" "What is it to speak a 
language?" and, more generally, "What do we mean by rule- (or concept-) governed 
behavior?"
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Wittgenstein's overarching philosophical spirit was anti-rationalist, in sharpest contrast, 
among twentieth-century philosophers, to that of Gödel. For Wittgenstein, as earlier for 
Kant, philosophy and logic are quests for self-understanding and self-knowledge, activities 
of self-criticism, self-definition, and reconciliation with the imperfections of life, rather 
than special branches of knowledge aiming directly at the discovery of impersonal truth. 
These activities should thus aim, ideally, at offering improved modes of criticism, clarity, 
and authenticity of expression, rather than at a certain or explicit foundation in terms of 
general principles or an enlarged store of knowledge. Like Plato in the Meno, or Kant in 
the Critique of Pure Reason, when Wittgenstein discusses a particular logical result or a 
mathematical example, he is most often model- or picture-building: pursuing, through a 
kind of allegorical analogy, not only a better understanding of the epistemology of logic 
and mathematics, but also a more sophisticated understanding of the nature of philosophy 
conceived as an activity of self-expression and disentanglement from metaphysical 
confusion, for purposes of an improved mode of life. He is investigating how and why 
mathematical analyses affect and expand our self-understanding as human beings, rather 
than assessing their cogency as pieces of ongoing mathematical research. Rather than 
adopting empiricism or a clearly formulated doctrine about mathematics and logic to 



combat rationalism, Wittgenstein fashioned a novel appropriation of the dialectical, 
Augustinian side of Kant's philosophy, according to which philosophy is an autonomous 
discipline or activity not reducible to, though at the same time centrally concerned with, 
natural science. This sets his philosophy apart both from Frege's and Russell's philosophies 
and from logical empiricism, though his thought bears important historical relations to 
these and cannot be understood apart from assessing his efforts to come to terms with these 
rival approaches.
Because of philosophers' tendency to focus on general questions of concept possession and 
meaning in connection with Wittgenstein's work, his philosophy of mathematics is the least 
understood portion of his corpus. At present there is no settled consensus on the place of 
his writings on mathematics and logic within this overarching philosophy, nor is there 
agreement about the grounds for assessing its philosophical worth or potential for lasting 
significance. His post-1929 remarks have in particular met with an ambivalent reaction in 
contemporary philosophy of mathematics and logic, drawing both the interest and the ire of 
working logicians.3 This is not surprising, in light of the controversial nature of 
Wittgenstein's overarching philosophical attitude and his having presented few clear 
indications of how to present a precise logico-mathematical articulation of his ideas. The 
main divide in interpretations of Wittgenstein's philosophy of mathematics is between 
those who take his remarks on logic and mathematics to offer a restrictive epistemic 
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resource argument (constructivist, social-constructivist, anti-realist, formalist, 
verificationist, conventionalist, finitist, behaviorist, empiricist, or naturalist) based on the 
finitude of human powers of expression, and those that stress his emphasis on expressive 
complexity to forward criticisms of all such global epistemic positions. Most agree that the 
heart of his philosophy of mathematics contains a recasting of traditional conceptions of a 
priori knowledge, certainty, and necessary truth-an attempt, not unlike Kant's in his day, to 
find a way to resist naïve Platonism or rationalism without falling into pure empiricism, 
skepticism, causal naturalism, or fictionalism. Yet, unlike Kant, Wittgenstein rejected the 
idea that the objectivity of mathematical and/or logical concepts may be satisfactorily 
understood in terms of an overarching purpose, norm, or kind of truth to which they must 
do justice. Wittgenstein came to suggest that a detailed understanding of how human 
beings actually express themselves in the ongoing, evolving stream of life shows not the 
falsity, but the lack of fundamental interest, of this idea. The main interpretive debate 
about his philosophy concerns the basis and content of this suggestion.
One thing is clear. In his later writings Wittgenstein explicitly insisted that his own 
philosophical remarks were a propadeutic, an "album" of pictures, crisscrossing the same 
terrain in different directions from differing points of view for differing, localized 
purposes. On this view the philosopher's task is to investigate, construct, explore, and 



highlight the philosophical effects and presuppositions of many different possible models 
or "pictures," each having a certain naturalness given actual linguistic and mathematical 
practice; the point is to explore problems rather than defend or enunciate general truths. In 
his later writings he suggested that we conceive of human language as a variegated, 
polymorphous, overlapping collection of "language-games." Such a "game" he took to be a 
simplified structure, model, or picture (Bild) of a portion of our language exhibiting 
various kinds of distinctive patterns and regularities of human action and interaction.
Wittgenstein's resistance to defending a single, unified conception, and his many appeals to 
the notion of Bild, reflect his philosophy's lineage from the dialectical side of Kant—a side 
ignored and/or minimized in the mature philosophies of Frege and Russell. Kant had 
insisted that human claims to possess unconditional truth about reality, especially when 
grounded in the apparently absolute and universal truths of formal logic, would inevitably 
end in conceptual contradiction and paradox. The notion of Bild has a long philosophical 
history, but in the German tradition it is connected with the general nature of symbolism, 
with the mathematical notions of image and mapping, with the intuitive immediacy and 
transparency to thought of a geometrical diagram,4 and with the notion of education or self-
development (Bildung). Wittgenstein's distinctive uses of this 
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notion were stimulated, in part, by his observation of the use of scale models in 
engineering, but he was also especially taken with an idea he found in Hertz's Principles of  
Mechanics. Hertz had suggested that metaphysical confusions and contradictory 
conceptions of fundamental notions (e.g., of force) cannot be resolved by the discovery of 
new knowledge, since they are caused in the first place by the accumulation of a rich store 
of relations and associations around these notions in the context of present-day knowledge. 
On this view, the best hope for ridding ourselves of vexing conceptual perplexity is thus to 
sort through and conceptually model, organize, or "picture" the store of relations and 
associations so as to resolve conceptual confusions and antinomies, thereby relieving 
ourselves of the need to summarize or join them in a general explanation of their 
fundamental nature. So conceived, activities of restructuring, picturing, and formulating 
the architecture of concepts (Begriffsbildung) provide new ways of conceiving 
fundamental problems and notions, and are to be contrasted with the activity of discovery 
of truths by reasoned deduction from first principles. As Hertz wrote in his introduction to 
his Principles, "When these painful contradictions are removed, the question as to the 
ultimate nature of [e.g.] force will not have been answered; but our minds, no longer 
vexed, will cease to ask illegitimate questions." The allusion to Kant's critique of human 
claims to know the Ding an sich, the ultimate essence of things apart from human 
conditions of representation, is clear in this quotation.



Yet Wittgenstein pressed to a logical conclusion Kant's talk about "limits to knowledge," 
his distinction between "things in themselves" and things conceived as appearances to us, 
subject to human forms of sensibility. Wittgenstein saw the Kantian attempt to fashion 
theoretically justified limits to thought and/or knowledge by articulating general principles 
of knowledge and/or experience as nonsensical, for there is no making sense of a 
"transcendental" standpoint on our knowledge that lies at or beyond its limits. For 
Wittgenstein the logical paradoxes indicated that no such maximally general standpoint on 
knowledge can be made sense of. The best that can be done is to engage in an immanent 
exploration of the very notion of a limit to thought or to language.
Thus Wittgenstein radicalized Kant's idea that the laws of logic and/or mathematics require 
philosophical analysis because of our tendency to misconstrue them as unconditionally true 
of an ahumanly conceived domain of necessary truth. For Wittgenstein, mathematics and 
logic are to be seen not only as sciences of truth or bodies of knowledge derived from basic 
principles, but also as evolving activities and techniques of thinking and expressing 
ourselves; they are complex, applied, human artifacts of language. The logicism of Frege 
and Russell was right to see the application and content of logic and arithmetic as internal 
to their nature; mathematics and logic cannot be accounted for wholly in terms of merely 
formal rules. Yet what it is to be part of arithmetic, grammar, or logic cannot, Wittgenstein 
believed, be understood in terms of an appeal to a set of primitive truths or axioms, or 
knowledge of logical objects. The best way to understand the 
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apparently unique epistemic roles of logic and mathematics is to forgo the quest for a 
unified epistemology in favor of a detailed investigation of how these activities and 
artifacts shape and are shaped by our evolving language.
In the end, Wittgenstein's work must be measured not in terms of its direct contributions to 
knowledge—there were no theorems, definitions, or results of any special importance in it
—but in terms of the critical power of the widely various arguments, analogies, terms, 
questions, suggestions, models, and modes of conceptual investigation he invented in order 
to understand the post-Fregean place of mathematics and logic within philosophy as a 
whole. Wittgenstein offers us problems rather than solutions, new ways of thinking rather 
than an especially persuasive defense or application of any particular philosophical thesis 
about the nature of language, logic, or mathematics. Despite the "negativity" and 
"reactionary" flavor that such a statement may suggest to some,5 these ways of thinking 
mark a decisive step in the history of philosophy, in particular in relation to the legacies of 
Kant, Frege, Russell, and the Vienna Circle, and inaugurated new and fruitful ways of 
investigating phenomena of obviousness and self-evidence in connection with the notion of 
logic.



After Wittgenstein, traditional logical and philosophical vocabulary involving 
fundamental, apparently a priori categorial notions such as proposition, sentence, meaning,  
truth, fact, object, concept, number and logical entailment has more often been relativized 
by philosophers to particular languages, rather than assumed to have an absolute or 
universal interpretation a priori. Fundamental logical notions have been conceived as 
requiring immanent explication, a localized examination of their "logical syntax" in the 
context of a working, applied language or language game, rather than assumed to reflect 
independently clear, universally applicable categories capable of supporting or being 
derived from universally or necessarily true propositions or principles. It is largely to 
Wittgenstein, especially as inherited by Russell, Carnap and Quine, that analytic 
philosophy owes its willingness to question the Fregean idea that objectivity requires us to 
construe collections of various declarative sentences and that-clauses of declarative 
sentences, whether in the same language or in different ones, as reflecting a determinate 
content, thought, proposition, sense, or meaning.
In what follows, some major themes governing Wittgenstein's discussions of mathematics 
and logic are treated against the background of the evolution of his thought. A strong 
emphasis is placed on the early philosophy, both because this set in place the major 
problems with which Wittgenstein was to grapple throughout his life, and because it was 
the early work that placed Wittgenstein in direct confrontation with earlier philosophies of 
mathematics, those of Frege and Russell in particular. It was also the early philosophy that 
exerted the most direct and measurable influence on the Vienna Circle. Readers primarily 
interested in the 
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later philosophy, which has received widespread attention since the late 1970s, are referred 
to the accompanying bibliography, which provides an overview of current literature.

Evolution of Wittgenstein's Thought

1.  The Early Period

It seems that an early effort to solve Russell's paradox was partly responsible for turning 
Wittgenstein toward philosophy as a vocation. Trained as an engineer at the Technische 
Hochschule in Berlin (1906-1908), he studied aeronautics in Manchester (1908-1911), 
there encountering the works of Frege and Russell.6 By April 1909 he had sent to Jourdain 
a proposed "solution" to the Russell paradox; Jourdain's response sufficiently exercised 



him that by 1911 he had drawn up plans for a book and had met with both Frege and 
Russell to discuss his ideas (Grattan-Guinness 2000, p. 581). At Cambridge (1911-1913) 
conversations with Moore and especially with Russell stimulated Wittgenstein profoundly, 
and his final version of the Tractatus Logico-Philosophicus was finished by 1918. It may 
be read, at least in part, as a commentary on the philosophies of Frege, Moore, and Russell, 
and the place of logicism in relation to the legacy of Kantian idealism. The Tractatus thus 
forms a bridge between the earliest phases of analytic philosophy and the logical 
positivism of the Vienna Circle (especially as expressed in the work of Carnap), which in 
many ways it helped to create.
Wittgenstein made his primary impact by pressing to the fore the broadly philosophical 
question "What is the nature of logic?," a question that naturally emerges if we attempt to 
gauge the general philosophical significance of Frege's and Whitehead and Russell's 
"logicist" analyses of arithmetic. Given that it had been shown how formally to derive 
basic arithmetical truths and principles from basic logical principles, on what grounds may 
these principles themselves be held to be "purely logical"? Our grasp of Frege's basic laws 
seem, it is true, to involve no obvious appeal to intuition or empirical knowledge, and his 
formal proofs (Aufbauen) appear to be fully explicit, gap-free logical deductions. On the 
surface, his basic principles express truths about fundamental notions (such as concept, 
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proposition, extension) that had long been acknowledged to be logical in nature. Yet 
neither Frege, nor after him Whitehead and Russell, provided a satisfactory account of why 
their systematized applications of the mathematical notion of function to the logico-
grammatical structure of sentences should compel us to regard their analyses as purely 
logical in anything more than a verbal sense.
Frege's and Russell's own mark of the logical had been the explicit formulability and 
universal applicability of its truths: they conceived of logic as a science of the most general 
features of reality, framing the content of all other special sciences.7 Their quantificational 
analysis of generality was what they had on offer to make this conception explicit. But 
there were internal tensions within this universalist view. Since the content and 
applicability of logic are assumed by the universalist to come built-in with the maximally 
general force of its laws, it is difficult to see how to make sense of its application as 
application, for from what standpoint will the application of logic be understood, given 
that the application of logic is what frames the possibility of having a standpoint? Frege's 
and Russell's views led them to resist the idea of reinterpreting their quantifiers according 
to varying universes of discourse, for they conceived their formalized languages as 
languages whose general truths concern laws governing all objects, concepts, and 
propositions whatsoever. They had no clear conception of ascending to a metalanguage in 
the model-theorist's way. And yet, as a result, much of the extrasystematic talk about the 



application of logic in which Frege and Russell engaged could not, by their own lights, be 
formalized within their respective systems of logic.
Thus, for example, Frege was explicit that he had to fall back on extraformal 
"elucidations"—hints, winks, metaphors—to explain his basic, purely logical distinctions. 
He took inferences applying universal instantiation—the move from "(x)fx" to "fa"—to 
reflect a universally valid rule of inference, but the universal validity of that rule itself 
could not be explicitly formulated, on pain of a vicious regress. He denied that "truth" is a 
genuine property word. The applicability of many of his most fundamental notions and 
analyses (e.g., the procedures of cut and assertion involved in modus ponens, such 
presuppositions as that "there are functions," "no function is an object," and "Julius Caesar 
is not the number one") could not be enunciated in terms of purely logical truths and/or 
definitions within the language of his logical system. At best, they could be indicated or 
shown by regarding the use of the formal system as the use of a contentful, universally 
applicable language.
Even more worrisome, the unrestricted application of Frege's primitive notions mired him 
in contradiction, as Russell (and earlier Zermelo) showed. If the unrestricted application of 
basic logical principles engendered contradiction, how 
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were the restrictions placed upon their applications to be defended as purely logical? It was 
difficult to see how Russell's theory of types could be conceived to be "purely logical" on 
the universalist view, for it fractured the interpretation of quantifier ranges into an 
infinitely ascending series of stratified levels, forcing readers to understand each statement 
of a logical law, and each variable, as a "typically ambiguous" expression. Moreover, 
Whitehead's and Russell's unlimited, ascending series of types cannot be spoken about as a 
whole, in terms of a meaningfully demarcated range of generality. The universal 
application of Russell's general requirement of predicativity (associated with the "vicious 
circle principle") suffers from the same problem. And his axiom of infinity raised the 
question how any claim about the cardinal number of objects in the universe (whether 
finite or infinite) can possibly be seen to rest on considerations of logic alone. Either this 
question is one for physics, in asking what mathematics is needed to account for the 
cosmological structure of the universe, or it begs the question for the logicist in taking for 
granted that we already have mathematical knowledge of precisely those mathematical 
structures that the "logical" theorems will have to account for.
The universalist conception of logic's limitless application seemed in the end to leave no 
room for any model-theoretical approach to logic. This left insufficient room for the kind 
of rigorization of the notion of logical consequence with which we are now familiar. 
Neither Frege nor Russell had any means of formally establishing that one truth fails to 
follow from another, because they had no rigorous systematization of what in general it is 



for one truth to follow by logic from another. All they had conceptual space for were 
explicit formulations of the logical laws and rules of inference that they regarded as 
universally applicable and the display of (positive) proofs in their systems. The 
completeness of these systems with respect to logically valid inference could not be 
assessed except inductively and/or in general philosophical terms, by pronouncing on the 
maximal generality of logic in its role of framing the content of all thought.8 It would take 
nearly fifty years after Frege's 1879 Begriffsschrift for the question of completeness with 
respect to the notion of logical validity to be properly formulated, in part because of the 
universalist conception that informed his formalization of logic.9 
In his early work, while responding to the internal conceptual tensions within the 
universalist view, Wittgenstein began to zero in on the project of isolating a notion of 
logical consequence. This is somewhat ironic, in light of the fact that Wittgenstein's own 
later remarks about the notion of following a rule appear, at least at first blush, to sit 
uncomfortably with the idea that we have a clear intuitive idea of one sentence's 
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following with necessity from another.10 Still, though his philosophy always remained 
indebted to its universalist origins, he took several decisive steps away from the 
universalist model, steps that were to influence many who followed him.
Frege, Moore, and Russell had each rejected as unclear the notion of necessity, replacing it 
with that of universality; the early Moore and Russell explicitly held that the notion of a 
"necessary" proposition was a contradiction in terms, arguing that all "necessary" or 
"analytic" truths were in fact tautologies; and since no tautology could express a 
proposition, all genuine propositions involving predication are synthetic (for a discussion 
of this prehistory, see Dreben and Floyd 1991). In his early philosophy, Wittgenstein 
brought necessity and apriority back into view, denying that the notion of universality 
could replace them in accounting for the nature of logic. At the same time he preserved the 
idea that necessity is not a clear property word or predicate; indeed, he took the Russell-
Moore view one step further in calling all so-called propositions of logic "tautologies." 
This had the radical effect of denying that logic consists of genuine propositions (i.e., of 
sentences capable of being either true or false, depending upon the relevant state of affairs 
in reality), a sharp break with the universalist view of logic as a science of (maximally 
general) truths.
Wittgenstein's attempt to distinguish the concepts of necessity and generality while 
retaining the universalist idea that logic frames all thought was fraught with difficulty, and 
his struggles to make sense of this project dictated the course of his future discussions of 
logic and mathematics. The Tractatus countered Russell's oft-repeated insistence on the 
importance to mathematical logic of the reality of external relations (i.e., relations 
independent both of the mind and of the relata related by the relations) by revisiting the 



idealist notion of an "internal" relation or property, a notion connected in the Kantian 
tradition with necessity understood as a reflection of human conditions and forms of 
knowledge.
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All logical concepts and relations were for Wittgenstein internal, and vice versa. Internal 
relations and properties are necessary features of the objects, facts, or properties they relate 
in the sense that we cannot conceive these to be what they are, were their internal relations 
and properties to differ. An example is the coordinate (2, 2) in a Cartesian coordinate 
system: it is part of what it is to be this particular coordinated point that its first coordinate 
be 2 rather than 1, that it have two coordinating numbers, that it differ from the point (1, 1), 
and so on.11 To ask, for example, whether its first coordinate must be the number 1 is an ill-
posed question, to evince a misunderstanding, both of this particular coordinate and of the 
framework within which it figures. In the Tractatus all such necessities are taken to reflect 
structures of possible thought or modes of representation of facts via propositions, not 
independent metaphysical facts or substances; they shape how we see facts holding or not 
holding in the world, but they are not articulable in terms of propositions telling us truly 
what objects really, ultimately are. The holding of an internal property or relation thus does 
not turn on any facts being or not being the case, but on logical features of a proposition 
internal to its modes of possible expression. These are not describable with a proposition, 
true or false, for they reflect conditions of possible description that must be reflected in any 
description. For this reason Wittgenstein calls "internal" or "formal" properties and 
relations pseudo concepts (i.e., not notions serviceable in the description of reality).
Wittgenstein used this idea of the internality of logical characteristics to reject the Hegelian 
tradition's insistence that the internal relatedness of subject and predicate in a proposition 
could be used to establish monism as a metaphysical truth. This was, in effect, to revitalize 
Kant's view that logic, in being a constitutive framework of thought as such, is factually 
empty, giving us no absolute or substantial knowledge of reality or thought as they are in 
and of themselves (the Hegelians had granted this for formal or "general" logic, but not for 
substantial, true logic). It was also to revitalize the Kantian idea that logic is in its nature a 
fertile source of dialectical illusion, constantly tempting us to confuse our forms of 
representation with necessary features of reality, and therefore demanding careful critique 
for its appropriate application.
Each of these ideas directly conflicts with the universalist standpoint of Frege and Russell, 
according to which logical laws are truths, full stop.
Wittgenstein's emphasis on internal relations was, however, also symptomatic of his 
departure from Kant's way of critiquing general logic. Kant set out a "transcendental" logic 
of appearances that displayed the conditions of human knowledge in a 
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set of synthetic a priori principles. Wittgenstein's conception of logical relations as internal 
to their relata was intended to allow him to undercut any such independently given 
principled or mentalistic role for the transcendental. He aimed to display the limits of sense 
from within language itself, by spelling out that which is internal to the basic notion that 
we express ourselves meaningfully and communicatively, sometimes truly and sometimes 
falsely. This was the ultimate point at which Wittgenstein could hope to show that neither 
necessity nor universality can be seen aright without surrendering the idea that they are 
substantial concepts or properties.
Universal instantiation is as good an example as any. In the Tractatus the logical relation 
between "(x)fx" and "fa," in being "necessary" and "universally applicable," expresses an 
internal logical relation between these two propositions: neither proposition could be what 
it is apart from the second sentence's "following by logic" from the first. This indicates the 
idea that it is nonsensical to ask, given the assumption that "(x)fx," whether or not "fa" is 
true—as nonsensical as it would be (on Wittgenstein's view) to ask whether the coordinate 
(2, 2) has as its first coordinate the number 2, or whether the number 2 is a natural number. 
The logical or formal character of the relation (or property) comes in, ready-made, with 
our representation of its elements. Differently put, the logical content and force of 
generality is for Wittgenstein something shown in our language, but not said; it is applied, 
but not described or established by a truth.
Wittgenstein's chief philosophical difficulty lay in working out a conception of logic that 
would display all logical features of propositions as internal to them, and display all 
necessities as logical. His Notebooks 1914-1916 had begun with the remark that "logic 
must take care of itself," an insistence intended to preempt as nonsensical any appeal to the 
extralogical in understanding the scope and nature of logic. This insistence incorporated 
strands of the universalist point of view, but pointed in a new direction. Wittgenstein was 
simultaneously rejecting an empty formalism about logic that leaves its application to a 
theory of interpretations (in the universalist spirit) and at the same time rejecting all 
theories—including certain aspects of Frege's and Russell's philosophies of logic—that 
rely on an appeal to purely mental activity—or to any extralogical facts—to account for the 
application of logic in judgment.12 If logic could be shown to "take care of itself," 
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then the pseudo character of all attempts to justify its application and our obligations to it 
could be unmasked, precisely by showing them to purport to have achieved a perspective 
outside of logic from which to explain it. Of course, strictly thought through, this 
conception would impugn itself, in that its own remarks about logical relations would 
positively invite themselves to be read as substantial truths about a reality underlying logic. 



In the Tractatus Wittgenstein bites the bullet, declaring his own sentences as, by his own 
lights, nonsensical, to be surrendered in the end as themselves misleading, as neither true 
nor false to any kind of fact. Their use was to portray much traditional epistemic and 
metaphysical talk of necessity and reality as equally so by freeing us from misleading 
construals of logical grammar.
Wittgenstein's most basic conceptual move, expressed in his Tractatus conception of 
sentences as "pictures" or "models" of states of affairs, was to take the unit of the 
perceptibly expressed judgment—the Satz or "proposition" as an applied sentence, true or 
false—to be logically fundamental. The challenge was to contrive a presentation of logic 
that would allow this notion to remain basic to the presentation of what logic is, and to 
show how to unfold from it, without further ontological or epistemological appeal, all 
fundamental logical notions and distinctions. Logical form, on this view, was not to be 
construed as anything entity- or property-like, but instead as expressed in the ways in 
which we (take ourselves to) apply and logically operate with propositions. If this could be 
accomplished, Wittgenstein could surrender as otiose the whole idea of a logical fact or 
law, and still view logic as in some way limitlessly applicable.
The analogy between pictures and propositions intuitively suggests this line of thinking. A 
picture (a proposition) is conceived not as an object, but as a complex structure, a fact laid 
up against reality as a standard without intervention of an intermediate entity—something 
like a yardstick. The variety of different ways in which one might model (or measure) the 
same particular fact, configuration of objects, situation, or state of affairs—for example, by 
means of colored dots on a grid, or by means of words, by means of pencils and toy people 
(by means of miles, feet, inches, or nanometers)—tempts us to conceive of a "something 
that these models have in common with one another" (a "real length" of an object 
independent of how it is measured on one or more occasions). Yet there is no such notion 
to be had apart from the applicability of some particular system of measurement (there is 
no notion of length in itself, unindexed to such a system). This leaves us with the idea that 
the "it" that is common, for example, to all possible depictions of a particular person's 
stance at a particular moment in time, is their common depiction of that particular person's 
stance, and no other, independent kind of fact. But then the "it" of a picture's content, the 
essence of its particular comparison with the way the world is—analogously, a 
proposition's logical form—is on this view not object-like, or to be understood apart from 
our understanding and application of it (i.e., of the propositional signs that, in 
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application, are true or false in expressing it). Thoughts and senses, identified by 
Wittgenstein with applied propositional expressions, are on this analogy equally unobject- 
or unentity-like: they are shown or expressed in our activities of arguing, agreeing, and 
disagreeing on the truth of particular propositions. On Wittgenstein's conception, there is 



thinking without (Fregean) thoughts: what it is to take ourselves objectively to 
communicate is given through our acceptance of different complexes of signs (in different 
mouths of different speakers) to express the same propositions or symbols. But this is 
simply to redescribe or reiterate as basic the notion of a proposition as an applied sentence, 
true or false.
The weight of Wittgenstein's overarching conception of logic was thus not taken to rest so 
much on its ability to uncover a true logical structure of the world (e.g., an ontology of 
objects and facts suitable to justify the priority of truth-functional and/or quantificational 
logic) or a model-theoretic semantics of possible states of affairs to ground an intuitive 
notion of logical consequence or entailment (though, as Wittgenstein was aware, one may 
easily interpret some of his remarks in this way). Instead, he took his conception to rest 
wholly on its ability to display all such (very natural, indeed perhaps inevitable) talk of 
necessity in connection with the relation of logical consequence as in the end nothing but a 
repeating back or reflection of the acknowledgment—to be recognized as fundamental 
rather than defended as a further independent proposition—that we express propositions, 
some of which are true and some of which are false. This unmasked as nonsensical 
(unsinnig) the idea that the kind of categorical talk most natural to general philosophical 
discussion of logic could be viewed as contributing to an independent body of 
metaphysical truth about the most general features of reality.
Wittgenstein used the truth-table notation—implicit in Frege's and Russell's logic—to set 
forth his conception of the logical. He construed a truth-table as a fully complete 
expression of a proposition or thought, and aimed to unfold from this diagram the most 
fundamental logical distinctions. First, he identified the "sense" (Sinn) of a proposition 
with the truth-functional dependence of the proposition's truth-value upon the different 
possible assignments of truth and falsity to its elementary propositional parts. This 
extensionalized the notion, allowing him to dispense with Frege's (intensional) way of 
defining a thought as the Sinn of a proposition, the "mode of presentation" of a truth-value. 
It also vividly displayed Wittgenstein's idea of bipolarity, the notion that what it is to be a 
proposition—to express a definite sense—is to be an expression that is true or false, 
depending upon how the facts are. It depicted as internal to the proposition its 
combinatorial capacity to contribute to the expression of further truth-functionally 
compounded propositional structures. And it gave Wittgenstein a way to tie the notion of 
sense to that of logical equivalence in terms of purely truth-functional structure: "¬p V q," 
"p  q," and "(p & p)  q" all express the same sense in being logically equivalent, and vice 
versa, for the truth-table form of 
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writing each of these shows that they each express the very same dependence of truth-
value upon assignments to "p" and "q," regardless of the fact that different truth-functions 



appear in their expression. It is, in other words, the way in which the final column of the 
truth table relates assignments of truth and falsity to the elementary parts that ultimately 
(logically) is what matters, and not the classification of a proposition's logical form as that 
of a conditional, a conjunction, or a disjunction. Meaning and sense, in their logical 
aspects, are thus extensionalized.
This conception yielded a way to distinguish, on the basis of the truth-table notation alone, 
the "propositions" of logic: "tautologies" are defined as having "T" in every row of the 
final column, "contradictions" as having "F" in every such row, and the "propositions" of 
logic are just these sentences. This portrays logic as empty of factual content, for the truth-
values of such sentential forms may be seen not to depend upon any particular truth-
assignment to their elementary parts; they hold no matter what assignment is chosen. (As 
Wittgenstein remarked, to say that it is either raining or not raining right now tells me 
nothing about the weather.) These purely logical "propositions" lack bipolarity, and hence 
sense: Wittgenstein declares them sinnlos, regarding them as limiting cases of propositions 
that are not really either true or false, that carry "zero" information.
This characterization of logic was purely "formal" or "extensional" that is, it worked 
without any independent appeal to extralogical meanings or truths, and solely on the basis 
of reflection on the propositional sign, the truth-table notation itself. On Wittgenstein's 
view the logical status of logical sentences emerges solely through their internal logical 
structure, a structure that cancels out the depicting features of the sentence's elementary 
parts, but not through any general truths or through their gap-free derivability from basic 
logical laws. The truth-functional connectives are themselves reduced, in this notation, to 
what is displayed in a truth-table, particular dependencies of truth-values upon truth-
assignments. The interdefinability of the truth-operations indicates that they do not 
contribute to any factual aspect of a proposition. Thus Wittgenstein remarks that his 
fundamental thought (Grundgedanke) is that the logical constants do not refer to or serve 
as proxies for logical objects. There is, then, no room for a genuine disagreement over the 
truth of individual logical laws. Any purported justification (e.g., of bivalence, excluded 
middle, or noncontradiction) would be at best another way of spelling out one's prior 
acceptance of the truth table as a suitable expression of the proposition itself, and hence no 
justification at all. In inviting us to suppose that one can step outside of logic to assess the 
truth of its laws, any such justification is nonsense. There is no question of generality here 
at all, only a question of one's understanding of the notion of proposition properly.
This understanding of the notion of proposition, built upon Wittgenstein's "extensionalism" 
about logic, was thus tied to a rejection of Frege's and Russell's respective applications of 
the distinction between function and argument (Frege's distinction between concept and 
object), a distinction intrinsic to the quantificational 
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conception of generality that appeared to give the universalist conception its plausibility. 
As we have seen, Wittgenstein took the ability of a truth table to stand in as an expressive 
replacement for (or a definition of) a truth-functional sign (for example, in showing the 
expressive adequacy of "¬" and "&" relative to the other truth-functions) to indicate that 
the signs for the truth-functions are not names of logical objects or functions, as Frege and 
Russell had held. Instead, he conceived the connections as part of a framework for 
expressing logical dependencies, "internal" (nongenuine) relations between sentences. This 
demanded, for a proper treatment of the logical signs, the introduction of a new 
grammatical category distinct from that of function and name, viz., that of an operation. 
The depiction of objects and functions by configurations of names and concept words is 
part and parcel of the content of propositions for Frege, Russell, and Wittgenstein. But for 
Wittgenstein operations, being merely formal, are simply a way of operating with 
propositional signs; they do not stand proxy either for concepts (functions) or for objects. 
They are instead like punctuation marks: an operation sign forms part of the way in which 
a particular sense happens to be expressed, but in no way can a particular logical 
connective be taken to reflect what a sentence means or is about. Wittgenstein takes part of 
his task to be to show how we may regard all of the usual logical signs as operation signs 
(i.e., as truth-operational features internal to the expression of propositions) rather than 
features referring to that about which the propositions in which they explicitly figure 
speak.13 
Wittgenstein's construal of logical features as emerging from what we do with propositions
—reflecting internal features of our ways of seeing the world rather than properties or 
functions—remained a central leitmotif in all of his subsequent work. Over and over again 
he warns against the tendency to reify our means of expression, showing how the 
oversimplification of logical grammar naturally leads to the posing of pseudo-questions. 
He saw it as all too easy to assume that objectivity demands there must be an object or 
meaning corresponding to every working sign in the language. Frege's so-called context 
principle ("never ask for the meaning of a word in isolation, but only within the context of 
a proposition") and Russell's notion of an incomplete symbol (his use of the theory of 
descriptions to analyze away apparently denoting phrases in favor of quantificational 
structures) were moving in the right critical direction, but did not go far enough in 
undercutting our tendency to confuse elements of our expressive powers with entities 
corresponding to elements of our language. For Frege and Russell failed to apply their own 
principles to the logical elements of language. To Wittgenstein, their uniform extensions of 
the distinction between function and argument across logical notions were conceptually 
procrustean, mired in an overly optimistic extension of (an updated form of) the ancient 
duality between subject and predicate.
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Difficulties about the analysis of generality were, however, central to Wittgenstein's 
problem, and these could not be faced by means of the truth-table and the picturing ideas 
alone. It was alien to Wittgenstein, as much as it had been to Frege and Russell, to 
conceive of the quantifiers as reinterpretable according to arbitrarily chosen universes of 
discourse; the whole point was to see logic growing seamlessly out of the given application 
of sentences in a language. But he conceived of this growth in radically new terms. The 
decision procedure (algorithm) for truth-functional validity, satisfiability, and implication 
that Wittgenstein exhibited with the truth-tables in the Tractatus allowed him to make this 
view plausible for part of logic: as he pointed out, in cases where the generality symbol is 
not present, we can see that so-called "proof" within pure logic is a mere calculation, a 
"mechanical" expedient allowing us to display for ourselves the tautologousness (or 
contradictoriness) of a logical proposition simply by rewriting it. The idea that the truth-
functional connectives refer to separable entities, or that we can prove the logicality of a 
sentence (or the validity of a proof through its conditionalization) via rational inferences 
from truth to truth, justified step-by-step by the application of logical laws to general 
features of objects and concepts, is thus—for Wittgenstein—otiose.
But how was this conception to be extended to quantification theory, where (as Church 
was to establish in 1936) we have no decision procedure for validity, and where (as Gödel 
was to show in 1930) we do have a systematic search procedure for it?
The purely philosophical motivation for extending Wittgenstein's view across "all of logic" 
was clear. His emphasis on the mechanical aspect of proof in pure logic was motivated by 
his critical reactions to the wedding of Frege's and Russell's philosophical arguments for 
logicism with their success in having formalized logic. They had each argued, against 
formalists and traditional algebraists of logic, that logic and mathematics are more than 
merely mechanical, formal games of calculation—they are applicable and contentful 
sciences of truth. Frege explicitly insisted that arithmetic was more than a mere game like 
chess because its propositions express senses, thoughts [Frege 1903, §91]. For 
Wittgenstein, this kind of argument rang hollow. Arguably what Frege and Russell had 
done, in spite of (or perhaps because of) their universalist conceptions, was to show how 
the purely logical character of an argument can be verified mechanically, by tracing 
through its formalized structure. This appeared to reinforce the algebraical view that logic 
is essentially empty, a calculus with uninterpreted signs. Wittgenstein did not wish to fall 
back on an uncritical formalism. But he did wish to portray the debate between Frege and 
Russell and their formalist forebears as mired in confusions over what the application of 
logic and mathematics involves.
Wittgenstein understood quantification as something operational, that is, as belonging to 
the way a proposition is expressed and applied, rather than to a distinctive descriptive or 
functional element of a proposition. The Tractatus claims 
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that all quantificational forms of sentence may be generated purely operationally, and uses 
for this Wittgenstein's operator N, a generalized form of the Sheffer stroke of joint denial 
that negates elementary propositions either singly or jointly. Since he was writing at a time 
when the distinction between first- and second-order logic had not been formulated, we 
may assume that Wittgenstein intended to use operator N to express all quantificational 
structures. But his notational suggestions have never been made wholly precise. For the 
first-order case, however, at least this much is clear: "fx," a propositional variable 
indicating a function, stipulates a range of elementary propositions (i.e., those in which the 
function figures with an object); "¬( x)fx" is expressed through operator N by jointly 
(generally) denying the elementary propositions presented by "fx"; and "(x)fx" is generated 
by jointly (generally) denying the elementary propositions presented by "¬fx." The logical 
step from "(x)fx" to "fa" is thereby seen to be an immediate, purely formal operation rather 
than an instantiation in accordance with a general logical rule or law of inference; 
generality contributes nothing in and of itself to the material content of a proposition. The 
sign for generality is thus not to be read as a function symbol, but as a way in which a 
collection of elementary propositions is operated upon, or displayed. In a sense, generality 
is already expressed in "fx," and therefore, in a sense, the "(x)" part of the generality 
notation is unnecessary or misleading.14 In virtue of the fixed domain of (elementary) 
sentences that are presupposed from the outset, this sign can at best be seen to contribute as 
an index to the applications of operator N at work in cases of multiple generality. But it 
does not express a genuine kind word, second-order function, or concept in its own right.
This is very far from the universalist's conception of generality. Wittgenstein is conceiving 
generality to be expressed in something like the way a genre painting expresses an 
archetypal feature or scene. Such a painting is applicable to an aspect of each concrete 
situation exemplifying the relevant genre features. That is what its being a genre painting 
is, and that is what makes any exemplar an exemplar of it. Its own way of representing is, 
of course, not reducible to the depiction of any one such example, but each such example 
exemplifies on its own, without any intermediary principle. This is reflected in the fact that 
the very same picture could be used to depict (could be inspired initially as a depiction of) 
a particular scene, and also a genre scene; there is nothing in its internal structure that says 
how it should be interpreted. That comes out in our uses of it.
Wittgenstein's treatment is not intended to give a unified account of the notion of 
generality. His distinction between function and operation bifurcates it into two different 
notions, the material generality of concepts involved as functions at the atomic level in 
elementary propositions, and the operational generality of formal concepts. As we have 
seen, he conceives of formal concepts as pseudo 
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concepts because of our tendency to assimilate them to genuine concepts or kind words 
when we ought, as he thinks, to focus on the operational, procedural aspects of our hold on 
them: formal notions do not sort independently given objects into kinds (they are neither 
true classifiers nor sortals), but instead are shown or expressed through the kinds of 
applications we make of them. Their applications are internal to them, and the applications 
are, in turn, what they are insofar as they successfully display or express the formal 
notions.
This gives Wittgenstein a way to dissolve Russell's paradox. According to the "picture" 
idea, the elementary proposition is a fact in which names serve as proxies for objects via 
their structural, configuration within the sentence as it is used to depict the holding of a 
state of affairs. Material ("propositional") functions (concepts and relations) are expressed 
via fixed modes of positioning names within the projected propositional sign. This 
exhausts the articulation of functional and objectual material content (and generality) at 
work in language. Wittgenstein holds that no material function can apply to itself: no 
sentence can say of itself that it is true, for the sentence is a proposition only insofar as it is 
compared, through its functional articulation via a structure of names, with something else 
that it models truly or falsely. He is thinking here in terms of an analogy with the 
positionality notation of our decimal system: that our numerals are written in the decimal 
system, and not some other one, is presupposed in our understanding of how to read the 
positional notation. This is not something that the numerals say; it is something that our 
operations with them show. Given a fixed system of positionality to express material 
functions, writing down "f(f(x))" in effect gives rise to a claim about two different material 
functions, much as the digit "2" reflects something different in each of its occurrences 
within the (decimal) notation "222."15 This reflects Wittgenstein's idiosyncratic reading of 
the generality of the variable: "fx," on his view, presents a fixed range of elementary 
propositions ("fa," "fb," and so on) that cannot be changed by trying to reapply "f." In 
"f(fx)" we thus have two occurrences of the same sign functioning as different 
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symbols; in principle we could simply use different signs (say, with indices) to distinguish 
them. This is Wittgenstein's "solution" to Russell's paradox.16 
Yet Wittgenstein does not rule out a purely formal, "selfreferential," or recursive series of 
nested applications, as in O′x, O′(O′x), O′(O′(O′x)). … What he does insist is that if we 
imagine such a series being logically connected according to repeated application of a 
single formal rule, then we are treating "O" as a sign for an operation, not as a genuine 
(propositional, material) function symbol. Operations, unlike (material) functions, are in 
their very nature recursively iterable procedures generating collections of instances that are 
internally ordered in what Wittgenstein calls formal series. Wittgenstein's notation for this 



kind of (recursive) generality uses square brackets: in, for example, "[a, x, O′x]," "a" stands 
for the basis step of the series, x for an arbitrary member of the series, and "O′x" for the 
result of applying an operation O to x. This bracket notation is thus equivalent to writing 
down "a, O′x, O′O′x, O′O′O′x …," an expression with an ellipsis. It expresses a rule whose 
applications are internal to its expression, but the generality of the rule is shown or 
indicated through the manner of presenting its instances, not said or described. 
Furthermore, Wittgenstein allows that the basis might itself be given through a formal 
series, so these bracketed expressions may themselves be iterated. On this view, the 
procedure of moving from type to type in Russell's hierarchy is operational, something 
done formally, without any appeal to the facts. It cannot be summed up in the 
quantificational manner of Frege and Russell without confusion, for the generality of the 
formal series, ordered by an "internal" rule of the series, is fundamentally different from 
the generality of, for example, the (material) concept horse.
We have seen that the notion of proposition is held by Wittgenstein to be a formal 
(pseudo)concept. This is evinced in his treating it as fully displayed through applications of 
the (formal) operator N. Wittgenstein holds that all propositions are results of applying 
iterations of operator N to a basis of elementary propositions. No proposition talks about 
the general form of proposition, for this is a formal notion, given through a recursive 
template or rule, not via the functionally articulate name of a class or totality. Beginning 
with some basis of elementary propositions, p, the idea is that by a finite number of 
applications of operator N, we see that we shall be able to generate all propositions. 
Wittgenstein writes what he calls "the general form of proposition" in terms of his 
recursive notation: " ," where " " is a schema for a basis propositions, " " a 
variable standing for all results of some finite number of applications of operator N to 
elements in that basis, [and "N′( )" for the totality of results] of applying operator N.
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The Grundgedanke of the Tractatus is that the so-called logical constants (the logical 
expressions) do not refer: all logical expressions indicate operations, according to 
Wittgenstein. Now we see that all operations are logical in being expressed through purely 
formal, recursively iterable rules. And operations are always tied, directly or indirectly, to 
our application of propositions in language, via truth-operations on the elementary 
propositions. Nothing that is a proposition fails to be subject to logical operations.
There has been a recent debate over the question whether and in what sense this Tractatus 
notation for the general form of proposition is expressively adequate, even for first-order 
logic alone, and, therefore, whether and on what grounds Wittgenstein might have been 
committed, wittingly or unwittingly, to the existence of a decision procedure for all of 
logic.17 Wittgenstein's situation with respect to decidability was vexed and complex. In 
1913 he was apparently one of the first (wrongly) to conjecture the existence of a decision 



procedure for all of logic, writing to Russell that the mark of a logical proposition was 
one's being able to determine its truth "from the symbol alone" (cf. CL, pp. 59, 63). Yet it 
remains unclear on precisely what basis Wittgenstein might still have been committed to 
this as late as 1918.18 It is usually held—and it was reported to have been said by 
Wittgenstein himself—that in the Tractatus he conceived of the quantifiers in terms of 
potentially infinite truth-functional conjunctions and disjunctions, not realizing the intrinsic 
barrier to extending the truth-table analysis into the unrestricted quantificational domain.
Yet Wittgenstein himself had no interest in setting out a smooth-running codification of 
quantification theory, and in fact he is not explicit in the Tractatus about what semantics or 
notational details he would require. His central philosophical problem was, after all, to 
indicate how one might be able to dispense, conceptually, with the idea that general logical 
laws or rules of inference such as universal instantiation are true in virtue of meanings of 
the words "all" and "some" that go beyond what is expressed at the elementary level by 
their instances; he wanted to show that none of the logical constants must be conceived as 
going proxy for an object or function. Only in this way could he undercut the idea of a 
stance from which one might dispute the correctness or incorrectness of an interpretation 
of the quantifier's range, of the inference from "(x)fx" to "fa," and show that logic is not a 
science of true propositions or laws at all.
Arithmetic remained, however, as a potential stumbling block. For in rejecting Frege's and 
Russell's quantificational conception of generality, Wittgenstein was in effect rejecting the 
means by which they carried through their account of 
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arithmetic as logical in nature. The first difficulty he had to face was an account of the 
universal applicability of the cardinal numbers within extramathematical propositions. 
Here he proposed making cardinality and numerical identity internal features or forms of 
the elementary propositions. This was to construe cardinal numbers as undefinable, as 
internal aspects of our presentation of facts in propositions, rather than as objects or 
properties of objects. Falling back once again on his rejection of the adequacy of the 
function/argument distinction, Wittgenstein sharply distinguished (as algebraists of logic 
had traditionally done) between logical identities and mathematical equations. He then 
argued that the sign for identity is, in connection with propositional functions, 
expressively, and therefore logically, unnecessary. It would always be possible, he argued, 
to devise a language in which there were no redundant names: logic cannot bar this as an 
expressive option. This would allow us to read numerical identity between material 
concepts directly off from the expression of an elementary proposition; ascriptions of 
number were then not (as they had been for Frege and for Russell) logical identities.
On this view, "fa & fb" shows without saying that there are at least two F's; the number is a 
depicting feature of the symbolism, and not a separate object referred to by the 



proposition.19 Wittgenstein adopts a convention for the variable that allows him to read "¬(
x, y)(fx & fy)" as saying that there are not two f's.20 Thus the fact that we use equations in 
mathematics cannot, for Wittgenstein, be used to argue that the numbers are objects, for 
though he argues that mathematics consists essentially of equations, he holds that 
equations are not objectual identities in which genuine (propositional) functions work. 
Instead, they are part of an operational calculus of signs, working via (what 
mathematicians had long called) the method of substitution.21 Probability is also subjected 
to analysis in terms of the nation of operation in the Tractatus, via the truth tables.
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In this way Wittgenstein revitalized in the Tractatus an older, algebraical way of 
conceiving mathematics and logic that Frege and Russell had hoped to wipe out as 
"formalist," but precisely by tying this language itself back to the logicist idea that our 
cardinal number words reflect aspects of the logical form of propositions that we apply to 
the world. A mathematical equation, according to the Tractatus, is neither true nor false, it 
expresses no thought or proposition, but instead sets forth rules for the substitution of one 
numerical (operational) sign for another, either in other mathematical equations or in 
genuine propositions (extramathematical ascriptions of number). Ascriptions of number 
within mathematics (e.g., "there is only one solution to x + 1 = 1") enunciate symbolic 
rules for the application of operation signs; in this way the "x" in such an equation is not 
read as a universally quantified variable, but as a formal operator.22 Regarded from the 
perspective of mixed contexts, equations are taken to show us ways we may interchange 
numerical operations in genuine propositions without affecting the sense expressed. They 
reflect what we can do with these operations, not underlying general truths.
The pictorial character of number words is part and parcel of Wittgenstein's idea here. 
Operating on an equation via substitutions of one term (operation sign) for another yields 
different "pictures" or standpoints from which to consider the operation signs figuring in it: 
in mathematics we are shown different aspects of the logical syntax of number words (cf. 
TLP 6.2323, 2.173). Arithmetical "proofs" of equalities between particular number words 
are calculations, manipulations of a series of pictures using operation signs in accordance 
with "the method of substitution" (6.241). On this view, the numbers are construed neither 
objectually nor adjectivally, but practically, in terms of what we do with them. And 
Wittgenstein has no need to define a general notion of (mathematical) function.
On this view, second-order logical principles such as Hume's principle23 —which 
essentially requires the notion of identity for its formulation—are otiose. The 
equinumerosity of two concepts (whether material or formal) is already 
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expressed (applied) in the similarity of form shared by different first-order propositions 
(pictures) involving these concepts. For example, given Wittgenstein's eliminative proposal 
about redundant names, "fa & fb" and "gc & gd" show without saying that there are at least 
as many f's as g's through their shared forms. Given Wittgenstein's exclusive interpretation 
of the variables "x" and "y," "( x)( y)(fx & fy) & ¬( x)( y)( z)(fx & fy & fz)" and "( x)( y)(gx 
& gy) & ¬( x)( y)( z)(gx & gy & gz)" show equinumerosity through their shared forms. 
Cardinality, for material and for formal concepts, is thus taken by Wittgenstein to be given 
with a concept's expressive possibilities, possibilities whose applicability must, he 
believes, already be in place in the use of (nonpurely logical) propositions before talk of 
one-to-one correlation is cogent. The existence of a one-to-one mapping between numerals 
and objects may be understood either materially or formally, externally or internally. 
Externally and materially, this is a way in which individual objects may be associated, 
either with one another or with numerals. But the heart of Wittgenstein's picture idea is that 
a mere association between names and objects is, in and of itself, not something qualifying 
as propositional at all; only the internal features of a proposition give rise to a logical 
relation of equinumerosity. The proposition, conceived as an articulate, applied structure or 
fact, true or false, is fundamental. The upshot is that Wittgenstein treats the cardinal 
numbers and the notions of object and numerical identity as indefinable forms, expressive 
features of the symbolism, rather than as objects or names.24 
Wittgenstein did not mention the principle of mathematical induction in the Tractatus—a 
remarkable thing, given that one of the primary achievements of Frege's and Russell's 
second-order analysis of arithmetic was to show how to derive this (apparently "synthetic") 
truth from pure logic alone. He did take the cogency of proof by induction to be a 
reflection of the logical structure of number words; it is just that his conception of the 
logical differed from the logicists'. For Wittgenstein an induction "principle" is one whose 
generality and applicability are shown in the general form natural number, which is a 
formal notion. On this view, mathematical induction's application to the natural numbers is 
part and parcel of what makes a number a number. Induction is thus not depicted as a 
separable general truth that could be deduced via a second-order definition of number in 
terms of equivalence classes. Wittgenstein's own "definition" construes the 
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numbers recursively, as "exponents" of operations (i.e., as forms common to the 
development of any formal series).25 Every formal series has a first, a second, a third 
member, and so on; the notion of "operation" is equivalent, Wittgenstein remarks, to the 
notion of and so on. By writing down "[0, ξ, ξ + 1]," a variable ranging over exponents of 
all operations, Wittgenstein shows the general form of natural number (TLP 6.03). In 
effect, he simply writes down "0, 1, 1 + 1, 1 + 1 + 1, …," without analyzing the ellipsis 
away explicitly, as is done with the ancestral construction of Frege and Russell.



To the objection that he was opening arithmetic up to an account in terms of synthetic a 
priori intuition of succession, Wittgenstein replied that language itself would provide the 
necessary "intuition"—which was just to dismiss any serious independent role for the 
notion of intuition. On his view, the individual arithmetical terms within this series are not 
freestanding, but emerge through their connection with the notation for the general form of 
proposition and, hence, through the expressive structure of the operations we perform with 
elementary propositions. Wittgenstein went so far as to deny (in the early 1930s) that there 
could be a notation for arithmetic in which numerals functioned as proper names (WVC, p. 
226). And he always insisted that the theory of classes is "superfluous" for mathematics 
(TLP 6.031). Indeed, he considered the ancestral definition of successor to suffer from an 
expressive "vicious circle" (TLP 4.1273). This was not for him an epistemic argument 
against our claiming to have knowledge of abstract objects or a freestanding preference for 
predicativity. It formed part of an expressive argument about the philosophical advantages 
of one notation for the numbers over another, presupposing his treatment of generality.
Wittgenstein was thus always sympathetic to the kind of considerations Poincaré brought 
forward against logicism—namely, that in setting out the formalization of logic within 
which the logistic reduction would be carried out, Frege and Russell already depended 
upon their reader's ability to apply arithmetic and inductive inference. But this was not (as 
it was for Poincaré) intended to refute the notion that arithmetic is in some sense 
"analytic." Instead, it was to show that the logistic reduction is not of any fundamental 
epistemic relevance.26 Wittgenstein feared that Frege and Russell would reinforce the 
philosophical tendency to look at the logical characteristics of mathematics through the 
distorting lens of a 
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unified account of generality. From his perspective, the logicistic reduction is likely to 
reinforce the tendency to look behind mathematical practice for an underlying account of a 
reality of necessities. The advantage of his recursive notation lay, he believed, in its 
showing on its face that which is logical in arithmetic, namely, the internality of the 
relations among arithmetical principles, arithmetical operations, and arithmetical terms, 
regarded as a reflection of our fundamental ability to ascribe number in empirical contexts. 
The general notion of natural number is not a material predicate or kind word, as he sees 
it, but, like the notion of proposition, is given through our application of recursive 
operations to expressive features of our language.
The universalist's conception is depicted here as wrongheaded, a needless wrapping up of 
logic and arithmetic in the guise of talk derived from general principles about objects, 
functions, and relations. Logic and arithmetic could certainly be developed axiomatically 
on Wittgenstein's view, but such a development would be, at best, just one mode of 
exposition among many other possible ones, and at worst, a philosophically misleading 



exposition. It could never demonstrate to us, as an analysis, the true nature of our concepts 
of logic, number, and arithmetic, or ground our knowledge of mathematics in absolutely 
certain or absolutely general principles. It would not show any deep facts of deductive 
determination, but would recapitulate in one style the very same expressive grammatical 
structure that we could look at differently; that, indeed, is what would make its derivations 
"purely logical." As Wittgenstein sees it, logic "takes care of itself": a proposition of logic 
(or, in mathematics, an equation) belongs to logic (or to arithmetic) just as it is, in virtue of 
its figuring in a calculus of operations that we apply to it. A universalist interpretation in 
terms of an extensional conception of classes or concepts thus distracts from what is to 
Wittgenstein's mind truly fundamental to arithmetic and logic—namely, our ability 
iteratively to operate with (to "follow") a recursive rule in connection with internal 
necessities of language; and it is on this ability that the applications of logic and 
mathematics fundamentally rest. Frege and Russell gloss over this in eliding the crucial 
difference between accidental (material) and nonaccidental (operational, formal) 
generality, the difference between that which the sentences of our language depict, and that 
which comes built-in with the logical syntax of any depiction.

2.  "Middle" Life and Philosophy (1929-1933)

After the First World War, Wittgenstein largely withdrew from academic philosophy. He 
did speak with Ramsey in the mid-1920s about the foundations of mathematics (about the 
notions of identity and cardinality in particular), and by the late 1920s he had decided to 
return to Cambridge to attempt a further 
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articulation of his views. He continued to write and discuss philosophy until his death. His 
"middle" or transitional period (1929-1933) was a period of exploration of his earlier views 
in light of his own and others' reactions.
After 1935 Wittgenstein came explicitly to advocate philosophical investigation of 
grammar and concepts (i.e., of logic) in which concepts generally, and mathematical 
concepts in particular, are treated as a "motley," a or many-colored, evolving family of 
notions, notions that lack sharply definable ranges of application (cf. RFM III, §§46ff.). In 
a general way, his focus shifted from an emphasis on the notion of a calculus or system to 
the broader notion of a language game, but this shift was made against the backdrop of an 
underlying continuity in his thinking about the contributions and errors made by Frege and 
by Russell. During the initial phase of this latter part of his philosophical life, his ideas 
were constantly evolving under the pressure of his attempts to clarify his Tractarian ideas 



and shift them in response to recent developments in the foundations of mathematics and 
logic. What he had eventually to surrender was the idea that the notion of an "internal" 
property or relation (i.e., his unmasking of the idea that arithmetical and logical participles 
refer to independently given objects and functions) could be accomplished through the 
display of mechanically effective algorithms or the notion of a purely "internal" or 
"formal" relation or technique. In the end, however, his aim of thinking through the nature 
of logic, and the limitations of the universalist conception, always remained central to his 
work.
Feigl recounts that Wittgenstein returned to philosophy after hearing a lecture by Brouwer 
in Vienna in 1927, and some have inferred from this that Wittgenstein should be read as a 
Brouwerian, but this reading seems very doubtful, both in light of Wittgenstein's insistence 
on the importance of linguistic expression to our understanding of mathematics (his 
skepticism about a transcendental, solipsistic self), and in light of his denial (in a sense 
more radical than Brouwer's) that logic consists of any laws or principles.27 In any case no 
one influence may be said to have governed his thinking: he experienced no radical 
conversion in his overarching conception of philosophy, but thought through his ideas in a 
new, far more complicated intellectual setting. By the late 1920s and through the early 
1930s he was reacting critically to the Tractatus's positivistic, empiricistic appropriation by 
the Vienna Circle and attempting to come to terms with recent developments in the 
foundations of mathematics and epistemology: not only Brouwer's intuitionism but also 
Russell's Analysis of Mind, Ramsey's work on the foundations of mathematics, Hilbert's 
metamathematics and finitism, discussions by Weyl, and Skolem's analysis of quantifier-
free arithmetic (cf. here especially WA, PR, PG, WVC). By 1935 he began to try to come 
to terms with the diagonalization arguments of Cantor, Gödel, and Turing (Wittgenstein 
and Turing discussed 
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philosophy and logic between 1937 and 1939). Beginning in 1929, when he first returned 
to Cambridge, conversations with Ramsey and Sraffa stimulated Wittgenstein, as did his 
reading of Nicod's Geometry and Induction; he was also influenced by his reading of 
Spengler, Frazer's Golden Bough, and Freud. In conversations with the Vienna Circle he 
discussed, among others, Frege, Russell, Husserl, Hilbert, Weyl, Brouwer, and Heidegger. 
The grammar of the concept of infinity, both within and outside of mathematics, was a 
central preoccupation from 1929 to 1934.
Given this complexity and ferment, there are many different ways of understanding the 
development of Wittgenstein's thought. Here we shall content ourselves with a brief 
description of the ways he developed just a few Tractarian ideas about philosophy, logic, 
and mathematics; in particular, we shall focus on his treatment of generality and necessity.



Not until he returned to England in 1929, and to sustained conversations with Ramsey, did 
Wittgenstein begin seriously to investigate whether and how far his Tractarian treatment 
of arithmetic might be adequate. The difficulty came in assessing how this treatment could 
be interwoven with his Tractarian conception of logic without glossing over his sharp 
distinction between material and operational generality, and without adopting a substantial 
metaphysical or epistemic position in discussing the nature of logic and its applicability. 
Wittgenstein had not been explicit in the Tractatus about which cardinalities he took to be 
built into the forms of the elementary propositions and, thus, what sort of elementary 
propositions he had in mind. He discussed the natural numbers and left all further 
discussion to the side. This left his attitude toward real and imaginary numbers—and the 
application of mathematics in physics—unclear, and thus, especially in connection with the 
topic of the infinite, Wittgenstein's elliptical uses of the notion of operation came to seem 
to him too coarse and nebulous. The fundamental problem was a clash of analogies at the 
heart of the Tractatus: he had linked his conception of finite cardinality much too tightly to 
his view of the truth-table as an adequate display of the logical. This, as Russell and 
Ramsey helped him to see, left crucial conceptual questions open.
In the Tractatus Wittgenstein had suggested that the logical impossibility of an object's 
being both red and green all over at the same time, or both exactly three inches long and 
exactly four inches long at the same time, would be shown at the atomic level of analysis. 
Now he saw that he could not hold on to his views about the application of number without 
linking his conception of the logical to systems of propositions. If, in Wittgenstein's 
manner, we ascribe a cardinal number x to a material concept fx (e.g., through a 
proposition like "fa & fb"), then it is immediate (shown within the expression of this 
proposition) that the application of this number (viz., two) rules out as false the ascription 
of exactly one to the concept. This treatment of number thus pulled in the opposite 
direction from the image of an ultimately self-sufficient elementary proposition; what was 
given 
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already in the application of the truth-table were systems of propositions, according to 
Wittgenstein's own construal of the number words as operation signs. Imagining real 
numbers used in the formulation of elementary propositions makes this point vivid: here 
we have infinite complexity of a certain kind within the elementary proposition, 
complexity we understand through our understanding of the system of real numbers itself. 
The yardstick analogy with the proposition pulled in this direction anyway. For if an object 
is presented, via a material concept, to be exactly one meter long (or green all over), then it 
is immediate (internal to the proposition's expression) that the object so described is not 
three meters long, not four meters long, and so on. A yardstick, in other words, figures in a 
system of measurement.



Wittgenstein's treatment of cardinal number left it unclear whether he wished to (or could) 
make room for the transfinite, as Russell noted in his introduction to the Tractatus. It was 
equally unclear how Wittgenstein's replacement for Russell's axiom of infinity was to 
work. How were we to be shown the cardinal number of all objects as all of them? If there 
were a finite number of objects, n, then on Wittgenstein's view it would be nonsensical to 
try to say that there were n + 1 objects; but on what ground could we possibly regard this 
as something purely logical? And if there were an infinite number of objects, then how 
would that be shown in language? No formal rule could set out the names in advance 
without destroying Wittgenstein's sharp distinction between names and operations signs, a 
distinction on which his conception of the universal applicability of the truth table 
depended. But without such a rule, the totality of elementary propositions remained 
expressively opaque, in principle impossible to list completely. Russell suggested in his 
introduction to the Tractatus that an infinite hierarchy of languages would defeat 
Wittgenstein's use of the show/say distinction—perhaps the first place in print where the 
contemporary idea of a metalanguage was broached. Wittgenstein had no way to rule this 
out formally, given his own discussion of the movement from type to type in Russell and 
Whitehead's hierarchy. But the picture of a series of languages raised with a vengeance the 
question of whether and on what basis one could make sense of the unity of language (i.e., 
the very notion of a speaker's grasp of a—his or her own—language.
Nearly immediately upon his arrival in Cambridge in 1929, Wittgenstein's exclusive 
reliance on the model of the independence of elementary propositions fell by the way, 
precisely in order that he could retain that which was fundamental to his philosophical 
conception (cf. WA, PR). For some time he attempted to think through what a logical 
analysis of the "phenomenological" language of first-person experience would look like, 
focusing in his discussions with the Vienna Circle on the logical status of hypotheses and 
the holistic systematicity to be found in descriptions of experience (WVC). He accused 
himself of having erroneously construed the quantifiers in terms of conjunctions and 
disjunctions. (see G. E. Moore [1954-1955]). He admitted that he had failed clearly to 
show how one could view the application of the quantifier in pure number theory (cf. PR p. 
130).
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Wittgenstein did not surrender the show/say distinction; he elaborated and adapted it to his 
evolving standpoint. Confronted with recent work on the Entscheidungsproblem, he 
retained, but softened, his earlier tendency to connect this distinction with the display of 
algorithms and the notion of a calculus. Conversations with Ramsey in 1929-30, along 
with his reading of Hilbert, Weyl, and others, made him critical of the vagueness of his 
earlier appeal to the notion of operation. He now explicitly retreated from embracing 
algorithmicism as a general account of proof in logic and mathematics. Ramsey had 



obtained an important result (1928) for a partial case of the Entscheidungsproblem, and 
was engaged in trying to develop an "extensional" account of the foundations of 
mathematics in terms of the notion of arbitrary function, conceiving of his own work as a 
development of the Tractatus's extensionalized standpoint. In sharply differentiating his 
philosophical outlook from Ramsey's, Wittgenstein came to radicalize his previous 
tendency to resist a unified account of generality. By 1934 he was explicitly rejecting two 
ideas that, as he now saw it, the Tractatus had, in its vagueness, invited: (1) the idea that 
mathematics and/or logic have a unified core or nature; (2) the idea that a philosophical 
understanding of logic or mathematics could rest upon the solution to a leading or single 
fundamental problem (such as the Entscheidungsproblem). The articulation of these 
rejections became the hallmark of his later discussions of mathematics and logic.
The evolution of Wittgenstein's thought was, however, piecemeal and uneven during this 
"middle" period. In 1929 he began to speak (as he had not in the Tractatus) of the "sense" 
of a mathematical proposition or equation as something that is shown in its proof (cf. WA, 
PR). He still sharply distinguished between equations and propositions, but now began to 
try to do better justice to the distinctive generality at work in mathematical proof. This 
comes through in his examination of Skolem's quantifier-free treatment of primitive-
recursive arithmetic (PG, pp. 397ff.). Wittgenstein still wished to deny that an induction 
could be conceived on the model of the demonstration of a true general proposition based 
on general principles. Now he insisted that such a proof shows on its own the "internality" 
of the connection between universal quantification and instances by constructing a kind of 
algorithm or template. In other words, the meaning of "all" in an inductive proof is fully 
expressed in the giving of the argument itself—it is a reflection not of the existence of a 
further function or rule, but of the grammar of the formal series of natural numbers. On this 
view it would be nonsense to ask for a general principle of mathematical induction to 
justify the generalization: once a property has been shown to hold for zero and to hold for 
the successor of an arbitrarily chosen k, in some sense the application of "all" is fully 
expressed or exhausted.28 For Skolem to claim that in an inductive argument a general 
proposition 
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is proved to be true is, as Wittgenstein sees it, just dispensable and potentially misleading 
"prose," gas surrounding the hard and genuine core of the proof, which consists in nothing 
but the construction of a diagram for an algorithm. Thus Wittgenstein conceives the 
recursive proof as a (schematic) picture, not as a proposition: it shows or directs us in the 
way an algorithm, table, or rule does. In an inductive proof, something is expressed that 
cannot be satisfactorily accounted for in terms of the notion of an arbitrary function or an 
explicit second-order principle of logic. Instead, the generality comes out in our 
applications of the template or schema. We see from the proof (the picture) how to go on.29 



Wittgenstein's resistance to Ramsey's extensionalist conception of (propositional) functions
—a major theme of his middle period—also turns on his adaptation of the Tractarian 
conception of showing. The heart of his unwillingness to follow Ramsey's approach to the 
foundations of mathematics was that he could not see what made the notion of function-in-
extension a logical notion. Logic unfolded what could be conceived of as given in the use 
of propositions, true or false. But then a function-in-extension à la Ramsey could not be 
taken to be a propositional function: it lacked the kind of pictorial complexity Wittgenstein 
associated with propositions. For Ramsey to allow any arbitrary output whatsoever for an 
input to such a function left us at sea about the applications of this notion within language, 
within the expression of propositions. From 1929 through 1934 Wittgenstein set his face 
against Ramsey's extensionalism about the infinite by speaking of what he called the 
"intensional" character of the concept of infinity, by which he meant a conception of the 
potential infinite as given through our possible applications of a rule, in contrast to a 
conception of it as a list or abstract object such as a set. From the Tractatus Wittgenstein 
retained the idea of conceiving the indefinitely extendable as a grammatical rule or 
elliptical expression we apply in language, as opposed to a property, object, or totality, as 
well as the idea that the notion of infinite is not a specifically logical notion; infinity, he 
argued, is not expressed in a picture or isolated fact. During his early middle period he 
tried to investigate in far greater detail than he had before different contexts in which the 
notion of the infinite shows its grammatical face. His discussions, though often read as 
endorsing a straightforward form of verificationism or intensionalism, are perhaps better 
seen as a link between his earlier and his later philosophy: a further, more detailed effort to 
reject an overarching or homogenous categorial structure for all of logic and mathematics. 
By 1935 Wittgenstein came to see his talk of an "intensional" conception of infinity as too 
vague and coarse, as liable (just as his earlier talk of operations had been) to misconstrual 
in 
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the hands of intuitionists, finitists, and verificationists. He became explicit that revision of 
mathematical practice in the light of epistemic or empirical constraints on human modes of 
knowledge was not his aim—thereby more or less admitting that his earlier discussions had 
invited such misuses. And he also began to zero in on the ways in which his earlier 
discussions of operations and intensions had rested on far too general and uncritical an 
appeal to the notion of following a rule. While the latter topic was to become an explicit 
focus of concern by the mid-1930s, Wittgenstein was never to surrender the idea that the 
theory of classes (the extensional conception of [propositional] function) was 
"superfluous" for (i.e., parasitic upon) the working applications of mathematics in 
language, in its role as part of our framework for giving empirical descriptions. For him, 
set theory was a strange hybrid of traditional logical notions (concept, extension,  



proposition) and purely mathematical notions about whose mathematical applications he 
always remained confused and about whose purely philosophical applications and 
metaphysical motivations he always remained doubtful. This was not to reject set theory's 
results as genuine parts of mathematics, to but insist that these results require detailed 
scrutiny (cf. PG, pp. 460ff.; RFM II, §§19ff.; V, §§7ff.; VII, §§33ff.).
To rid himself of spurious philosophical appeals to meanings and objects, Wittgenstein had 
always emphasized the central role of algorithms and calculation in mathematics, the 
image of mathematical activity epitomized by the solving of equations according to 
calculation techniques. He saw no reason to give this strategy up, or to try to justify it. But 
as a picture of mathematics generally, it was misleading. Mathematics consists in more 
than the construction of algorithms, procedures, and axiomatic systems; it seems to give 
insight into structure. In particular, the metamathematics of Hilbert seemed to be able to 
show us how to mathematize certain notions and philosophical questions that had not been 
mathematized before. In response, Wittgenstein insisted that metamathematics is not a 
theory establishing true, independently grounding principles for otherwise 
incomprehensible practices. Instead, it gains its point and purpose from its application to 
our practices of arithmetical calculation. Metamathematics was for Wittgenstein just 
another branch of mathematics, an extension of it in a new direction, not a more 
fundamental supertheory (cf. WVC).
In one way, metamathematics appeared to Wittgenstein to be just a sophisticated way of 
formally picturing or modeling the grammar already in place in arithmetic. In another, it 
struck him as misleading prose inessential to the working core of everyday mathematical 
practices such as devising techniques for solving equations, engineering solutions for the 
construction of machines, reckoning calculations, and applying geometry. The trouble with 
metamathematics, for Wittgenstein, is that it tends to mislead philosophers into thinking 
that the metamathematical language gives us a single way of surveying the core, or 
interpreting the meaning, of apparently fundamental mathematical and logical 
end p.106

notions. But ascent to the metalanguage is just another perspective on practices that gain 
their character within language from their working applications in human life. Such ascent 
may change our perspective on our own language, but it grows from our current practices, 
and is parasitic upon them: it cannot make them more epistemologically certain.

3.  The Later Philosophy



Throughout his life Wittgenstein mounted many arguments designed to question how far 
we may legitimately hold that logical or mathematical necessity (or truth) is lodged in the 
purely deductive implications of prior intellectual commitments (e.g., commitment to the 
truth of certain general arithmetical principles, to definitions and laws of inference, or to 
general rules of grammar previously accepted). His point was not to question arithmetic or 
the formal derivations to be found in Frege's Grundgesetze or Principia Mathematica, nor 
was it to insist, in an irrationalist or mystical vein, that its bases are not in any way 
cognitive—though he did often highlight the arationality of the sometimes rote, 
unreflective aspects of training on which teaching of logic and mathematics depend. His 
primary focus was on the misleading pictures of language, understanding, and rationality 
that emerge from naïve interpretations of such accounts of mathematics. Like the logicists, 
Wittgenstein took the kind of apparently unrevisable, impartial, universally agreed-upon 
truth of mathematics to arise from the very grammar of our understanding of the terms 
involved. At the same time he insisted more and more stridently over time on the 
philosophical relevance of the fact that this grammar arises in tremendously complicated, 
partly contingent ways that evolve over time within the natural world, depending upon how 
a particular sentence is learned, taught, applied, and contextualized within larger 
mathematical and extra-mathematical linguistic contexts.
A central analogy remaining from Wittgenstein's earliest work was between mathematical 
theories and systems of measurement. An equation such as "2 + 2 = 4" may be conceived 
to serve speakers of the language as an operational recipe, a standard or "paradigm" to 
which certain activities, if they are to count as arithmetical, must conform (RFM, I). As a 
purely arithmetical tool licensing the substitution of one numerical term for another, the 
equation serves a role much like that of a conversion ruler showing how to switch between 
inches and meters; in its applied role, it is used like a ruler for measuring particular 
episodes of calculating and counting, giving us something like a rule or model of grammar 
rather than a particular belief. If one counts two apples and another two apples, without 
overlap, then there must be four apples counted, and if there are not four on a subsequent 
count, we say either that there has been an error in counting or 
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that a surprising physical event has occurred. The equation's "truth," if we wish to speak 
this way, holds as much in virtue of our own, contingently evolved commitments to certain 
methods of representation and ongoing communal practices and needs as it does in virtue 
of the nature of things. Like a system of measurement, mathematics (like logic) is for 
Wittgenstein a complex human artifact, situated and created in and for an evolving natural 
world, and its claims to objectivity and applicability ultimately turn upon our human ability 
to find one another in sufficiently constant agreement about results of its application to 
make the practice prove its worth (RFM VI, §§39ff.).



If we insist on speaking of discovery in mathematics, Wittgenstein suggests that we ought 
to allow ourselves to think in terms of an analogy with technological discoveries, which 
are perhaps better conceived of as inventions, like the steam engine or the wheel or the 
decimal notation or the computer (RFM I, §§168ff.; II). As we have seen, algorithms and 
fixed procedures of calculation were for Wittgenstein—as they are in any system of 
measurement—of central importance here, and he always conceived tables, algebraic 
representations of constructive procedures, algorithms, and calculations to play a central 
role in mathematics.30 As time went on, he relied more explicitly on his looser analogy 
between applied mathematical structures (systems of numerals, geometrical diagrams, 
equations, episodes of counting, and proofs) and pictures or models (Bilder). He explicitly 
regarded proofs and episodes of establishing equinumerosity as conceptual paradigms, 
models giving us ways of synoptically expressing reproducible routines for describing 
and/or constructing empirical events. Insofar as these routines allow us to take in, 
understand, and make sense of empirical situations, they are to be counted as part of the 
logical syntax or "grammar" of our language; they fix concepts and their applications 
precisely by making them synoptically surveyable. Such artifacts are, like systems of 
measurement, as much invented as discovered, because to understand them, as to 
understand any human artifact, we must be able to understand their uses in concrete 
situations we encounter and wish to describe.
The use of such pictures in communicating and establishing mathematical conviction is 
tied to empirically conditioned perceptual and intuitive aspects of our nature as human 
beings, aspects that shape their qualities of design. A theorem that may be communicated 
with an easily surveyable model gives us a kind of understanding and insight (an ability to 
"take it in," to appreciate and communicate 
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the result) that a long, intricate, formalized version of the proof does not. That is not to say 
that there are no uses for formalized proofs (e.g., in running computer programs). It is to 
say that a central part of the challenge of presenting proofs in mathematics involves 
synoptic designs and models, the kind of manner of organizing concepts and phenomena 
that is evinced in elementary arguments by diagram. This Wittgenstein treated as 
undercutting the force of logicism as an epistemically reductive philosophy of 
mathematics: the fact that the derivation of even an elementary arithmetical equation (like 
7 + 5 = 12) would be unperspicuous and unwieldy in Principia Mathematica shows that 
arithmetic has not been reduced in its essence to the system of Principia (cf. RFM III, 
§§25,45-46).
Of course, our ability to use a picture or diagram to express and/or communicate a 
mathematical principle or concept depends upon our understanding of how to apply it. A 
central difficulty Wittgenstein raises here is, the question of what is to count as an 



application (correct or incorrect) of a logical or mathematical rule, concept, or procedure, 
construed as such a model or picture. Wittgenstein is to be credited with having tied this 
question to more wide-ranging ones about the nature of concept-possession. In his later 
work he often drew an analogy between the ability to project a noun or adjective into new 
contexts and the computation of instances of an elementary arithmetical function, or the 
drawing of a purely logical inference (cf. RFM I; PI §§186ff.). This was intended to soften 
his earlier Tractatus distinction between material and formal generality. Now he 
emphasized that the difference between the mathematical and the empirical (or the 
psychological) was not given by the grammatical structure of sentences: the very same 
sentence might in one way be viewed as empirical, and in another way as merely 
conceptual or mathematical (cf. RFM VII, §§20ff.). A fortiori mathematics and logic were 
to be seen to have no monolithic core, just as—and indeed because—our notion of that  
which belongs to language does not. All we have to rely on in expressing the general 
applicability of a model, an episode of empirical counting, or a diagram is our language, 
broadly construed. And yet no image, picture, sentential form, or model applies itself. Not 
any arbitrary application or use one might make of a sentence or diagram can be held to be 
fitting or appropriate to it if there is to be any coherent notion of applying it. Yet how 
deviant from the communal norm can an application be before we say that it is no longer 
an application? The question is just as difficult (and perhaps just as unanswerable) as the 
question of when the use of an artifact—such as a knife—ceases to be a use of the artifact 
as the artifact that it is. One of Wittgenstein's main points, throughout his discussions of 
rule-following, is to show how an absolute notion of logical necessity, treated without 
qualification, is as much a will-o'-the-wisp as an absolute or general notion of rule.31 
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Indeed, in drawing analogies between equations, proofs, numerals, and concepts and rules 
of grammar, Wittgenstein was suggesting that our cognitive verbs such as "know" and 
"believe" ultimately work against the grain of our usual traffic in logical and mathematical 
statements (cf. RFM I, §§106ff.). For instance to say that a person believes that 2 + 2 = 4 
appears to leave open the possibility that the sentence "2 + 2 = 4" might not be true, 
suggesting that one could understand the equation quite apart from agreeing with it. 
Wittgenstein's view, in depicting the equation as a rule of language, is that understanding 
and assent work so closely together in the case of this kind of accepted logical and 
mathematical sentence that one cannot step outside one's own understanding of the notions 
and terms at work in them to prescind from one's commitments with in our language when 
considering the equation's truth. To understand "2 + 2 = 4" in the way we expect an adult 
speaker of our language to understand it is to be unwilling to grant the sense of 
circumstances in which this sentence might turn out to be false. To suppose that its truth is 
a matter of very well confirmed or perhaps even indubitable professional opinion, or that 



only a proof from more general principles can, ideally, bring about belief or certainty in its 
truth, is to fail to give this conceptual aspect its proper place.
Proof is thus not sufficiently understood, according to Wittgenstein, by maintaining that it 
yields firm conviction or certain truth dependent upon knowledge of derivations from prior 
truths, for it equally involves acceptance of a sentence (or proof) as a standard in one's own 
language of what does and does not make sense. Proof, on this view, is not a series of 
sentences meeting purely formal deductive requirements, but an activity of achievement 
and acceptance constitutively shaping one's conceptions of language and the world, 
sustained in complicated ways by psychology, natural regularities, and communal practice. 
To appreciate the necessity and universal applicability of an equation like "2 + 2 = 4," then, 
Wittgenstein asked his readers to investigate the role it plays in shaping what does and 
does not make sense to us, our very notion of understanding.
Wittgenstein tries to display the importance of this idea in his later writings by sketching 
simplified language games or imagined forms of life—often usefully pictured as those that 
might be played with children—in order to illustrate how much varied, active cultural 
training, both rote and reflective, must be in place for human objectivity in mathematics to 
take the forms that it does. This brings out the relativity to particular practice of such 
apparently fundamental notions as object, name, reference, number, proof, and so on. 
There is in fact a great variety of empirical, contingent human factors—historical, 
aesthetic, anthropological, pedagogical, psychological, and physiological—on which the 
evolution and interest of mathematical objectivity depend. Wittgenstein's point is an anti-
reductive one, though it is easy to slide from his remarks to the notion that he was offering 
a psychologistic, radically empiricistic, purely conventionalist, ethnomethodological or 
relativistic account of mathematics: indeed, Wittgenstein is often hailed as a 
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hero by social constructivists.32 His primary aim was, however, to diffuse (without 
refuting) assumptions about knowledge shared by various forms of skepticism and those 
anti-skeptics (such as Frege, Russell, and Gödel) who hold that a universally applicable, 
eternal framework of contents, thoughts, or senses, possibly transcending the reach of 
humanity's current concepts, must be postulated to account for mathematical objectivity 
and truth.
Wittgenstein came to treat mathematics and logic as a "motley," then, partly because he 
came to emphasize the importance to philosophy of the idea that there is no single 
property, criterion, mental state, fact, or characteristic feature common to all cases of the 
expression of understanding. Indeed, it is part and parcel of his later investigations of logic 
to make this image of our concept of understanding plausible. Understanding is manifested 
in many different kinds of ways, even in the case of a particular linguistic form such as 
"2 + 2 = 4": sometimes in a characteristic experience of the moment ("Aha!! Now I get 



it!!!"); sometimes in the ability to pronounce it unhesitatingly (as in the memorization of 
multiplication tables by children); sometimes in the ability to apply it to solve minimally 
difficult word problems; sometimes in the ability to set it into a more general, systematic 
context of definitions and proofs; sometimes in the ability to successfully teach, 
communicate, and/or defend it to another. Wittgenstein suggested, famously, that the 
notion of understanding—along with such notions as proof, truth, meaning, mathematics,  
number, language, and game—has a "family resemblance" character, in that, though no 
one characteristic might belong to every instance of the general notion, overlapping 
similarities from case to case would suffice to tie the instances together. His discussion 
was intended to explore the extent to which the notion of full or complete understanding of 
a sentence is itself a potentially misleading idealization, especially for the logician.33 In this 
way he retained his early willingness to question the relevance to philosophy of the idea 
that to every predicate or concept of the language we may associate in the same way a 
function or an extension (i.e., a sharply defined property or concept-word). He also 
retained his idea that knowledge and/or understanding ought never to be conceived of as a 
relation between a person and a proposition without regard to the particular context of 
utterance or the particular sentence affirmed (cf. RFM I, appendix III).
A major difficulty here is, of course, how to do justice to the intuitive notion of 
mathematical and logical truth, for mathematics is not just a game. Wittgenstein's 
resistance to any doctrine of contents or knowledge that pretends to universal validity, 
coupled with his insistence that the applications of mathematics are internal to its 
character, led him to deny that there is a substantial (i.e., more than merely formal or 
family resemblance) characterization of the notion of mathematical (or even just 
arithmetical) truth. His conception aimed to deny that 
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the objectivity, sense, and applicability of the most basic notions of logic and mathematics 
(e.g., concept, proposition, elementary arithmetical truth, proof, number, and so on) may 
be explained by setting forth an axiomatized theory in which truths involving the said 
notions are explicitly derived from fundamental principles. From this perspective it is not 
surprising that by the mid-1930s Wittgenstein became fascinated with understanding the 
fundamental basis of Cantor's and Gödel's limitative arguments, as well as Turing's 
analysis of computability (cf. RFM I, appendix III; RFM II; RFM VII). Of course, his 
resistance to making a definition of truth central to philosophy was, as we have seen, based 
on purely philosophical considerations that predated by over a decade his encounter with 
Gödel's work; in general historical terms it was a hallmark of the Kantian tradition—shared 
by Frege, among others—that philosophers could learn nothing important from analyzing 
or defining the concept of truth.34 But Gödel's incompleteness theorems forced 
Wittgenstein to rethink the role of the notion of truth in mathematics.



Wittgenstein's emphasis on the image of the mathematician as inventor or fashioner of 
models, pictures, and concepts was, in the main, directed at the philosophical talk of those, 
like Hardy and Russell, who insisted on speaking of mathematical reality in a freestanding 
way, picturing the logician or mathematician as a zoologist embarked on an expedition to 
new, hitherto unseen lands, analogous to an empirical scientist. Wittgenstein himself 
explicitly said he did not wish to deny that there is a "mathematical reality."35 But on his 
view the Hardy-Russell picture of truth tended to preempt as irrelevant to mathematics its 
evolution as a language, the importance to it of problems of expression, intention, 
formulation, and construction. For Wittgenstein the mathematician is an inventor, not in 
the sense of making up truth willy-nilly as he or she goes along, as a pure conventionalist 
would suppose,36 but in the sense of engaging in the activities of fashioning proofs, 
diagrams, notations, routines, or algorithms that allow us to see and accept (understand, 
apply) results as answering to what does and does not make sense to us. We "make" 
mathematics in the sense that we 
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make history: as actors within it (cf. WVC, p. 34, n. 1). The "what" in "what makes sense 
to us" is then evolving, to be understood locally for present purposes, and not in terms of 
any theory of content or a priori known domain of fact. Wittgenstein still took 
philosophical considerations ultimately to rest on terms and structures of the language we 
take ourselves to be speaking right now, but in the end he emphasized the variety of 
perspectives we may bring to bear on our understanding of language's internal necessities 
and requirements. That which "belongs to language" is something open for current 
investigation, not something to be taken as determined, stipulated, or fully circumscribable 
in advance.
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The bibliography that follows contains a representative, though by no means exhaustive, 
sampling of literature relevant to Wittgenstein's philosophy of logic and mathematics. The 
following remarks are intended to provide an overview of themes treated in recent 
literature for the interested reader.
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consult McGuinness (1988) and Monk (1990), as well as the brief Malcolm (2001).
New Logics



Wittgenstein's philosophy has helped to inspire the construction of new logics that serve to 
question the philosophical hegemony of first-order logic. Hintikka's development of 
systems of modal logic, the logic of knowledge, and game-theoretic semantics was inspired 
in part by the Tractatus, and in part by Wittgenstein's notion of a language-game (see 
Hintikka (1956, 1962, 1973, 1996a, 1996b, 1997). Parikh (1985, 2001) has also stressed 
connections between logic and games in his formal treatments of logics of knowledge and 
information. For the development of an inconsistency theory of truth and paraconsistent 
logic that is relevant to Wittgensteinian questions about whether an inconsistency in 
arithmetic can be logically contemplated, see Priest (1987, 1994). Tennant (1987) develops 
a constructive logicist foundation for number theory based on intuitionistic relevance logic, 
describing his system as a generalization from Wittgenstein. Sundholm 
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(1994) subsumes an intuitionistic view of truth as existence of proof under a truthmaker 
analysis, situating his analysis explicitly in relation to logical applications of Wittgenstein's 
Tractarian ideas. Shapiro (1991) makes an interesting application of the rule-following 
considerations to argue for the expressive superiority of second-order logic over first-order 
logic.

Rule-Following

The centrality of what are now called "rule-following" considerations to the interpretation 
of Wittgenstein was initially emphasized by Fogelin—see Fogelin (1987), Wright (1980), 
and Kripke (1982)—building on Wittgenstein's later writings exploring the analogy 
between the application of an arithmetical principle and concept-projection; each formed a 
response to the view, voiced in Dummett (1959), that Wittgenstein was a "full-blooded" 
conventionalist about logical necessity. Different responses to Dummett may be found in 
Stroud (1965) and also in Diamond (1989, 1991), who is simultaneously reacting to 
Wright. A range of differing reactions to Kripke's exegesis of Wittgenstein may be found 
in Baker and Hacker (1984), Goldfarb (1985), Cavell (1990), Floyd (1991), Minar (1991, 
1994), Steiner (1996), and Wright (2001, ch. 7); Holtzman and Leich (1981) is a useful 
anthology exploring general philosophical implications of this theme. More focused 
discussions of the implications of these considerations for the notion of content and the 
ascription of meaning via linguistic behavior may be found in Boghossian (1986) and 
Chomsky (1986). Proudfoot and Copeland (1994) and Shanker (1998) have connected their 
readings of Wittgenstein on rules with questions about Church's thesis, Turing's 
mechanism about the mind, and the foundations of cognitive science. "Rule-following" 



considerations have also been brought to bear on the presumption (e.g., by Quine and 
Putnam) that the Skolem-Löwenheim theorem can establish inscrutability of reference 
and/or "internal" realism: on this, see Hale and Wright (1997), Benacerraf (1998), and 
Wright (2001, part IV), as well as Parikh (2001), which connects these questions with 
Searle's Chinese Room thought experiment and the theoretical foundations of computer 
science.

Wittgenstein's Place in the History of Analytic Philosophy

A more detailed historical approach to Wittgenstein's philosophy has characterized much 
recent work on his philosophy of mathematics, sparked by a growing interest 
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in developing an enriched account of the origins and development of early analytic 
philosophy in relation to the history of logic. Baker (1988), Coffa (1991), Simoris (1992), 
Friedman (1997), and Hacker (1986, 1996) offer readings of early Wittgenstein through the 
broad lens of a larger philosophical history of neo-Kantianism, realism and logical 
positivism; Potter (2000) offers an especially concise technical reconstruction of the 
Tractatus treatment of logic and number in light of the history of philosophies of 
arithmetic from Kant to Carnap. Dummett (1991b) examines Wittgenstein's relation to 
Frege in connection with the theory of meaning. Marion (1998) places Wittgenstein into 
context against the background of the history of finitism as a mathematical tradition, 
contrasting Wittgenstein with Brouwer and drawing connections between Wittgenstein's 
middle-period views on generality and remarks by Weyl and Hilbert. Aside from this 
work, the only other recent book-length treatments of Wittgenstein's philosophy of 
mathematics in its historical development, from early through later philosophy, are 
Shanker (1987) and Frascolla (1994); Shanker (ed., 1986) is a useful anthology of articles 
covering all phases of Wittgenstein's philosophy of mathematics. Shanker rejects both 
Kripke's rule-following skepticism and Dummett's use of the realist/anti-realist distinction 
to interpret Wittgenstein on mathematics, elaborating an alternative reconstruction inspired 
by the grammatical conceptualist reading of Baker and Hacker; he explores in detail 
Wittgenstein's conception of proof and his reactions to Skolem and Hilbert, and also 
explores the significance of computer proofs for Wittgenstein's point of view. Frascolla 
offers the most detailed formal reconstruction yet of Wittgenstein's Tractatus account of 
arithmetic—cf. Frascolla (1997, 1998) and Wrigley (1998) for a rejoinder; and, like 
Marion and Shanker, questions the attribution to Wittgenstein of an epistemic perspective 
that could support strict finitism.



Van Heijenoort (1967) is the locus classicus laying out the "universalist" conception of 
logic, attributing this view to Frege, Russell, and the early Wittgenstein and contrasting it 
with the algebraic tradition of "logic as calculus"; this article has profoundly affected how 
the Tractatus show/say distinction has been read, along with the history of the quantifier 
and the notion of completeness (cf. Goldfarb [1979, 2000]; Dreben and van Heijenoort 
[1986]). The extent of this conception's accuracy to Frege has been disputed by, among 
others, Dummett (1984); for a discussion of the debate, see Floyd (1996). Van Heijenoort's 
reading remains especially influential among those interested in the history of early 
analytic philosophy, and in Wittgenstein in particular. Among others, Hintikka and 
Hintikka (1986), Weiner (1990, 2001), Ricketts (1985, 1986a, 1986b), and Diamond 
(2002) have deepened and generalized Van Heijenoort's analysis in interpreting 
Wittgenstein's relation to Frege. Reck (2002) and Crary and Read (2000) contain further 
essays interpreting Wittgenstein's philosophy of logic and mathematics in the historical 
context of early analytic philosophy.
Boghossian and Peacocke (2000) contains several essays touching on Wittgenstein's 
philosophy of mathematics in relation to the evolution of twentieth-century conceptions of 
a priori knowledge as they shape contemporary discussion.
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Wittgenstein and Gödel

An abiding interest in locating Wittgenstein's philosophy in relation to Gödel began with 
nearly unanimous condemnation of Wittgenstein: reviews of the earliest published excerpts 
from his writings on Gödel were roundly dismissed, and skepticism about his remarks on 
Gödel still remains (see Hintikka [1993]). Klenk (1976) offered an early attempt to defend 
the cogency of some of Wittgenstein's remarks. In recent years there has been a revisiting 
of the topic, both philosophically and historically, in light of newly detailed historical 
questions about the evolution of Wittgenstein's appreciation of the incompleteness 
theorems and the significance of diagonalization methods. Assessment of the nature and 
implications of Wittgenstein's attitude toward Gödel's incompleteness theorems has been 
taken up by Shanker (1988), Floyd (1995, 2001b), Rodych (1999, 2002), Steiner (2000), 
and Floyd and Putnam (2000), following earlier discussions by Goodstein (1957, 1972) 
and Wang (1987b, 1991, 1993); Kreisel (1983, 1989, 1998) has also elaborated thoughts 
on the topic. Webb (1980) and Gefwert (1998) situate remarks of the on middle 
Wittgenstein within the larger history of formalism, mechanism, the 
Entscheidungsproblem, and the effect of Gödel's and Turing's work on Hilbert's program. 
Maddy (1997) contains a useful discussion of Wittgenstein and Gödel's attitudes toward 
the philosophy of mathematics. Friedman (1997, 2001) probes Carnap's attitude toward the 



relevance of Gödel's arithmetization of syntax to Wittgenstein's Tractatus. Tymoczko 
(1984) invokes Gödel's epistemological remarks on the incompleteness theorems to argue 
for a socially based "quasi-empiricism" he associates with Wittgenstein.

Recent Trends in Interpreting Wittgenstein: New Approaches to the Philosophy of 
Mathematics

General Themes.

Large-scale shifts in the interpretation of Wittgenstein's general philosophy since the mid-
1980s have affected and been affected by accounts of his philosophy of logic and 
mathematics. The presentations of Wittgenstein in Wright (1980) and Kripke (1982) 
radicalized Dummett's (1959) view of Wittgenstein as a conventionalist, reading him as 
offering a form of skepticism about the rational necessity of applying a rule. Among those 
who questioned Dummett's reading while rejecting the attribution to Wittgenstein of 
skepticism were Stroud (1965) and, beginning in the 1970s, Diamond (see [1989, 1991]); 
she fashioned a rival account of Wittgenstein's philosophy of logic and mathematics in the 
context of a wider recasting of discussions of realism in ethics and a stress on the 
continuity of 
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Wittgenstein's development (compare Gerrard [1991]). Diamond's approach to 
Wittgenstein has been especially influential in the United States, along with work of Cavell 
(e.g., [1976, 1979]), which independently challenged both the then-popular broadly 
empiricistic reading of Wittgenstein (see, e.g., Pears [1986, 1987, 1988]) and the reading 
of Wittgenstein's conception of grammar due to Baker and Hacker (e.g., their [1980], 
[1984], [1985]). Diamond (1999) and Gerrard (1999) reject traditional readings of 
Wittgenstein as a verificationist and explore Wittgenstein's treatment of the notion of proof 
in connection with his later discussions of the notion of meaning. Readers influenced by 
Cavell and Diamond have inspired recent heated interpretive debate about a "New 
Wittgensteinian" approach (see Crary and Read [2000]); this kind of reading has been 
applied to Wittgenstein's later discussions of mathematics by Floyd (1991), Conant (1997), 
and Putnam (1996). Questions surrounding this "new" interpretation in relation to the 
Tractatus conceptions of analysis and realism have been pursued by Goldfarb (1997), 
Diamond (1997), McGinn (1999), Floyd (1998), Proops (2001), Ostrow (2002), and 
Sullivan (2002a); Floyd (2001) and Kremer (2002) examine its implications for our 



understanding of the Tractatus treatment of arithmetic. Wright (1993) sets the verifiability 
principle into conceptual context against the backdrop of different strands of Wittgenstein's 
philosophy of mathematics, and outlines in (2001) challenges he takes to be faced by the 
"noncognitivist" approach to mathematical proof he associates with the later Wittgenstein.

Constructivism.

The grounds on which Wittgenstein might be taken to have held a substantial constructivist 
attitude toward mathematics—despite his claim not to be forwarding "theses" in 
philosophy—have received substantial investigation in recent years. Marion (1995), Sahlin 
(1994), Wrigley (1995), and especially Sullivan (1994) analyze in useful detail 
Wittgenstein's debates with Ramsey in the late 1920s with an eye toward understanding the 
character of Wittgenstein's interest in the infinite; Noë (1994), Hintikka (1996a), and 
Marion (1998) offer general philosophical interpretations of Wittgenstein's transitional 
period writings on the philosophy of mathematics. Mancosu and Marion (2002) examine 
Wittgenstein's effort to "constructivize" Euler's proof of the infinity of primes in light of 
the immediate historical context of constructivist discussions in Vienna in the late 1920s 
and early 1930s.

Finitism.

Kreisel's (1958) and Wang's (1958) association of Wittgenstein with "strict finitism" or 
"anthropologism" about mathematics spawned in the hands of Dummett (1970), a "finitist" 
reading of Wittgenstein that has received scrutiny and detailed development since the mid-
1980s. Kielkopf (1970) associates the term "strict finitism" with a view of mathematical 
necessities as a posteriori, but more frequently the term is associated, as in Dummett 
(1970), with the form of constructivism that rejects constructions that outstrip what is too 
complex or too lengthy for an individual or 
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community to actually carry out in practice—a restriction on methods of proof more severe 
than any suggested by the intuitionists. It is unclear what precise form such a strict finitism 
should ideally take; Wright (1982) defends the program's internal coherence. Wang (1958) 
associated the notion of human "feasibility" with Wittgenstein's remarks on the 
surveyability of proof, suggesting that an anti-reductionist investigation of complexity 



would be a fruitful foundational approach. He also emphasized connections between 
Wittgenstein's conception of the surveyability of proof and his critical comments about 
Principia's "reduction" of arithmetic to logic. Wright (1980), Steiner (1975), and Marion 
(1998) discuss the character and validity of these criticisms of logicism from three rather 
different points of view.
Despite the continued association of Wittgenstein with finitism, as well as his critical 
attitude toward set theory, there are some (e.g., A.W. Moore [1990] and Kanamori [2003]) 
who have suggested that Wittgenstein's grammatical investigations of infinity and the 
limits of sense may be the best kind of philosophical approach to a proper conception of set 
theory and the higher infinite.

Social Constructivism.

Wittgenstein's emphasis on the social aspects of language use have inspired some to 
develop his ideas into a social constructivist philosophy of mathematics: Bloor (1983, 
1991) and Ernest (1998) offer recent accounts with a strongly sociological orientation that 
take up the relation of this approach to philosophy of mathematics education. Tymoczko 
([1993]; ed., [1986]) are also relevant, rejecting foundationalist programs and calling for a 
view of mathematical practice as a community-based art rather than a science.

Abbreviations of Wittgenstein Works, Lecture Notes, and Transcriptions

 CL Cambridge Letters (1995) 
 LFM Wittgenstein's Lectures on the Foundations of Mathematics, Cambridge 1939 
(1989) 
 MN "Notes Dicated to G.E. Moore in Norway, April 1914," appendix II in NB (in 
1979a) 
 NB Notebooks 1914-1916 (1979a) 
 PG Philosophical Grammar (1974) 
 PI Philosophical Investigations, 2nd ed. (1958a) 
 PR Philosophical Remarks (1975) 
 RFM Remarks on the Foundations of Mathematics, rev. ed. (1978) 
 SRLF "Some Remarks on Logical Form" (1929) 
 TLP Tractatus Logico-Philosophicus (1921) 
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 WVC Ludwig Wittgenstein and the Vienna Circle 
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5.  The Logicism of Frege, Dedekind, and Russell 
William Demopoulos 
Peter Clark 



Philosophy confines itself to universal concepts; mathematics can achieve nothing by  
concepts alone but hastens at once to intuition, in which it considers the concept in  
concreto, though not empirically, but only in an intuition which it presents a priori, that is,  
which it has constructed, and in which whatever follows from the universal conditions of  
the construction must be universally valid of the object thus constructed. 
—(Kant, Critique of Pure Reason A716/B744) 

[W]e see how pure thought, irrespective of any content given by the senses or even by an  
intuition a priori, can, solely from the content that results from its own constitution, bring  
forth judgements that at first sight appear to be possible only on the basis of some  
intuition. This can be compared with condensation, through which it is possible to  
transform the air that to a child's consciousness appears as nothing into a visible fluid that  
forms drops. The propositions … developed in what follows far surpass in generality all  
those that can be derived from any intuition. 
—(Frege, Begriffsschrift §23) 
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Our discussion is organized around logicism's answers to the following questions: (1) 
What is the basis for our knowledge of the infinity of the numbers? (2) How is arithmetic 
applicable to reality? (3) Why is reasoning by induction justified? Although there are, as 
we will see, important differences, the common thread that runs through all three of our 
authors is their opposition to the Kantian thesis that reflection on our reasoning with mere 
concepts (i.e., without attention to intuitions formed a priori) can never succeed in 
providing us with satisfactory answers to these three questions. This description of the core 
of the view differs from more usual formulations which represent the opposition to Kant as 
an opposition to the contention that mathematics in general, and arithmetic in particular, 
are synthetic a priori rather than analytic. From our perspective, such a formulation is not 
sufficiently general: it fails to capture Dedekind, who does not use the terminology of 
analytic vs. synthetic judgments at all; it overlooks the fact that Frege relies on this 
terminology only in Gl, eschewing it in his other major writings, Bg and Gg. 1 And it is not 
easily squared with the fact that during his philosophically most productive period, Russell 
used the terminology only to express his agreement with Kant that mathematics is 
synthetic, while holding that, contrary to Kant, logic is as synthetic as mathematics.2 What 
is essential to the logicism of history (if not the logicism of legend) is its opposition to the 
incursion of Kantian intuition into the content of arithmetical theorems or their 
justification: the thesis that all our authors share is the contention that the basic truths of 
arithmetic are susceptible of a justification that shows them to be more general than any 
truth secured on the basis of an intuition given a priori.



One final note on our selection of topics. The more purely philosophical dimension to 
Frege's program centered on the problem of explaining how the numbers are "given to us," 
if we have neither experience nor intuitions of them (Gl §62). The solution to this problem, 
from a contemporary viewpoint, would consist in an explanation of our reference to 
abstract objects—objects which subsist "outside" of space and time. In our view, it is in 
this context that the "Julius Caesar problem" becomes especially pressing. Since our 
concern is to expound those aspects of logicism that are more closely connected with its 
status as a 
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contribution to the philosophy of the exact sciences, we have largely exempted these issues 
from the purview of our discussion.3 

Frege's Logic and Theory of Classes

From Bg we can extract a presentation of second-order logic based on a language 
containing a single binary relation symbol. The central innovation of the work is the 
analysis of generality by means of the introduction of function/variable notation; it is this 
that is alluded to in the subtitle of Bg (A Formula Language Modeled upon That of  
Arithmetic for Pure Thought) as the characteristic feature of the language of arithmetic on 
which the work is modeled. When combined with expressions for relations, the result is a 
language of great expressive power, even when restricted to its "first-order fragment." Part 
III of Bg is devoted to the "theory of sequences." It is here that Frege presents his 
celebrated definition of "following in a sequence"—the ancestral of a relation, in the 
terminology of Whitehead and Russell or, in more modern terms, the transitive closure of a 
relation—and proves generalized analogues of mathematical induction, as well as various 
formal properties of the ancestral.
With the exception of his reliance on an implicit rule of substitution, Frege's formulation of 
his logic achieved a degree of precision that was not to be equaled for several decades. Bg's 
implicit principle of substitution is equivalent to the second-order Comprehension Scheme: 

•

where Φ(x) is a second-order formula in one free variable in which P does not occur free. 
The scheme tells us that for every condition Φ(x) which can be formulated in the language 
of Bg there is a corresponding property P. Bg makes no assumptions concerning the 
connection between properties or, as Frege says, "concepts," and the "extensions" or 



classes associated with them. Such a connection is introduced in Gg with Basic Law V, 
which we formulate as the universal closure of 

•
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where the expression "{x: Fx}" is a class abstraction operator forming, for a concept F, the 
value range or extension of F. Frege took the class abstraction operator as primitive; given 
it, we can define the notion of membership by 

•

In the context of second-order logic, this definition of membership, together with Basic 
Law V, implies the Naive Comprehension Axiom: 

•

4 
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On its intended interpretation, Naive Comprehension asserts that for every property there is 
a class which consists of precisely the individuals having the property. It will be observed 
that the axiom is a sentence of second-order logic, and that it implies the first-order 
instances of the following Naive Comprehension Scheme: 

•

where (x) is a first-order formula in one free variable, not containing the variable z. The 
Russell-Zermelo paradox follows immediately from the instance 

•

which asserts the existence of a class consisting of all and only those sets which are not 
members of themselves.
It is a relatively recent discovery (see Parsons [1987]) that in the context of first-order 
logic, any collection of instances of Basic Law V is consistent; that is, the first-order 
fragment of Gg is consistent; moreover, any first-order theory can be conservatively 
extended by the addition of such instances (Bell [1995]). Striking as these technical results 
are, their philosophical significance is limited, since without the (second-order definable) 



relation of membership, it is wholly unclear in what sense the notion of the extension of a 
concept is interchangeable with the familiar notion of a class.
For Frege, concepts are thoroughly extensional, so that if F and G apply to precisely the 
same objects, they are the same concept. Thus, in the direction 

•

Basic Law V may be seen to assert the functionality of the relation which associates every 
concept with an extension; the direction 

•

asserts that this function is one-one. But the Russell-Zermelo paradox shows that there is 
no such function. Indeed, if we further assume that the totality of extensions of concepts 
corresponds to the power set of the set of objects falling under them, then Basic Law V 
clearly contravenes Cantor's Theorem that the power set of a set cannot be injected into 
that set.
In the Appendix that was added to Gg in response to Russell's letter informing him of the 
contradiction, Frege himself showed that no map from concepts to objects can be one-one. 
Since Basic Law V asserts the existence of at least one such map, the system of Gg does 
not have a model—no classes or sets could possibly 
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satisfy it. Thus, while Frege's development of second-order logic is perfectly consistent, its 
elaboration, in Gg, to include a theory of concepts and their extensions, foundered on the 
Russell-Zermelo paradox. However, both the mathematical development of Frege's theory 
of the natural numbers, and a significant component of his philosophy of mathematics, 
may be rendered completely independently of his theory of extensions.

Frege's Analysis of the Natural Numbers

Frege tells us (Gg, p. ix) that the "fundamental thought" on which his analysis of the 
natural or "counting" numbers is based, is the observation that a statement of number 
involves the predication of a concept of another concept; numerical concepts are concepts 
of "second level," which is to say, concepts under which concepts (of first level) are said to 
fall. This yields an analysis of the notion of a numerical property, as when we predicate of 
the concept horse which draws the King's carriage the property of having four objects 
falling under it. Such properties are first-order definable in terms of the numerically 



definite quantifiers. In order to pass from the analysis of numerical properties to the 
numbers, Frege introduced a "cardinality operator," which he "defined" contextually by the 
principle 

•

that is, the number of Fs is the same as the number of Gs if and only if the Fs and the Gs 
are in one to one correspondence. (It is well known that is definable in second-order 
logic.) Again, as with the class abstraction operator, here also it is simply assumed that 
Nx … x is a term-forming operator. This contextual definition and the fundamental thought 
yield Frege's account of the applicability of mathematics. In this, the simplest case for 
which the question arises—the application of the cardinal numbers—the solution is that 
arithmetic is applicable to reality because the concepts, under which things fall, fall under 
numerical concepts. Thus it is possible to prove in second-order logic that 
nxFx ≡ n = NxFx (i.e., F falls under the numerical property expressed by the numerically 
definite quantifier nx if and only if the Frege number of F is n, where n is defined in terms 
of the cardinality operator). It follows that the fact that the number of horses drawing the 
king's carriage is four is interderivable with the fact that there are four horses drawing the 
king's carriage. We will return to the Fregean solution to the applicability of arithmetic.
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The contextual definition is the basic principle upon which Frege's development of his 
theory of the natural numbers was based; it is not a definition in the proper sense, not least 
in the sense that it is not conservative over the language L = {zero, successor, natural  
number} of second-order arithmetic. Indeed, the contextual definition allows for the proof 
both of the existence of the (Dedekind infinite) sequence of natural numbers and of an 
infinite cardinal (called endlos in Gl).
In the recent secondary literature,5 the contextual definition has come to be called "Hume's 
principle," since in introducing it (Gl §63), Frege quotes from Hume's Treatise (I, iii, 1). 
Notice that Hume's principle bears an obvious formal resemblance to Basic Law V: both 
relate an identity involving singular terms to an equivalence relation on concepts. And both 
postulate a type reducing correspondence between Fregean concepts and objects, in the 
case of Basic Law V, one which associates distinct objects with noncoextensive concepts, 
with its attendant difficulties, but in the case of Hume's principle, merely one which 
associates distinct objects with nonequinumerous concepts. We will return to the 
significance of type reduction in a moment.
For Frege, Hume's principle provides the necessary "criterion of identity" for numbers; that 
is, it gives us a statement, in other words, of the condition under which we should 
pronounce as true certain "recognition statements" (as Frege calls them in Gl §62) 
involving numerical singular terms, namely, statements of the form 



•

for arbitrary sortal concepts F and G. (Hume's principle is clearly at best a partial account 
of the identity of numbers because it fails to settle the truth-value of statements of the form 
a = NxFx where a is not given in the form NxHx for some H.) By contrast with Basic Law 
V, the second-order theory, whose sole axiom is Hume's principle, is consistent, with the 
sequence < 0, 1, … ω> forming the domain for a model of the theory, each concept F 
interpreted as a subset of ω, and each term of the form NxFx interpreted as the cardinal of 
the subset corresponding to F.
Frege derives Hume's principle from his inconsistent theory of concepts and their 
extensions by appealing to his well-known explicit definition of the cardinality operator: 

•

(Gl §73). This is the "Frege-Russell definition of the cardinal numbers" as classes of 
equinumerous concepts (or sets). The characterization "Frege-Russell" slurs 
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over the fact that for Russell the number associated with a set (concept of first level) is an 
entity of higher type than the set itself. Beginning with individuals—entities of lowest type
—we proceed first to concepts or sets of individuals and then to classes of such sets 
(corresponding to Frege's concepts of second level). For Russell, numbers, being classes, 
are of higher type than sets. But for Frege, extensions, and therefore numbers, belong to 
the totality of objects whatever the level of concept with which they are associated. Thus, 
while Russell and Frege both subscribe to some version of Hume's principle, their 
conceptions of the logical form of the cardinality operator—and, therefore, of the principle 
itself—are quite different: the operator is type-raising for Russell, and type-lowering for 
Frege. This difference is fundamental, since it enables Frege to establish—on the basis of 
Hume's principle—those of the Peano-Dedekind axioms of arithmetic which assert that the 
system of natural numbers is Dedekind infinite. By contrast, when the cardinality operator 
is type-raising, Hume's principle is rather weak, allowing for models of it of every finite 
power.
The intuitive idea6 underlying Frege's proof of the infinity of the numbers is the definition 
of an appropriate sequence of representative concepts (for concepts we use square 
brackets, and we use curly brackets for classes): 

 N 0 [x: x ≠ x] 
 N 1 [x: x = the number of the concept N 0 ] 
 N 2 [x: x = the number of N 0  V x = the number of N 1 ] 
 N 3 [x: x = the number of N 0  V x = the number of N 1  V x = the number of N 2 ] 



 N 0 [x: x ≠ x] 
 
and so on. 

The existence of numbers for each of the concepts N 0 , N 1, … is established using only 
logically definable concepts and those objects whose existence and distinctness from one 
another can be proved on the basis of Hume's principle. Nowhere in this construction is it 
necessary to appeal to extensions of concepts. It is, however, possible to make use of a 
consistent fragment of the theory of extensions, and when we do so, an interesting 
comparison with later developments emerges. To see this, suppose we limit the 
introduction of extensions to those belonging to the concepts of the sequence N 0 , N 1 

, … . This yields a new sequence of concepts: 

 N 0 [x: x ≠ x] 
 E 1 [x: x = the extension of the concept N 0 ] 
 E 2 [x: x = the extension of N 0  V x = the extension of E 1 ] 
 E 3 [x: x = the extension of N 0  V x = the extension of E 1 V x = the extension of E 2 ] 
 and so on; 
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the extensions of these concepts are the finite von Neumann ordinals: 

 0 Ø 
 1 {Ø} 
 2 {Ø, {Ø}} 
 3 {Ø, {Ø}, {Ø, {Ø}}} 
 and so on. 

In its mathematical development Frege's theory thus provides an elegant reconstruction of 
our understanding of the cardinal numbers, one which can be carried out quite 
independently of the portion of his system which led to inconsistency.

The Problem of Applicability

A remark should be made on the application problem and its relation to the "Julius Caesar" 
problem. It is certainly true that Frege put the application problem at the heart of his 
philosophy of mathematics. To the question "Why does arithmetic apply to reality?" the 



logicist provides the clear answer "Because it applies to everything that can be thought; it 
is the most general science possible." The partial contextual definition, provided by 
Hume's principle, and the fundamental thought that numerical concepts are second-level 
concepts yields, Frege's account of how arithmetic is applicable to reality. The central 
result, the theorem that nxFx ≡ n = NxFx (i.e., F) falls under the property expressed by the 
numerically definite quantifier nx if and only if the Frege number of F is n, answers this 
question by connecting a fact involving a mathematical object—the fact that the number of 
Fs is n—with one that does not, namely, the fact that there are n Fs. Thus, if F is the 
property of being a book on the desk, the "mathematical fact" is that the number of books 
on the desk is three (say), and the "physical fact" is that there are three books on the desk. 
The proof of the above theorem for the case n = 3 shows how the two are connected, and 
thus answers the question of how arithmetic applies to the physical world.
But the very possibility of framing the question of the applicability of arithmetic raises 
problems of its own. Hume's principle provides at best a partial contextual definition. The 
principle cannot settle the truth conditions of sentences of the form a = NxFx where a is 
not given in the form NxHx for some H. This of course is the Julius Caesar problem. In the 
case of pure arithmetic the Julius Caesar problem cannot be raised, since there are no 
singular terms like a in the language of pure arithmetic. But once the language is expanded 
to include empirical singular terms, as it would in the language of applied arithmetic, 
Hume's principle will no longer settle the sense of all numerical identities and the Julius 
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Caesar problem can no longer be ignored. Of course this issue does not arise in the formal 
language of Gg, since in that language all the objects it is possible to refer to are already 
given as extensions (value ranges), the identity conditions for which are purportedly given 
by Basic Law V. Michael Potter comes close to making the right observation when he 
writes: 

[A] formal language in which Julius Caesar cannot be spoken of is one in which he cannot 
be counted, and in such a language the applicability of arithmetic remains unexplained. At 
some stage in the development we shall have to extend the formal language by adding 
some empirical vocabulary, and we shall then have to address the Julius Caesar problem 
just as before. (2000, p. 108) 

But the difficulty is not that the applicability of arithmetic remains unexplained: it is 
explained perfectly by Frege's account. The difficulty is, rather, that any language for 
which the problem of the application of arithmetic can be nonvacuously posed is one in 
which the Julius Caesar problem must also be addressed. And this latter problem appears 
to have eluded Frege.



Frege's Account of Reasoning by Mathematical Induction

Frege's earliest contribution to the articulation of logicism consisted in showing that the 
validity of reasoning by induction can be accounted for on the basis of our general 
knowledge of principles of reasoning discoverable in every domain of inquiry. This 
directly engages the Kantian tradition in the philosophy of the exact sciences, according to 
which principles of general reasoning peculiar to our understanding must be supplemented 
by a faculty of intuition if we are to account for arithmetical knowledge. We are inclined 
today to view the answer to Kant as requiring the demonstration that mathematical 
reasoning—in this case, reasoning about the natural numbers—is recoverable as part of 
logical reasoning.
In Bg, part III, Frege showed how the ancestral of a relation—intuitively, the property of, 
for example, following the number 0 in the sequence of natural numbers after "some 
number of relative products of successor"—might be defined without reference to number. 
The (necessarily second-order) definition is easily presented in three simple steps.7 Frege's 
account is quite general; he proceeds "schematically" by 
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taking a fixed, but arbitrary, binary relation f, and then shows how to form its ancestral. 
Suppressing explicit reference to the relation f, we abbreviate "F is hereditary in the f-
sequence" by Her(F), and define it by the condition 

•

given by proposition 69 of Bg. For "F is inherited from a in the f-sequence" we write In(a, 
F), and define this as 

•

For "y follows x in the f-sequence"—the ancestral of f—we write 

•

With these abbreviations, Frege's definition of the ancestral becomes 

•



Given the relation (immediate) successor (P) and the number zero (0), this definition is 
easily adapted to a definition of the property natural number by the condition 

• (*) 
•

This definition implies another, more tractable, condition: 

• (§) 
•

That is, y is a natural number—NNy—if and only if y has every hereditary property of 0. 
(The proof that (*) implies (§) is very simple: If F0 and Her(F), then F1. Since 1 is the 
only successor of 0, In(0, F), and hence, by our hypothesis (viz., 0P*y) and the definition 
of the ancestral, Fy.)
For the philosophical purpose of showing that from the definition of natural number we 
can prove the Principle of Mathematical Induction (MI)—thus showing induction to be a 
species of general reasoning—our simpler condition (§) suffices. First, we formulate MI in 
the relational form: 

•
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Here, "relational form" simply means that we take successor to be a binary relation and 
assume the presence of those axioms which ensure that it is a one-one function. To prove 
MI, we assume the hypothesis of MI: 

•

and derive the conclusion 

•

using only our definition of natural number given by the condition (§). That is, we have to 
show, for an arbitrary individual y, that y has F, when y has all the hereditary properties of 
0. The proof is completely trivial: since the hypothesis of MI is simply the hypothesis of 
the generalized conditional of our definition—namely, F0 and Her(F)—we have Fy. Since 
y was arbitrary, we have shown that for all n, Fn. And since the property 0P*x is hereditary 
with respect to successor (cf. Bg 96), MI implies our original definition of NNy in terms of 
the condition (*), thus completing the circle and showing the equivalence of our conditions 
(*) and (§) to one another and to MI.



Comparison with Dedekind's Chains

It has long been known that what Frege calls the property following a in the f-sequence—
af*x—is closely related to Dedekind's notion the chain of an element a, introduced in Was  
sind und was sollen die Zahlen? To elucidate the connection, let f be a one-one relation in 
Y × Y. We will say that X covers f if Dom(f)  X and Rg(f)  X. For A  Dom(f), A 
nonempty, the chain or closure C f (A) of A with respect to f is given by 

•

the chain of a is just C f {a}. To see the connection between Dedekind's chains and Frege's 
ancestral, notice that on the assumption that f is one-one, the chain of a is just the extension 
of the concept af*x V x = a. If A covers f, then A = C f (A). Thus, in particular, what 
Dedekind calls the "system" N of natural numbers covers successor, which is one-one, so 
N can be defined—as Dedekind defines it—as the chain of its initial element with respect 
to successor. The connection with Frege's definition of the property NNx of being a natural 
number is this: the success of Frege's definition of NNx in terms of the condition 

•
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depends on the fact that among the hereditary properties of 0 (hereditary with respect to 
successor) are those whose extensions are, in Dedekind's sense, chains of 0.

A Remark on Frege and Kant

For Kant, the concept of the number 7 is available to the Understanding without the aid of 
Sensibility and hence, without intuitions. But its schematization—the provision of a 
reference for any concept-expression associated with it—does require intuition. This is not 
only immediate from the definition of "schematization", it is also required by the fact that 
many statements of number involve equations and inequations, and their reference must 
also be provided for. In Kant's terminology, this means that the categories of unity and 
plurality must be schematized, and this requires addressing how unity and plurality relate 
to intuitions. We will return to this latter problem of the schematization of the categories. 



In the case of the concept of 7, the schematization is given by counting the objects to 
which it is applied. Counting may be likened to the construction of a geometric figure: both 
relate to empirical intuition, to the data of possible experience. There are, however, also 
objects of pure intuition; although such objects are not given in empirical intuition, they 
are the product of the form of empirical intuition. In the case of geometrical objects, it 
seems clear that this form is spatial, and that it constitutes a framework within which 
constructions involving ruler and compass, together with their possible combination and 
iteration, are possible. It would be tendentious to say that in the arithmetical case the 
relevant form of empirical intuition is time, and that it is a temporal framework that makes 
counting possible, just as it is a spatial one that makes ruler and compass constructions 
possible. But perhaps we can say that in the arithmetical case, the constructive procedure 
which is made possible is just the process of iteration itself. The possibility of indefinitely 
iterating any procedure, whether in counting or in the construction of figures, is guaranteed 
by the spatial and temporal forms of empirical intuition. To return to the topic of 
schematization, insofar as counting is iterative, it and the schmatization of the various 
number concepts depend on the form of our intuition, and therefore on space and time.
From this brief sketch we can extract several desiderata for an account of number that 
could be held to be independent of Kantian intuition. It is clear, first of all, that such an 
account must explain the applicability of numerical concepts without invoking any 
intuitions beyond those that are demanded by the concepts to which the numerical concepts 
are applied. Second, it must explain the reference of numerical equations and inequations 
without recourse to intuition, perhaps in terms of relations among concepts, or in terms of 
"logical" objects—objects that 
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are transparent to Reason itself. Finally, it must recover any piece of arithmetical reasoning 
which rests on the possibility of indefinitely iterating an operation as a species of general 
reasoning. Frege's articulation of his fundamental thought in Gl, according to which a 
statement of number involves the predication of something of a concept, clearly addresses 
the first desideratum: the application of there are exactly four moons of Jupiter must not 
involve any intuitions beyond those demanded by x is a moon of Jupiter. Gl's criterion of 
identity for number—the contextual definition—addresses the second: provision of a 
criterion of identity for number is the Fregean analogue of the schematization of the 
categories of unity and plurality. The theory of classes of Gg is an extension of this 
attempt, mandated by the fact that the contextual definition of numerical identity and 
distinctness (the unity and plurality of number) in terms of the relation of one-one 
correspondence between concepts is at best partial. Of course the definition of the 
ancestral, given in Bg, is the key to Frege's solution to reasoning by induction, the 
paradigm of iterative reasoning.



Summary

The dependence relations among Frege's definitions as they appear in Gl are summarized 
in the following chart:8 

•
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A  B is read: B is defined in terms of A. 0x, 1x, … are the "numerically definite 
quantifiers" (also first-order definable in terms of identity and the usual logical operators 
and quantifiers), and are read: there are exactly zero Fs, there is exactly one F, and so on. 
Only the first link in this chain (indicated by the single arrow, ↓) is a contextual 
"definition"; all the rest are proper explicit definitions. Note that the explicit definition of 
the cardinality operator does not appear here, since it is not required by the mathematical 
development of Gl. Notice also that there are two definitions of number, one of cardinal 
number (CNk) given directly in terms of the cardinality operator, and the other, a definition 
of natural number (NNn), given in terms of the ancestral of the successor relation. The first 
defines cardinal numbers—answers to the question "How many?"—irrespective of whether 
they are finite or infinite. The second definition (that of NNn) splits into two: the "pure" 
definition, given above—which is independent of the cardinality operator and defines 
natural number purely ordinally—and the definition (of §§81, 83) which adapts this 
general strategy to the case where successor is defined in terms of the cardinality operator 
and, thus, defines natural number in terms of cardinality. Although the successor relation 
is defined in terms of the cardinality operator, the definition of the ancestral is, of course, 
completely general and does not in any way require the cardinality operator.



In conclusion, let us note that the second-order predicative fragment of Gg results when 
the Comprehension Scheme P x(Px ≡Φ(x)) is restricted to formulas Φ(x) in the language 
of Gg which contain no bound occurrences of second-order variables. By contrast with the 
first-order fragment of Gg, the second-order predicative fragment has a notion of 
membership and, therefore, a genuine notion of class. Extending methods of Parsons 
[1987], Heck [1996] has shown that the predicative fragment of Gg is consistent. This is 
intuitively plausible, since by so weakening Comprehension, there are vastly fewer 
properties for which it is necessary to find a representative extension. Nevertheless, the 
significance of the consistency of such an introduction of classes is unclear. For Frege, 
NNy is a defined property—indeed, its definition marks a high point of his logicism. But 
since Frege's definition of NNy is impredicative, this definition cannot occur as a condition 
in the second-order predicative fragment of Gg; and, therefore, the class which NNy 
determines cannot occur with its intended defining condition. Hence, whatever 
foundational interest the consistency of the predicative fragment of Gg might have for 
others, its interest for Frege is at best limited.

Assessment

Notice that the proof of MI, like the proof of the infinity of the number sequence, rests on 
Frege's use of second-order quantification. So also do two further key 
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theorems that Frege establishes in part II of Gg: the proof of the validity of definition by 
induction over the natural numbers (theorem 263), and the proof that the relations together 
with their fields which satisfy Frege's axioms for the natural numbers are isomorphic.9 As 
is well known, both theorems were first established by Dedekind in Was sind, where they 
occur as theorems 126 and 132, respectively; that analogues of them appear in Gg is less 
well known. The proof of the infinity of the number series requires treating numbers as 
objects and needs the additional presence of Hume's principle, and therefore, unlike the 
proofs of MI, categoricity, and the justification of definition by induction, it is not purely a 
result of second-order logic.
A difficulty which is often urged against Frege's account of general principles is that it 
relies on second-order features of his logic. The assessment of Frege's success in 
addressing the basis for our knowledge of the infinity of the numbers and the justification 
of induction, by contrast with the assessment of his success in connection with the 
applicability of arithmetic, has stalled on the question of whether second-order logic is 
really logic. We believe this to be unfortunate, since it has deflected attention from Frege's 



claim to have shown that reasoning by induction and our knowledge of a Dedekind infinite 
system depend on principles which, whether they are counted as logical or not, are 
appropriately general in their application and, therefore, do not rest on a notion of Kantian 
intuition of the sort Frege sought to refute. It may be necessary to concede that these 
demonstrations rest on intuition in a familiar, psychologistic, sense of the term; what has 
been missed is how little is conceded by such an admission. When this contention is, as we 
believe, rightly emphasized, a question emerges that leads naturally to Russell's 
contributions to logicism.
Although a consistent theory of arithmetic can be extracted from Gl, one with Hume's 
principle as its only nonlogical axiom, it remains unclear to what extent the full conceptual 
apparatus of Gl (or its elaboration in Gg) is entirely coherent—even when the notion of 
class is excised from it. As Frege tells us in his introduction to Gl, one of the 
methodological pillars of the work is the distinction between concepts and objects. But 
Frege's notion of object is of necessity one of great generality; if it were not, it could not be 
maintained with confidence that the development of arithmetic that Gl advances is 
independent of intuition. Russell's discovery that Frege's notion of class is paradoxical 
unless somehow restricted was problematic for Frege for just this reason: to preserve the 
idea of founding arithmetic on classes, it would be necessary to qualify the generality of 
the notion of an object, and it would then be unclear whether logicism represented the 
advance on Kant that it had promised to provide.
The mathematically central feature of a Fregean object is that it is a possible argument to a 
concept of first level. That numbers are objects in this minimal sense is all that is needed 
for the proof of Frege's theorem. The suggestion we have 
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been pursuing in our exposition is that the Fregean framework of concepts and objects—
without the notion of class—is a sufficient basis for arithmetic since, among other things, it 
allows us to recover the basic laws of arithmetic. Numbers are unproblematic precisely 
because their criterion of identity—namely, Hume's principle—requires only that the 
relation between concepts and objects should be functional; by contrast, the criterion of 
identity for classes (Basic Law V) demands that it should be injective. The rejection of 
classes is relatively unproblematic once it is seen that arithmetic can be developed without 
their use. But as we will show in the next section, there are, in addition to classes, other 
Fregean "objects" that will have to go if the framework of concepts and objects is to be 
coherent. The cumulative effect of successive prunings is that at some point it must 
become questionable whether arithmetic is being developed within an appropriately 
general conception of concepts and objects, or whether the notion of a framework of 
concepts and objects is being tailored for the development of arithmetic. Neither project is 



without philosophical significance and interest, but only the successful execution of the 
first can count as an unequivocally compelling answer to Kant.

Russell's Propositional Paradox and Fregean Thoughts

At the conclusion of The Principles of Mathematics (indeed, on the last two pages of the 
final appendix of the book), Russell derives a paradox that has come to be known as the 
propositional paradox. Principles contains the only mention of the propositional paradox in 
Russell's published writings. However, it occupies a significant position in his 
correspondence with Frege, where it led Frege to extend the theory of sense and reference 
which he had articulated in Über Sinn und Bedeutung to include a more elaborate 
development of the theory of indirect reference.10 The issues raised by the paradox are so 
central to the interpretation of Frege and Russell that it will be worthwhile to go into the 
paradox in some detail.11 
Like Russell's paradox of the class of all classes that are not members of themselves, the 
propositional paradox illustrates how "[f]rom Cantor's proposition that any class contains 
more subclasses than objects we can elicit constantly 
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new contradictions."12 While one can extract from the derivation of the paradox a proof 
that there are more properties of propositions than there are propositions, its main interest, 
like the interest of the Russell-Zermelo paradox, consists in the fact that it challenges a 
number of basic assumptions, in this case, assumptions about the nature of propositions 
and propositional identity—and by an extension we will explore presently, Fregean 
thoughts.
The formulation of the paradox we will follow13 focuses on propositions of the form 

•

In a propositional theory like Russell's, such a proposition is understood as saying that 
every proposition with property is true. Notice that in order for " (p)" to express a 
propositional function, and for " (p)  p" to express a proper truth function of (p) and p, 
"p" must have what we will call a designative occurrence in " (p)", that is, substituends for 
"p" must designate propositions. By contrast, the occurrence of "p" in the consequent of "
(p)  p" must not be designative, but expressive; that is, a substituend for "p" must express 
a proposition. There is a systematic ambiguity between designative and expressive 
occurrences of "p" in the argument to the paradox, but there is no confusion of designative 
and expressive occurrences. As remarked by Church ([1984], p. 520), the paradox is 



derivable for a wide choice of propositions. In the extension to Frege's theory of thoughts 
given below, we derive the paradox using a proposition whose universal quantifier binds 
only designative occurrences of "p."
Although, as we have noted, " p( (p)  p)" is naturally taken to express the proposition 
that every proposition with property is true, the notion of a truth predicate does not enter 
into the derivation of the paradox. Nor does the paradox require for its formulation the 
availability of a semantic relation of designation, a point first made explicit in Church 
[1984]. Church derives the paradox within a theory consisting of the simple theory of types 
augmented by the axioms of propositional identity that are implicit in Principles. In the 
context of the simple theory, it can be shown (see Church [1984], p. 520) that the analogue 
of our (Injectivity), below, is derivable from these axioms of propositional identity. Thus, 
in terms of a well-known division of the paradoxes into those belonging to logic and 
mathematics "in their role as symbolic systems" versus those which depend on the bearing 
of logic on "the analysis of thought" (Ramsey [1931], p. 21), the propositional paradox 
falls squarely into the second category; yet, for the reasons just given, it is not 
straightforwardly semantic.
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The paradox arises as follows. Let be a property of propositions; in Russell's terminology, 
is a propositional function which takes propositions as arguments and yields propositions 

as values. Consider the function f from properties of propositions to propositions defined 
by 

•

The notation is justified by Russell's theory of propositions: since is a constituent of f , f 
is a many-one relation, and on the assumption that for every there is such a proposition f , 
f is a function. Since is a constituent of the proposition f , it follows from Russell's 
conception of propositions and propositional identity (see Church [1984], p. 520) that 

•

a consequence we will call "(Injectivity)." Now let ψ be the property of propositions given 
by 

•

and suppose ¬ψ(fψ): 

•



that is, 

•

and therefore, ψ(fψ).
Next suppose ψ(fψ): 

•

Then, by (Injectivity), 

•

whence ¬ψ(fψ).□

Our exposition brings out how little the paradox requires from the theory of Russellian 
propositions developed in Principles. Thus, in the context of Russell's 
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conception of propositions, (Injectivity) is required by the assumption that the 
propositional function is a constituent of f ; and the assumption that for every there is a 
proposition f —the proposition p( (p)  p)—is so intuitively obvious that it would seem 
to be a necessary component of any theory of propositions. Assuming that for every there 
is a proposition of the form p( (p)  p), all we require is that the relation which associates 

p( (p)  p) with (the inverse of the relation determined by f), should be functional. We 
will return to this latter point in the context of Frege's theory of thoughts.
The solution mandated by the ramified theory of types depends on observing the 
restrictions it imposes on the "orders" of the propositions and propositional functions to 
which the derivation of the paradox appeals.14 The technical idea behind the ramified 
theory's stratification of propositions into orders is that the order of a proposition, p, must 
exceed the order of any proposition that falls within the range of one of its quantified 
propositional variables, and therefore, by the restrictions the theory imposes, p cannot itself 
fall within the range of one of its quantified propositional variables. By an extension of 
terminology, the order of a propositional variable is the order of the propositions which 
belong to its range of values. According to the ramified theory, the proposition q =  Df 
p(ψ(p)  p) and the propositional function ψ, defined in the course of the derivation of the 
paradox, are such that if the order of the bound propositional variable in q is n, the orders 
of q and ψ must be n + 1, so that q is not itself a possible argument for the function ψ. 
Since the contradiction was derived from the supposition that ψ(q) or ¬ψ(q), the argument 
collapses once the restrictions imposed by ramification are taken into account. Notice that 
this solution preserves the idea that ψ is a constituent of fψ, as well as the idea that there 



always is a proposition fψ corresponding to ψ.15 However, the generality of these 
assumptions is the restricted generality of the ramified theory: for every ψ of order n + 1, 
there is a proposition of order n + 1 which asserts the truth of every proposition of order n 
for which ψ holds.
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As is well known, there are two hierarchies that emerge from Frege's philosophical 
reflections on logic and language: the hierarchy of functions (or concepts) and objects, and 
the hierarchy of senses. The first hierarchy has a simple type-theoretical structure and, like 
the simple theory of types, is naturally motivated by considerations of predicability: first-
level functions are predicated of objects, second-level functions of first-level functions, 
third-level functions of second-level functions, and so on. There is therefore no analogue in 
Frege's hierarchy of functions of Russell's paradox of the propositional function that is 
predicable of all and only those propositional functions which are not predicable of 
themselves. But as we have seen, the propositional paradox can be derived from the theory 
of Russellian propositions of Principles even when this theory is formulated within a 
simple type-theoretical formalism. It is therefore natural to ask whether Frege's theory of 
sense, and in particular his theory of thoughts, fares just as badly—to ask, in other words, 
whether Fregean thoughts, which are the proper correlates of Russellian propositions, 
admit the construction of an analogue of the propositional paradox.
Potter [2000, p. 135] claims that the propositional paradox can be extended to Fregean 
thoughts only if we ignore the "degree of indirectness" of a thought and its constituent 
senses. When degrees are taken into account, the argument can be seen to fail because it 
rests on the identification of thoughts of different degree. Potter does not explain the 
principle controlling the assignment of degree indices; for that, one must look to Frege's 
letter to Russell of December 28, 1902, which tells us that the degree of a thought is 
assigned on the basis of the number of embeddings into opaque contexts a canonical 
linguistic expression of the thought exhibits. The details of this need not concern us. The 
important point is that however high its degree, a thought remains a possible argument to a 
concept of first level. As we will now show, this is all the extension of the paradox to 
Frege's theory of thoughts requires.
Passing to the hierarchy of senses, notice that insofar as senses are objects, they, too, fall 
under concepts. Thoughts, being the senses of complete expressions, are objects. Among 
thoughts, some are universal (i.e., are composed of the senses for the universal quantifier 
and a concept-expression; let us call the concept to which such a concept-expression refers, 
the principal concept of the universal thought. Although Frege's hierarchy of concepts 
escapes Russell's paradox of the predicate which holds of all predicates that are not 
predicable of themselves, there appears to be nothing to prohibit the concept χ that holds of 
all universal thoughts that do not fall under their principal concept. Does the universal 



thought expressed by, for instance, "Everything is χ" fall under χ? If it does, it violates the 
defining characteristic of χ, and so does not fall under χ. And if it does not, it violates the 
universality of χ, and therefore, does fall under χ.
The informal argument we have just given can be found in Myhill [1958]. More explicitly, 
define a one-many relation h on the domain of Fregean concepts 
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which relates every concept to a universal thought p( (p)) of which it is the principal 
concept: hq if, and only if, q = p( (p)); h is one-many since there may be distinct 
universal thoughts whose constituent senses determine as their principal concept. At the 
level of the senses s of concepts , the situation for Fregean thoughts exactly parallels 
Russellian propositions and propositional functions: the theory implies that the relation 
between universal thoughts and the senses of their principal concepts maps one-one the 
domain of such senses onto the class of universal thoughts. But the derivation of a paradox 
in Frege's theory requires only that h satisfy the following two conditions: (1) every 
universal thought is in the range of the relation h, and (2) whenever hp, ψhq, and p = q,  
= ψ. It is clear that (1) is satisfied. As for (2), if the universal thoughts p and q are the 
same, so also are their constituent senses s and ψ s , and since sense determines reference, 
their principal concepts must also be the same.
Now let q = p(χ(p)), where 

•

Then χhq. Now suppose that χ(q), that is, 

•

It then follows that 

•

so that, using (2), 

•

whence ¬χ(q).

Next suppose ¬χ(q): 

•

Thus, in particular, χhq  χ(q). Since q = p(χ(p)), χhq; and therefore, χ(q).



Klement ([2001], [2002], ch. 5) formalizes a fragment of the theory of sense and reference 
sufficient to secure a rigorous derivation of the "the concept/Gedanke antinomy" within 
this formalization of the theory, and argues that since the fragment does not employ Basic 
Law V, the paradox reveals an inconsistency in Gg's philosophy of language, one that 
arises independently of its theory of classes. Klement is certainly correct to observe that 
the difficulty goes beyond Frege's theory of classes. But the source of the difficulty is a 
general and pervasive feature 
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of the theory of concepts and objects, a feature that lies at the basis of both paradoxes, 
yielding one inconsistency in the context of classes and another in the context of thoughts. 
Because classes and thoughts are themselves objects, we can always "diagonalize out" of 
any attempt to specify a representative object for each concept—the difficulty is the same 
whether that object is taken to be a thought or a class. The essential similarity between the 
concept/class and concept/thought paradoxes can be made intuitively compelling as 
follows: Recall that an object belongs to a class if it falls under the concept whose 
extension the class is. Similarly, let us say that an object belongs to a universal thought if it 
falls under the principal concept of the thought. Then the concepts expressed by "x is the 
class of all classes that do not belong to themselves" and "x is the universal thought of all 
universal thoughts that do not belong to themselves" both lack objectual representatives.
As we remarked earlier, Frege shows that, given any map f from concepts to objects, we 
can always find concepts and ψ such that f  = fψ but (f )  ¬ψ(f );16 not only are distinct 
concepts necessarily mapped onto the same object, but we can actually specify an object 
which distinguishes and ψ in terms of the mapping f. Thus, the fact that there cannot be an 
injection of concepts into objects is entailed by a consistent fragment of Gg, and this shows 
that the difficulty posed by Basic Law V is an instance of a more general incoherence in 
the Fregean theory of concepts and objects.
In the case of thoughts, Frege might argue that they, at least, are not proper objects—not 
arguments to concepts of first level. Thoughts are like objects in being "saturated"—in 
corresponding to "complete" expressions; but this is only one component of what 
characterizes something as an object. The most important component of being an object—
that of being an argument to a concept of first level—may not be a feature that thoughts 
enjoy; rather, they might form a hierarchy different from concepts and objects proper. But 
an examination of the argument leading to the paradox shows it to require only that 
thoughts fall under the concepts appropriate to them and is unaffected if thoughts and the 
concepts they fall under form a hierarchy separate from ordinary objects and concepts.17 
Frege's proof of the infinity of the numbers does not require any assumptions about the 
objectual character of thoughts, but rests, as we saw, on the thesis that numbers are objects. 
Frege's proof is therefore in no way compromised if the hierarchy of thoughts and the 



concepts they fall under is distinguished from the realm of objects and the hierarchy of 
concepts under which they fall. But the foundational significance of Frege's account of our 
knowledge of the infinity of the numbers does rest on the generality of the framework of 
concepts and objects within which his account is presented. The concept/thought paradox 
shows that 
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this generality may need to be constrained, and this inevitably raises a question regarding 
the basis for settling on one or another set of restrictions.
Let us briefly review the situation we have arrived at. The consistency of Bg shows that the 
generality of the Comprehension Scheme for properties is not by itself problematic. The 
consistency of the first-order fragment of Gg shows that the mere combination of concepts 
and objects does not necessarily run into difficulty. The consistency of the predicative 
fragment of Gg shows that when the notion of a Fregean concept is suitably restricted, 
every allowable concept can have a class as its (bi-unique) representative object. Given the 
Comprehension Scheme of Bg, a difficulty arises if the objects which represent concepts 
are in turn capable of falling under the concepts of which they are the objectual 
representatives. Whether these objects are taken to be classes is quite irrelevant to the 
derivation of an inconsistency. That thoughts and classes should exhibit this feature 
appears unavoidable in view of the logicist's conception of their generality. As Frege says 
in the motto we have taken from Bg, thoughts have a generality that sets them apart from 
intuitions, even intuitions given a priori. And a comparable generality is arguably also 
unavoidable in any notion of class capable of supporting the idea that classes are logical 
objects. Number escapes paradox without sacrificing its claim to generality because the 
numerical correlates of concepts are not representative of them—they are given by a 
relation which is many-one, but not one-one.
Dedekind's Account of Our Knowledge of the Infinity of the Numbers
To a great extent, Dedekind's and Frege's treatments of the natural numbers are on a par. 
Frege's theorem shows that if the finite cardinals are introduced by way of Hume's 
principle and the successor relation is defined in terms of the cardinality operator, then the 
finite cardinals together with successor satisfy the Dedekind-Peano axioms. Conversely, 
Dedekind shows (theorem 120) that the version of Hume's principle which results when the 
concept variables range over only finite concepts, is obtainable in the system of Was sind. 
But despite these formal similarities, there are considerable differences in their accounts of 
our knowledge of the existence and infinity of the natural numbers. We have described 
Frege's methodology at some length. Let us now consider Dedekind's.
Dedekind defines a system to be (Dedekind) infinite if and only if it can be put into one-to-
one correspondence with a proper subsystem of itself. He defines a simply infinite system 
to be any system which forms the domain of a relation 
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satisfying the Dedekind-Peano axioms. He then proves that every infinite system contains 
a simply infinite subsystem (theorem 72). Now suppose that we have already proved that 
there is an infinite system. Then we know there is a simply infinite system which, together 
with its relation, models the Dedekind-Peano axioms. Once we are in possession of a 
simply infinite system, we 
entirely neglect the special character of [its] elements, simply retaining their 
distinguishability and taking into account only the relations to one another in which they 
are placed … [. T]hese elements [are] called natural numbers or ordinal numbers or simply 
numbers. … With reference to this freeing [of] the elements from every other content 
(abstraction) we are justified in calling numbers a free creation of the human mind. (Was 
sind, p. 68) 
We should record an important difference between Frege's account of number and the 
account of Dedekind. For Dedekind, the exhibition of a simply infinite system is designed 
to yield the concept of number; it does not purport to fix the identity of the individual 
numbers—indeed, Dedekind is opposed to any such extension of his ideas. By contrast, 
Frege does attempt this in order to secure their status as "self-subsistent objects." On 
Dedekind's analysis, the existence of numbers is a consequence of a mental power to 
abstract from particular characteristics of the elements of a simply infinite system to its 
ordinal structure.
The success of Dedekind's methodology hinges on the existence of an infinite system. As 
Dummett ([1991a], pp. 49ff.) has observed, Dedekind sought to secure the existence of 
such a system by the provision of a concrete example, one from which the concept of 
number could be viewed as having been abstracted in the manner just reviewed. It would 
then follow by his categoricity theorem (theorem 132) that the peculiarities of the starting 
point of the construction can be discounted, and the generality of the construction of the 
infinite system secured. This is the goal of theorem 66, whose proof runs as follows: 
The world of my thoughts, i.e., the totality S of all things that can be objects of my thought, 
is infinite. For if s denotes an element of S, then the thought s′, that s can be an object of 
my thought, is itself an element of S. If s′ is regarded as the image (s) of the element s, 
then the mapping on S determined thereby has the property that its image S′ is a part of S 
and indeed S′ is a proper part of S, because there are elements in S (e.g., my own ego), 
which are different from every such thought s′ and are therefore not contained in S′. Finally 
it is clear that if a, b are different elements of S, then their images a′, b′ are also different, 
so that the mapping is distinct (similar). Consequently, S is infinite, q.e.d. 
Following Frege,18 we may say that for Dedekind the realm of thoughts is an objective one, 
one that exists independently of us. Our access to this realm is taken for granted, since 
thoughts are transparent to our reason. The realm of thoughts 
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yields an exemplar of an infinite system because the relation, x is an object of my thought  
y, is a one-one function which maps a subsystem of objects of my thought onto a proper 
part of itself. From this exemplar we abstract the concept of an infinite system and thus of 
number. For Dedekind's proof to succeed, it is essential that thoughts be proper objects—
arguments to concepts of first level, in fact to the concept x is an object of my thought, one 
that holds of thoughts and of objects which are not thoughts. Dedekind says very little 
about the nature of thoughts, so it can hardly be urged against him that his account rests on 
an inconsistent theory of thoughts. But were we to regard Dedekind's tacit theory of 
thoughts as essentially Frege's—together with the further condition that thoughts are 
proper objects—the concept/thought paradox would be an obstacle to the success of his 
account of our knowledge of the infinity of the numbers: if the proof of theorem 66 fails, 
we lack an exemplar from which the concept of number can be abstracted and cannot be 
said to have an account of how we come to know the numbers' most salient property.

Russell's Logicism and the Rejection of Denoting Concepts

For Russell, no satisfactory solution of the problem of our knowledge of arithmetic is 
possible so long as the theory of concepts and objects is not on a secure footing. The 
character of this footing will determine to what extent logicism can be judged a success. 
The first steps toward a solution came with the discovery of the theory of descriptions. Its 
contributions to the philosophy of arithmetic were at least twofold: (1) the clarification of 
the theory of generality and the consequent simplification of the theory of concepts and 
objects by the elimination of denoting concepts; (2) the method of contextual analysis.
The Principles theory of generality was based on the notion of a denoting concept. Such 
concepts were important because without them, Russell believed, our knowledge of the 
infinite combinations of things that correspond to words of quantification—hence also our 
ability to express, by finite means, thoughts involving infinite totalities—would be 
severely limited: 
Indeed it may be said that the logical purpose which is served by the theory of denoting is, 
to enable propositions of finite complexity to deal with infinite classes of terms: this object 
is effected by all, any, and every, and if it were not effected, every general proposition 
about an infinite class would have to be 
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infinitely complex. Now, for my part, I see no possible way of deciding whether 
propositions of infinite complexity are possible or not; but this at least is clear, that all the 
propositions known to us (and, it would seem, all propositions that we can know) are of 
finite complexity. It is only by obtaining such propositions about infinite classes that we 
are enabled to deal with infinity; and it is a remarkable and fortunate fact that this method 
is successful. (Principles §141) 
But Russell came to view denoting concepts as bringing with them many of the difficulties 
he associated with Fregean senses. A denoting concept is like the predicable notion of a 
concept in applying to many things, but in some cases, at least, it is like an object or "term" 
insofar as it is expressed or "indicated" by a singular term. The central case is that of the 
denoting concepts which we express with definite descriptions. If such concepts could be 
eliminated, this would mark a significant simplification and would secure the theory of 
concepts and objects by removing one potential source of paradox. The means by which 
this was achieved by the theory of descriptions—the method of contextual analysis—
constitutes the second contribution of the theory to the articulation of Russell's logicism.
It has for a long time been supposed that the central achievement of the theory of 
descriptions was the elimination of the denotations of denoting phrases that express 
vacuous or nondenoting denoting concepts. But the theory of Principles, and almost all of 
those theories, such as Frege's, to which it bore any resemblance, were perfectly capable of 
representing the possibility that a denoting phrase might express a sense while lacking a 
reference. The really significant and novel achievement of Russell's theory was its 
elimination of denoting concepts.19 The way this was achieved by the method of contextual 
analysis is as follows: Given a sentence S containing, for example, a definite description, 
the theory specifies how to transform S into a logically equivalent sentence ST in which the 
descriptive phrase does not occur. ST gives the correct logical form of the proposition 
expressed by S, showing it to be quantificational (in fact of the form ) rather than subject-
predicate, and showing, as a consequence, that it was illusory to have sought the denotation 
of a denoting concept at all, since ST shows that there is not, in the proposition expressed 
by S, anything that even purports to be such a symbolic entity as a denoting concept. A 
contextual analysis differs from an ordinary analysis, such as one involving an explicit 
definition, by showing how to transform any "context"—any sentence—in which the 
expression to be analyzed occurs into an equivalent sentence, without thereby assuming 
that the expression contributes an entity to the proposition expressed by the sentences in 
which it occurs.
On Russell's theory, our understanding of the proposition expressed by S proceeds by our 
being acquainted with its constituents; what these constituents 
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are, we can know only relative to an analysis. The theory of descriptions shows that when a 
sentence contains a description, the proposition it expresses contains only ordinary, 
predicable concepts and individuals—not denoting concepts; in particular, therefore, our 
understanding of such propositions does not require acquaintance with denoting concepts. 
An important and insufficiently appreciated aspect of Russell's theory is the manner by 
which it allows us to distinguish propositions that we understand from those that, because 
they contain among their constituents things which fall outside our acquaintance, can only 
be asserted.20 We succeed in knowing about such things because the propositions we do 
understand contain propositional functions that hold uniquely of them. To take a simple, 
nonmathematical illustration of Russell's theory of propositional understanding, since I am 
not acquainted with Bismarck, any proposition I can understand which purports to say 
something about him must contain a propositional function which holds uniquely of 
Bismarck and is composed wholly of constituents with which I am acquainted. An 
equivalent proposition which contains Bismarck is not one I can understand; but in view of 
the fact that there is a proposition that I do understand, one that contains a suitable 
propositional function which holds only of Bismarck, the limitations on the scope of my 
acquaintance need not impose a limitation on what I can have knowledge about.
The logical theory consisting of some sort of hierarchy of types of propositional functions 
seeks to preserve certain features of the theory of propositional understanding that, 
together with the theory of descriptions, forms the backbone of Russell's theory of 
meaning. As Ramsey [1931] was perhaps the first to make fully explicit, what is distinctive 
of this logical theory is its division of propositional functions into two hierarchies: one 
satisfying an intricate system of restrictions whose natural justification is that they are 
forced by reflection on how propositional functions are known by us, and another, 
unconstrained by considerations of this sort and reflecting the purely logical restrictions of 
the simple theory of types.21 
The immediate inspiration for ramified-type theory is the intuitive, informal principle that 
Russell seems to have drawn from Poincaré's diagnosis of the source of the logical 
paradoxes, the Vicious Circle Principle: "Whatever involves all of a collection must not be 
one of the collection" (Russell [1908], p. 63). Russell gives a number of glosses on this 
idea. In a footnote he adds, "When I say that a collection has no total, I mean that 
statements about all its members are nonsense" 
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(Russell [1908], p. 63).22 And again, "No totality can contain members defined in terms of 
itself[; … w]hatever contains an apparent variable must not be a possible value of that 
variable" (Russell [1908], p. 75). In Principia Mathematica (PM) Russell gives the 
following formulation: 



Given any set of objects such that, if we suppose the set to have a total, it will contain 
members which presuppose this total, then such a set cannot have a total. By saying that a 
set has "no total" we mean, primarily, that no significant statement can be made about "all 
its members." (p. 37) 
The theory of order effects the main constraint of the Vicious Circle Principle since it rules 
out the impredicative propositional functions which Russell thought were directly 
implicated in the paradoxes, where an impredicative propositional function is one that 
contains a quantifier that binds a variable whose range contains the propositional function 
itself as a member. Individuals have order 0, as do the variables ranging over them. 
Propositional functions of individuals of order 1 then take individuals as arguments. The 
arguments of propositional functions of individuals of order 2 include propositional 
functions of order 1; those of order 3 include propositional functions of order 2, and so on. 
If a propositional function of individuals is presented in terms of quantification over other 
propositional functions of individuals, will fail to respect the principle underlying 
ramification if it lies within the range of one of its constituent variables. More generally, 
the presentation of a function —whether of functions or of individuals—of order n > 1 
depends on the presentation of functions of order less than n, since quantifies over 
variables within whose range such functions lie. is precluded from falling within the range 
of one of its quantified variables because the presentation of is understood as following on 
the presentation of its constituents. The principle underlying ramification is entirely 
plausible and in no way ad hoc if the ramified hierarchy is held to reflect the fact that our 
epistemic access to functions higher in the hierarchy depends on our access to those below 
it. A violation of such a constraint on epistemic access would indeed be viciously circular.
In this connection, it is important to appreciate that the propositional functions of PM are 
not fixed in advance: its "symbolic resources" are not bounded in the manner that is 
familiar to us from our experience with formalized languages, 
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but are susceptible of indefinite extension by the addition of new functions as applications 
of the framework may demand. Although our access to a function is mediated by 
quantification over other functions, this in no way precludes the existence, within the 
hierarchy, of extensionally equivalent predicative functions or functions of order 1—that 
is, functions that do not contain quantification over other functions. The restrictions 
respected by predicative functions are merely the type restrictions of the simple hierarchy. 
The orders that ramification imposes constrain our epistemic access to propositional 
functions of order greater than 1. The hierarchy of orders of the ramified theory is 
compatible with the existence, independently of our knowledge of them, of predicative 
(i.e., order 1) equivalents of functions of all orders. But a predicative function may be such 
that what knowledge we have about it is mediated by access to a logically equivalent 



function of order greater than 1. The assumption that for every propositional function of 
order n there is an equivalent propositional function of order 1, is an axiom of reducibility. 
The infinite collection of such axioms—one for every order of propositional function 
greater than 1—constitutes "the" axiom of reducibility of PM.
There is a suggestive comparison between the ramified theory with reducibility and 
Russell's theory of propositional understanding: Not being acquainted with an individual i, 
reference to it requires a description (i.e., a propositional function which holds uniquely of 
i—a "descriptive function" for i. An "axiom of acquaintance" that parallels reducibility 
would assert that every descriptive function for an individual i has an equivalent that is 
composed wholly of constituents with which I am acquainted. The axiom thus enforces a 
concordance between the domain of individuals picked out by descriptive functions—
presumably all individuals—and those picked out by such "good" descriptive functions as 
the axiom postulates. The functions corresponding to good descriptive functions are the 
analogues in the theory of propositional understanding of the predicative functions of the 
ramified hierarchy. Ordinary descriptive functions correspond to propositional functions of 
order greater than 1; individuals correspond to classes. The axioms of acquaintance and 
reducibility postulate (respectively) the possibility of knowing individuals and classes in 
terms of functions that possess a certain epistemic transparency, a transparency embodied 
by acquaintance in the one case and the absence of complex forms of quantification in the 
other. Classes occur in the hierarchy only under the guise of predicative functions, which 
are the means by which they are known. Reducibility thus postulates a concordance 
between mathematical reality and our knowledge of it that the ramified theory is otherwise 
unable to demonstrate. It is precisely for this reason—its possession of the virtues of theft 
over honest toil—that the axiom's necessity was regarded as a serious flaw. An important 
foundational question arises in this connection, one which brings into sharp relief a basic 
and pervasive difference between Frege's and Dedekind's developments of logicism and 
Russell's. This is the analysis 
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of mathematical induction and the definition of the set of natural numbers, to which we 
now turn.

Russell's Account of Reasoning by Induction

The tradition of predicative analysis that originates with Weyl [1987]23 proceeds on the 
assumption that the system N of natural numbers is not in need of definition or 
reconstruction but is available to us. The considerable achievements of this tradition would 



not have been possible without this assumption. By contrast, logicism sought to account 
for N, impredicatively in the case of Frege and Dedekind, predicatively in the case of 
Russell.
The Frege-Dedekind definition of x is natural number amounts to the condition, called (§) 
above, that x is a natural number if and only if x has every hereditary property of 0. But 
this is excluded by ramification since 'every hereditary property of zero' quantifies over 
properties of 0 of all orders. The proper formulation in Principia Mathematica (PM) would 
be 'x has every predicative property possessed by 0.' But if we know that for each 
propositional function there exists a predicative propositional function coextensive with it, 
then the two conditions "every hereditary property of zero" and "every predicative 
hereditary property of zero" are, in fact, logically equivalent and condition (§) is simply the 
principle of mathematical induction in full generality. That for each propositional function 
there exists a coextensive predicative function is guaranteed by an axiom of reducibility.
In his Appendix B to the 1925 edition of PM, Russell attempted to dispense with this 
axiom in the justification of the definition of natural number. Gödel ([1944], p. 145) noted 
a mistake in Russell's proof of the fundamental lemma, *89.16. In the terminology of 
Hellman and Feferman ([1995], p. 4), Russell's error occurs in the context of his attempt to 
prove that every subclass of a finite set is itself finite. (This lemma is equivalent to an 
axiom of Hellman and Feferman's Elementary Theory of Finite Sets and Classes, which 
they use to give a "predicative" characterization of N.) Myhill [1974] later showed that 
without reducibility, the set of natural numbers is not definable in the system of PM 
(1910).24 
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Russell on the Dedekind Infinity of the Numbers

Call a set x inductive if it belongs to every class A of sets such that A contains the empty set 
Λ of individuals, and for any set y and individual a, if y  A, then y  {a}  A. (Compare, an 
inductive number is one which belongs to every set x such that 0  x and for any n, if n  x, 
so is n + 1.) x is noninductive if it is not inductive, and x is reflexive (Dedekind infinite) if it 
can be injected into a proper subset of itself. PM's axiom of infinity tells us that the set V 
of individuals is noninductive. The axiom says nothing about the infinity or otherwise of 
the reconstruction of the natural numbers as "Russell-numbers" in PM (a reconstruction to 
which we will soon come). By postulating the axiom of infinity, Russell did not take the 
infinity of the Russell-numbers for granted; instead, he derived their Dedekind infinity 
from the existence of a noninductive set of individuals by a beautiful classical argument 
based on the following:



Lemma. If x is noninductive, then the natural numbers can be injected into PPx, the power  
set of the power set of x.

Proof. Observe first that Λ is a subset of x, so x has a subset of cardinality 0. Suppose there 
is a subset y of x of cardinality n. Since x is noninductive, there is an a  x—y. Hence y  
{a} is a subset of x of cardinality n + 1, and we may conclude that for every n, there is a 
subset of x of cardinality n. Hence we may define, for each natural number n, a Russell-
number S n , given by 

•

For each n, S n is nonempty, S n   Px, and for m ≠ n, S m  ≠ S n , so that the map, sending n 
to S n , injects the natural numbers into PPx, as required. □
It follows from the lemma that the Russell-numbers form a Dedekind infinite subclass of 
PPx since the "successor" map, that sends S n to S n + 1 , is evidently one-one from the S n 

into a proper subclass of Russell-numbers. More generally, we have 
Russell's theorem: If x is infinite, PPx is Dedekind infinite, 
since if a class contains a Dedekind infinite subclass, it is itself Dedekind infinite (compare 
PM II *124.57).
In Russell's development of logicism, the proper analogue of Frege's theorem is this proof 
of the Dedekind infinity of the Russell-numbers.25 Russell's analysis 
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shares with Dedekind's a reliance on an assumption regarding the infinity of a set of 
objects not internal to arithmetic. Dedekind, as we saw, sought to discharge this 
assumption by a proof. Russell and Whitehead explicitly left their assumption unproven, 
conceding that it could not be secured by completely general considerations regarding the 
nature of concepts and the objects which fall under them. But in the rush to object to the 
incursion of an evidently empirical assumption into the foundations of arithmetic, critics of 
PM have overlooked the subtlety of its analysis of the infinity of the numbers.

Final Assessment

We have based our discussion of the logicism of Frege, Dedekind, and Russell around its 
answers to three questions: (1) What is the basis for our knowledge of the infinity of the 
numbers? (2) How is arithmetic applicable to reality? (3) Why is reasoning by induction 
justified? It is an extraordinary achievement of these authors that they were able to throw 
such light upon these questions and to produce such mathematically fruitful answers. It is 



possible to portray logicism as a failure because of the Zermelo-Russell contradiction and 
its need to rely on nonlogical principles. And of course it is now entirely clear that even if 
one thinks of logic as second-order logic, the basic laws of arithmetic are not deducible by 
logical means alone from the truths of logic; at present it is at best unclear as to whether, in 
any sense demanded by Frege, numbers can be seen as logical objects, or that our 
knowledge of the infinity of the numbers is purely logical knowledge. While all that is so, 
it does absolutely nothing to detract from the depth of the logicist analysis of number. 
Frege's basic idea gave us quantification theory and the notion of the ancestral; Dedekind's 
methods provided a general mathematical technique, based upon an informal notion of set 
(or "system") which in subsequent refinements became extended to the notions of ideal and 
lattice, both central mathematical tools; and with its development in PM, Russell showed 
just what a powerful method type theory really was. It is possible to see PM as a work not 
in the logicist tradition of Frege and Dedekind but in what is now called "reverse 
mathematics," that is, as asking and answering the questions "What basic principles of a 
general kind are needed to develop the whole of classical mathematics?" and "Can these 
principles be incorporated into a general theory of concepts and objects which is free of the 
logical paradoxes?" (as Whitehead and Russell themselves expressed their achievement; 
see PM I, p. 59).
The monumental achievement of the work was to exhibit such principles and to actually 
show how mathematics—not merely elementary arithmetic—might be reconstructed from 
them. Not only did logicism show how few were the nonlogical 
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assumptions necessary for the development of arithmetic, but particularly in the work of 
Dedekind and Russell it began to emerge how surprisingly few principles were required to 
develop all of the working mathematician's cannon, culminating ultimately in the system Z 
of Zermelo [1908]. The penetration to the mathematical heart of the problem achieved by 
the logicists is in stark contrast to the sterile, mathematically empty views which preceded 
them. We owe to logicism first the completion of the revolution in rigor which was so 
important a part of nineteenth-century mathematics; we owe to it second the discovery that 
many arithmetical concepts are purely logical concepts; and we owe to it third the most 
sustained analysis of the relation between thought in general and mathematics in particular 
that has ever been provided.
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6. Logicism in the Twenty-first Century
Bob Hale 
Crispin Wright 

1. Frege's Philosophy of Mathematics and the Neo-Fregean Program

Frege believed, at least for most of his career, that the fundamental laws of elementary 
arithmetic—the theory of the natural numbers (finite cardinals)—and real analysis are 
analytic, in the sense he explained in Grundlagen §3—that is, provable on the basis of 
general logical laws together with suitable definitions. Since his defense of this thesis 
depended upon taking those theories to concern a realm of independently existing objects 
(selbständige Gegenstände)1 —the finite cardinal numbers and the real numbers—his view 
amounted to a Platonist version 
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of logicism. Neo-Fregeanism2 holds that he was substantially right in both these 
components of his philosophy, but takes a more optimistic view than Frege himself did of 
the prospects for contextual explanations of fundamental mathematical concepts—such as 
those of cardinal number and real number—by means of what are now widely called 
abstraction principles. Generally, these are principles of the form 

•

where Σ is a term-forming operator applicable to expressions of the type of α,β and is an 
equivalence relation on entities denoted by expressions of that type. The type of α,β may 
be that of singular terms, in which case is a first-level relation and the resulting 
abstraction principle represents a first-order abstraction on objects. A well-known 



example, in terms of which Frege conducted most of his own discussion of this type of 
explanation, is the Direction Equivalence. 3 
The direction of line a = the direction of line b if and only if lines a and b are parallel. 
A potentially more important class of higher-order abstractions results from taking the 
type of α and β to be that of first (or higher)-level predicates, with a correspondingly 
higher-level relation. One much discussed—and, for our purposes, crucial—principle of 
this kind is what has come to be known as Hume's Principle: the abstraction by means of 
which, on the proposal reviewed in the central sections (§§60-68) of Grundlagen, the 
concept of (cardinal) number may be explained: 
The number of Fs = the number of Gs if and only if there is a one-one correlation between 
the Fs and the Gs 
As Frege went on to point out (Grundlagen §§71-72), what is required for there to be a 
one-one correlation between the Fs and the Gs may itself be explained in purely logical 
terms. 4 
As is well known, Frege very swiftly came to the conclusion that the explanatory purport 
of abstraction principles is severely qualified by an objection which had earlier led him, at 
Grundlagen §56, to reject as inadequate an attempt to 
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define number by recursive definition of the series of numerically definite quantifiers of 
the form "there are exactly n Fs" As he there puts it: 
 … we can never—to take a crude example—decide by means of our definitions whether 
any concept has the number JULIUS CAESAR belonging to it, or whether that same 
familiar conqueror of Gaul is a number or not. 5 
In his view, the very same difficulty fatally infects the attempt to define number by means 
of Hume's Principle: the proposed definition provides us with a means to decide whether 
the number of Fs = q, when q is given in the form "the number of Gs"—but it apparently 
entirely fails to do so, when q is not a term of that form (nor a definitional abbreviation of 
such a term). Perceiving no way to solve the problem, Frege concluded that an altogether 
different form of definition is needed and opted for his famous explicit definition in terms 
of extensions: 
The number of Fs = the extension of the concept "equal to the concept F" 
in effect, that the number of Fs is the class containing exactly those concepts G such that 
the Gs are one-one correlated with the Fs. To derive the fundamental laws of arithmetic 
with the aid of this definition, Frege obviously required an underlying theory of extensions 
or classes. This he sought to provide, in Grundgesetze, by means of his Basic Law V, 
which governs what Frege called value ranges of functions (concepts being a particular 
kind of function, on Frege's account). As regards extensions of concepts, what Basic Law 



V asserts is that the extensions of two concepts are identical just in case those concepts 
have the same objects falling under them, that is (in class notation): 

•

As very soon became apparent, this is disastrous, since Basic Law V leads to Russell's 
Paradox. Frege sought at first to modify his law V so as to avoid the inconsistency, but to 
no avail, and finally abandoned his attempt to provide a logical foundation for arithmetic 
and analysis as a complete failure.
Neo-Fregeanism holds that Frege need not have taken the step which led to this unhappy 
conclusion. At least as far as the theory of natural numbers goes, Frege's central 
mathematical and philosophical aims may be accomplished by basing the theory on 
Hume's Principle, adjoined as a supplementary axiom to a suitable formulation of second-
order logic. Hume's Principle cannot, to be sure, be taken as a definition in any strict sense
—any sense requiring that it provide for the eliminative paraphrase of its definiendum (the 
numerical operator, "the number of … ") in every admissible type of occurrence. But this 
does not preclude its being viewed as an implicit definition, introducing a sortal concept of 
cardinal number 
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and, accordingly, as being analytic of that concept—and this, the neo-Fregean contends, 
coupled with the fact that Hume's Principle so conceived requires a prior understanding 
only of (second-order) logical vocabulary, is enough to sustain an account of the 
foundations of arithmetic that deserves to be viewed as a form of logicism which, while not 
quite logicism in the sense of a reduction of arithmetic to logic, or as a demonstration of its 
analyticity in Frege's own strict sense, 6 preserves the essential core and content of Frege's 
two fundamental theses.
Restricting attention for the time being to elementary arithmetic, there are two main claims
—one logical, the other more purely philosophical—which must be seen to hold good, if 
the neo-Fregean's leading thesis is to be sustained. The logical claim is that the result of 
adjoining Hume's Principle to second-order logic is a consistent system which suffices as a 
foundation for arithmetic, in the sense that all the fundamental laws of arithmetic are 
derivable within it as theorems. 7 The philosophical claim is that if that is so, that 
constitutes a vindication of logicism, on a reasonable understanding of that thesis.
In our view, investigations have now reached a point at which at least the technical part of 
the logical claim may be taken to have been established. 8 Hume's Principle, added to a 
suitable system of second-order logic, does indeed suffice for a proof of the Dedekind-
Peano axioms. 9 Moreover, as far as consistency is concerned, we now have as much 
assurance as it seems reasonable to demand. In "The Consistency of Frege's Foundations  
of Arithmetic," Boolos (1987) presents a formal theory FA (Fregean Arithmetic), 



incorporating an equivalent of Hume's Principle, which captures the mathematical content 
of the central sections of Frege's Grundlagen (§§63-83) and proves not just that we can 
give a model for Hume's Principle, but also that the informal model-theoretic proof can be 
replicated both in standard set theory and in the weaker theory known as "second-order 
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arithmetic" or "analysis," the consistency of which seems well beyond serious question.
The philosophical significance of the situation is another matter entirely. If the neo-
Fregean is to justify his contention that Frege's Theorem can underwrite a viable 
Platonistic version of logicism, then, even if he restricts that claim to elementary number 
theory, he has much philosophical work to do on several fronts; and if he additionally 
aspires, as we do, to sustain a more inclusive version of logicism encompassing at least the 
theory of real numbers and perhaps some set theory, then he must take on an additional 
range of tasks—some technical, some philosophical.
In the four immediately following sections, we shall confine ourselves to issues which neo-
Fregeanism must address, even if the scope of its leading claims is restricted to elementary 
arithmetic. Many of these concern the capacity of abstraction principles—centrally, but 
not only, Hume's Principle itself—to discharge the implicitly definitional role in which the 
neo-Fregean casts them, and thereby to subserve a satisfactory apriorist epistemology for 
(at least part of) mathematics. Others, to be briefly reviewed in section 8, concern the other 
main assumption that undergirds the specifically logicist aspect of the neo-Fregean project 
(and equally, of course, Frege's original project): that the logic to which abstraction 
principles are to be adjoined may legitimately be taken to include higher-order—at the 
very least, second-order—logic without compromise of the epistemological purposes of the 
project. In between, in sections 6 and 7 respectively, we shall canvass some of the issues 
that attend a neo-Fregean construction of analysis and of set theory.

2. Abstraction Principles—Ontology and Epistemology

Frege's Platonism is the thesis that number words have reference, and that their reference is 
to objects—objects which, on any reasonable account of the abstract-concrete distinction, 
10 must be reckoned to lie on the abstract side of it. Why it was so crucial for Frege that 
numbers be recognized as objects becomes clear when we consider how he proposes to 
prove that every finite number is immediately followed by another (and hence, in the 
presence of others of the Dedekind-Peano axioms, which Frege can straightforwardly 
establish, that the sequence of finite numbers is infinite). The idea of Frege's proof is to 
show that for each finite n, the 



end p.170

number belonging to the concept finite number ancestrally preceding or equal to n itself 
directly follows after n. To prove this, in the manner sketched in Grundlagen §§82-83, 
requires applying Frege's criterion of identity for cardinal numbers, as encoded in Hume's 
Principle, to first-level concepts of the type just indicated—that is, concepts under which 
numbers, and indeed only numbers, fall—and thus requires numbers to be objects.
It may be rejoined that this gives Frege a motive to treat numbers as objects, but not a 
justification for doing so. However, while Grundlagen provides no systematic argument 
for this apparently crucial thesis, Frege did at least provide hints, and some of the 
materials, on the basis of which a case for it may be constructed. We start from two ideas. 
First: objects, as distinct from entities of other types (properties, relations, or, more 
generally, functions of different types and levels), just are what (actual or possible) 
singular terms refer to. Second: no more is to be required in order for there to be an at least 
prima facie case that a class of apparent singular terms have reference, than that they occur 
in certain true statements free of all epistemic, modal, quotational, and other forms of 
vocabulary standardly taken to compromise straightforward referential function. In 
particular, if certain expressions function as singular terms in various true first-order 
atomic contexts, there can be no further question that they have reference and, since they 
are singular terms, refer to objects. The underlying thought is that—from a semantic point 
of view—a singular term just is an expression whose function is to effect reference to an 
object, and that a wide class of statements containing such terms cannot be true unless 
those terms successfully discharge their referential function. Provided, then (as certainly 
appears to be the case), there are such true, suitable statements so featuring numerical 
singular terms, there are objects—numbers—to which they make reference. 11 
This simple argument, of course, is not conclusive. At most it creates a presumption in 
favor of numbers' existence as a species of objects. And there are various ways in which 
that presumption might be defeated. An opponent might agree that the statements to which 
appeal is made have, superficially, the right logical form, but deny that appearances are 
trustworthy. Or, more radically, she 
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may accept those appearances as a fair guide to truth-conditions (at least as far as purely 
arithmetical statements go), but deny that any of the relevant statements are actually—
taken literally and at face value—true.12 It might be conceded that the argument makes a 
prima facie case, but argued that the relevant statements cannot really be seen as involving 
reference to numbers, on the ground that there are (allegedly) insuperable obstacles in the 
way of making sense of the very idea that we are able to engage in identifying reference to, 



or thought about, any (abstract) objects to which we stand in no spatial, causal or other 
natural relations, however remote or indirect. A closely related objection—originating in 
Paul Benacerraf's much discussed dilemma for accounts of mathematical truth, and 
subsequently pressed in a revised form by Hartry Field—has it that a Platonist account of 
the truth-conditions of mathematical statements puts them beyond the reach of humanly 
possible knowledge or reliable belief, and must therefore be rejected.
The simple argument—it is worth noting—makes no appeal to the specific possibility of 
explaining singular terms for natural numbers, along with the corresponding sortal concept, 
via Hume's Principle. Of course, the case for the existence of numbers can be made on the 
basis of Hume's Principle, and it is important to the neo-Fregean that this should be so, 
precisely because it provides for a head-on response to the epistemological challenge posed 
by Benacerraf's dilemma. Hume's Principle, taken as implicitly defining the numerical 
operator, fixes the truth-conditions of identity-statements featuring canonical terms for 
numbers as those of corresponding statements asserting the existence of one-one 
correlations between appropriate concepts. Given statements of the latter sort as premises, 
the truth of such identities (and hence the existence of numbers) may accordingly be 
inferred. We thus have the makings of an epistemologically unproblematic route to the 
existence of numbers and a fundamental species of facts about them. The key idea is 
clearly present in Frege's metaphorical explanation of how the Direction Equivalence may 
serve to introduce the concept of direction:
"we carve up the content [expressed in the statement that lines a and b are parallel] in a 
new way, and this yields us a new concept" [i.e., of direction]. (Frege 1884, §64) More 
generally, it is open to us, by laying down an abstraction principle α β(Σ(α) = Σ(β)↔α
β), to re-describe or re-conceptualise the type of state of affairs apt to be depicted by 
sentences of the form α  β—we may so reconceive such states of affairs that they come to 
constitute the identity of a new kind of object of which, by that very stipulation, we 
introduce the concept. 13 
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This is all quite consistent with Platonism, modestly and soberly conceived. For it is no 
part of the proposal that objects of the new kind—abstract objects such as directions, 
numbers, or whatever—are creations of the human mind, somehow brought into being by 
our stipulation. The sense in which they are new is merely that the (sortal) concept under 
which they fall is newly introduced by our abstractive explanation. In and of itself, the 
abstraction does no more than introduce that concept and establish a use for a 
corresponding range of singular terms by means of which its instances, if any, may be 
designated, and involves no attempt to guarantee that the concept does indeed have 
instances. The existence of objects of the new kind (e.g., directions) depends—and, if the 
explanation is accepted, depends exclusively—upon whether or not the relevant 



equivalence relation (e.g., parallelism) holds among the entities of the presupposed kind 
(e.g., lines) on which that relation is defined. 14 And, to return to the case that most 
concerns us here, provided that facts about one-one correlation of concepts—in the basic 
case, sortal concepts under which only concrete objects fall—are, as we may reasonably 
presume, unproblematically accessible, we gain access, via Hume's Principle and without 
any need to postulate any mysterious extrasensory faculties or so-called mathematical 
intuition, to corresponding truths whose formulation involves reference to numbers. 15 
Both this form of the case for the existence of numbers and its claim to provide trouble-
free access to a basic class of facts about them may, like the simple argument, be 
challenged. For example, it may be claimed that if statements having the form of the left-
hand side of Hume's Principle involve reference to numbers, then they cannot legitimately 
be accepted as equivalent to corresponding statements having the form of the right-hand 
side, since the latter involve no such reference and may accordingly be true under 
circumstances where their left-hand counterparts are not (viz. if there are no numbers). On 
this basis, it may be held that Hume's Principle—along with abstraction principles quite 
generally—is acceptable only either if it is so construed that the apparent reference to 
numbers presented by the left-hand sides of its instances is treated as merely apparent, or it 
is amended so as to explicitly allow for the presupposition that numbers exist.
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An advocate of the first alternative—likely to find favor with orthodox nominalists—will 
insist that we may accept abstraction principles as explanatory of the truth conditions of 
their left-hand sides only if we treat the latter as devoid of semantically significant syntax, 
beyond the occurrences of the term or predicate variables α and β. The only legitimate 
reading of Hume's Principle, on this view, is an austere one according to which it merely 
serves to introduce a new, semantically unstructured two-place predicate: 
the number of … is identical with the number of__ 
as alternative notation for the equivalence relation that figures on the right-hand side: 
" … corresponds one-one with __." But why insist upon austerity? The seemingly 
straightforward answer—that since the statement "F corresponds one-one with G" plainly 
involves no reference to numbers, it can be taken as explaining the truth conditions of "the 
number of Fs = the number of Gs" only if the latter likewise involves no such reference—
implicitly relies upon a question-begging assumption. It is certainly true that statements of 
one-one correspondence between concepts involve no terms purporting reference to 
numbers. And it is equally clearly true that two statements cannot have the same truth-
conditions if they differ in point of existential commitment. But the premise the nominalist 
requires—if he is to be justified in inferring that statements of one-one correspondence can 
be equivalent to statements of numerical identity only if the latter are austerely construed
—is that statements of one-one correspondence do not demand the existence of numbers. 



And this premise does not follow from the acknowledged absence, in such statements, of 
any explicit reference to numbers. The statement that a man is an uncle involves no explicit 
reference to his siblings or their offspring, but it cannot be true unless he has a nonchildless 
brother or sister.
It may be objected that while no one would count as understanding the statement that 
Edward is an uncle if she could not be brought to agree that its truth requires the existence 
of someone who is brother or sister to Edward and father or mother of someone else, it is 
quite otherwise with statements of one-one correspondence. Someone may perfectly well 
understand the statement that the Fs correspond one-one with the Gs without being ready 
to acknowledge—what the nominalist denies—that its truth requires the existence of 
numbers. The neo-Fregean reply is that so much is perfectly correct, but insufficient for the 
nominalist's argument. It is correct precisely because—just as the neo-Fregean requires—
understanding talk of one-one correspondence between concepts does not demand 
possession of the concept of number. But it is insufficient because the question that matters 
is, rather, whether one who is fully cognizant of all the relevant concepts—that is, the 
concepts of one-one correspondence between concepts and number—could count as fully 
understanding a statement of one-to-one correspondence between concepts without being 
ready to agree that its truth 
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called for the existence of numbers. If the concept of number is implicitly defined, as the 
neo-Fregean proposes, by Hume's Principle, she could not. Insisting at this point that no 
such explanation can be admitted, because only an austere reading of Hume's Principle is 
permissible, amounts to no more than an unargued—and now explicitly question-begging
—refusal to entertain the kind of explanation on offer.
Nominalists of the less traditional kind represented, most prominently, by Hartry Field16 

are more likely to favor the second alternative: to allow that abstraction principles are all 
very fine as stipulative explanations, provided (what the nominalist views as) their 
existential presuppositions are made properly and fully explicit. Hume's Principle, in 
particular, should be replaced by a properly conditionalized version along the lines of "If 
there exist such things as the number of Fs and the number of Gs, then they are identical if 
and only if the Fs and Gs are one-one correlated." Such conditionalized principles would, 
of course, be inadequate to the neo-Fregean's purposes.
There is, however, an immediate difficulty confronting the proposal to replace Hume's 
Principle by such a conditionalized version. 17 How are we to understand the antecedent 
condition? In rejecting Hume's Principle as known a priori, Field holds that the obtaining 
of a one-one correlation between a pair of concepts cannot be regarded as tout court 
sufficient for the truth of the corresponding numerical identity. So, since that was an 
integral part of the proposed implicit definition of the concept of number, his position begs 



some other account of that concept—an intelligible doubt about the existence of numbers 
requires a concept in terms of which the doubt might be framed. More specifically, if we 
take it that the hypothesis that numbers exist may be rendered as " F x x = NyFy," then in 
order to understand the condition under which Field is prepared to allow that Hume's 
Principle holds, we must already understand the numerical operator. But it was the 
stipulation—unconditionally—of Hume's Principle which was supposed to explain it. That 
explanation has lapsed; but Field has put nothing else in its place.
Is there perhaps a better way to implement Field's conditionalization strategy, one which 
avoids this difficulty? A familiar way of thinking about the manner in which theoretical 
scientific terms acquire meaning18 holds that we should view a scientific theory, 
embedding one or more novel theoretical terms, as comprising two components: one 
encapsulating the distinctive empirical content of the theory without deployment of the 
novel theoretical vocabulary, the other serving to fix the 
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meaning(s) of the theoretical term(s). The theory's total empirically falsifiable content is, 
roughly, that there exist entities of a certain kind, namely, entities satisfying (a schematic 
formulation of) the (basic) claims of the theory. This can be expressed by the theory's 
Ramsey sentence (i.e., roughly, an existential generalization obtained from the original 
formulation of the theory employing the new theoretical terms by replacing each 
occurrence of each new term with a distinct free variable of appropriate type, and closing 
the resulting open sentence by prefixing the requisite number of existential quantifiers). 
Thus if, focusing for simplicity on the case where a single new theoretical term, "f," is 
introduced, the undifferentiated formulation of the theory is "Θ(f )", then its empirical 
content is exhaustively captured by its Ramsey sentence, " x Θ(x)," where the new variable 
"x" replaces "f " throughout "Θ(f )." The new term "f " can then be introduced, by means of 
what is sometimes called the Carnap conditional19 : " x Θ(x) → Θ(f )", as denoting 
whatever (if anything) satisfies "Θ" (on the intended interpretation of the old vocabulary 
from which it is constructed). This conditional expresses, in effect, a convention for the use 
of the new term "f." Being wholly void of empirical content, it can be stipulated, or held 
true a priori, without prejudice to the empirical disconfirmability of the theory proper. 
Alternatively, the definitional import of the theory might be seen as carried, rather, by a 
kind of inverse of its Carnap conditional—in the simple instance under consideration, 
something of the shape " x(x = f → Θ(x))." We shall follow this proposal in the brief 
remarks to follow. 20 
This may seem to offer Field a way around the difficulty: treat the system consisting of 
Hume's Principle and second-order logic as a "theory," in a sense inviting comparison with 
empirical scientific theories, whose capacity to introduce theoretical concepts by implicit 
definition is uncompromised by the fact that they may turn out to be false. We may indeed 



think of this theory as indirectly implicitly defining the concept of cardinal number; 
however, the real vehicle of this definition is not Hume's Principle but the corresponding 
inverse-Carnap conditional: 

•

And now the complaint that Field has put nothing in place of Hume's Principle to enable us 
to construe the condition on which he regards it as a priori legitimate to affirm Hume's 
Principle is met head-on. HP*, Field may say, tells us what 
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numbers are in just the way that the inverse-Carnap conditional for any (other) scientific 
theory tells us what the theoretical entities it distinctively postulates are—by saying what 
(fundamental) law(s) they characteristically satisfy, if they exist. That there are numbers is 
itself no conceptual or definitional truth; it is, rather, the content of a theory (in essence, a 
theory given by the Ramsified version of Hume's Principle: 

η F G(ηF = ηG ≡ F 1-1 G)), which may perfectly well be—and in Field's view is—
false. 21 

Should this proposal be accepted? Let's allow that if there is good reason to insist that an 
implicit definition of the numerical operator should proceed, not through an outright 
stipulation of Hume's Principle but through something more tentative, then one plausible 
shape for the stipulation is an inverse Carnap formulation of the kind suggested. But is 
there any such reason?
The comparison with the empirical scientific case cannot provide one. Conditionalization 
is called for in the scientific case in order to keep open the possibility of empirical 
disconfirmation. Fixing the meaning of "f " by stipulating the truth of the whole 
conditional ' x(x = f→Θ(x))' leaves room for acknowledgment that the antecedent (more 
precisely, its existential generalization ' x x = f') might turn out false—grounds to think it 
false being provided by empirical disconfirmation of the consequent (more precisely, of 
the theory's Ramsey-sentence ' xΘ(x)'). But there is no possibility of empirical 
disconfirmation of the Ramsified Hume's Principle if, as seems reasonable to suppose, 
Hume's Principle is conservative over empirical theory—as Field allows, indeed argues—
since in that case it will have no proper empirical consequences.
It does not, of course, follow that there cannot be other reasons to insist upon a more 
cautious, conditionalized form of stipulation. Let us say that a stipulation of a sentence as 
true is arrogant if its truth requires that some of its ingredient terms have reference in a 
way that cannot be guaranteed just by providing them with a sense. An example would be 
the stipulation 'Jack the Ripper = the perpetrator of the Whitechapel murders' offered by 



way of introduction of the term 'Jack the Ripper.' Were the outright stipulation of Hume's 
Principle rightly regarded as arrogant, that would—plausibly—provide an independent 
reason for insisting that it cannot be known a priori just on the basis of its meaning-
conferring credentials and for adopting something like the distinction between 
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factual content, carried by Ramsified Hume, and meaning-fixing—accomplished by 
something appropriately conditionalized—proposed in the scientific-theoretical case. The 
crucial question is, then, whether an outright stipulation of Hume's Principle is indeed 
guilty of this failing. We think not. In general, it would seem, it suffices for an implicitly 
definitional stipulation to avoid arrogance that it does no more than lay down introduction 
and elimination conditions for the definiendum in terms themselves free of any 
problematic existential presupposition. And this will surely be so, if the import of the 
stipulation may be parsed into introductory and/or eliminative components, each 
conditional in form, prescribing which true statements free of occurrences of the 
definiendum are to be respectively sufficient and/or necessary for true statements variously 
embedding it.
But that is exactly what Hume's Principle, proposed as a stipulation, does. The principle 
does not just assert the existence of numbers as 'Jack the Ripper is the perpetrator of this 
series of killings' asserts the existence of the Ripper. What it does is to fix the truth 
conditions of identities involving canonical numerical terms as those of corresponding 
statements of one-one correlation among concepts (compare the schematic stipulation 'a is 
the single perpetrator of these killings if and only if a is Jack the Ripper'). Its effect is that 
one kind of context free of the definiendum—a statement of one-one correlation between 
suitable concepts—is stipulated as sufficient for the truth of one kind of context embedding 
the definiendum: that identifying the numbers belonging to those respective concepts. That 
is its introductory component. And, conversely, the latter type of context is stipulated as 
sufficient for the former. That is the principle's eliminative component. All thus seems 
squarely in keeping with the constraint that in order to avoid arrogance, legitimate implicit 
definitions must have an essentially conditional character. 22 If the additional 
conditionalization in HP* is proposed in the interests of avoiding arrogance, it thus merely 
involves a condition too many. 23 
Obviously the general notion of implicit definition invoked here calls for further 
clarification and defense. 24 But even if it is accepted that this is one way in which a 
statement might qualify as analytic in something akin to the general spirit of Frege's 
notion, if not its detail, there are several more specific grounds on which 
end p.178



it might be denied that Hume's Principle in particular can function as such an implicit 
definition. In the next three sections we summarize the most important of them, with just 
the briefest indication how the neo-Fregean may respond.

3. Abstraction Principles and Julius Caesar

One paramount such ground is, of course, the Julius Caesar problem. The concept of 
number to be explained, in both Frege's and the neo-Fregean view, is a sortal concept. 
Mastery of any general concept applicable to objects involves knowing what distinguishes 
objects to which it applies from those to which it does not—involves, that is, a grasp of 
what Dummett has called a criterion of application for the concept. What sets sortal 
concepts apart from others is that full competence with a sortal concept involves, in 
addition, knowing what settles questions of identity and distinctness among its instances—
what determines, given that x and y are both Fs, whether they are one and the same, or 
distinct, Fs. In other words, sortal concepts are distinguished from others by their 
association with what Frege called a criterion of identity.25 Hume's Principle appears, at 
least, to take care of a necessary condition for number to be a sortal concept in this sense—
by supplying a criterion of identity—and so to constitute at least a partial explanation of a 
sortal concept of number. The neo-Fregean, however, makes a stronger claim—that by 
stipulating that the number of Fs is the same as the number of Gs just in case the Fs are 
one-one correlated with the Gs, we can set up number as a sortal concept (i.e., that Hume's 
Principle suffices to explain the concept of number as a sortal concept). This stronger claim 
appears open to an obvious objection: simply, that Hume's principle cannot be sufficient, 
since there is also required, as with any other concept, a criterion of application. Since such 
a criterion would determine which sorts of things are not numbers, it would also settle the 
truth-conditions of any identity statement of the form "the number of Fs = q," where "q" 
marks a place for a term explicitly purporting to denote a thing of some previously 
understood sort. In short, the Caesar Problem, in the form in which Frege expresses it at 
Grundlagen §66, is nothing other than the problem of supplying a criterion of application 
for number and thereby of setting it up as the concept of a genuine sort of object. But that it 
is such a concept is the cardinal thesis of (neo-) Fregean Platonism.
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For this reason, 26 we believe it is no option for the neo-Fregean to declare "mixed" identity 
statements of the troublesome sort out of order or somehow ill-formed. Rather, he must 
grant that they raise perfectly genuine, legitimate questions and seek to explain how, 
within the resources at his disposal, their truth-values may in principle be resolved. In 



short, he needs a positive solution to the Caesar Problem. The best hope for providing one 
remains, in our view, the consideration that there are at least some restrictions on the 
extension of any given sortal concept which are mandated by the type of canonical ground
—criterion of identity—associated with identity statements concerning its instances; and, 
more specifically, that because they are canonically decided by reference to independent 
considerations, statements of numerical and of, say, personal identity must be reckoned to 
concern different categories (or ultimate sorts) of objects. 27 

4. Abstraction Principles and Bad Company

Frege's Basic Law V, like Hume's Principle, is a second-order abstraction, and thus 
provides a sharp reminder that not every imaginable abstraction principle constitutes an 
acceptable means of introducing a concept. Some constraints are needed—with 
consistency, obviously, a minimum such constraint. But some critics have thought the 
inconsistency reveals far more—not merely that Law V cannot function as an explanation 
of a coherent concept of extension or set, but also that abstractive explanations are 
defective quite generally. If it were possible satisfactorily to explain the concept of number 
by laying down Hume's Principle, the objection goes, then it ought to be possible to do the 
same for the concept of extension by laying down Basic Law V. Since the concept of 
extension cannot be satisfactorily so explained, neither can the concept of number, and nor 
can any other concept.
This is the Bad Company objection in its simplest, most sweeping, and—in our estimation
—least challenging form. The objection as stated seems to assume that if a pattern of 
concept explanation—in this case, explanation by means of an abstraction principle—can 
be exploited to set up the resources for derivation of 
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an antinomy, that somehow shows not just that that particular attempt at explaining a 
concept aborts, but that the pattern itself is defective. This extreme claim should be 
rejected. Allowed a sufficiently free hand in explaining predicates by laying down their 
satisfaction conditions, we can explain a predicate applicable to predicates by stipulating 
that a predicate satisfies "x is heterological" if and only if it does not apply to itself, and 
speedily arrive at the well-known contradiction that "heterological" is heterological just in 
case it is not. No one seriously supposes that the moral in that case is that we can never 
satisfactorily explain a predicate by saying what it takes for an object to satisfy it. Why 
suppose it any less unreasonable to draw the parallel moral in the case in hand—that one 
can never explain a sortal concept by means of a Fregean abstraction? If it should be 



demanded that the neo-Fregean point to some relevant difference between good and bad 
cases of would-be abstractive explanations, it would seem, so far, a perfectly adequate 
reply that Basic Law V, for example, is known to be inconsistent, whereas Hume's 
Principle is not. Indeed, he can in this case make a stronger reply—although it is not clear 
that he needs to make it, in order to dismiss the objection as stated—that Hume's Principle 
is very reasonably believed not to be inconsistent.
A potentially more interesting form of Bad Company objection, due to George Boolos, 28 

allows that the possibility of inconsistent abstractions does not discredit abstractive 
explanation as such, and grants that an explanation based on Hume's Principle may 
justifiably be presumed at least consistent, but points to the possibility of other equally 
consistent abstraction principles which are, however, inconsistent with Hume's Principle. 
Hume's Principle has models, but none which have less than countably infinite domains. 
By taking a different equivalence relation on (first-level) concepts, such as one which 
holds between a pair of concepts F and G if and only if just finitely many objects are either 
F-but-not-G or G-but-not-F, we can frame an abstraction—the Nuisance Principle29 —
which has it that certain objects ν(F) and ν(G)—the "nuisances" of F and G, respectively—
are one and the same just in case F and G are so related. The Nuisance Principle is, like 
Hume's Principle, consistent. The trouble is that while it has models, it can be shown to 
have only finite models. What this threatens is not so much the capacity of Hume's 
Principle to function as an explanation, as its title to be regarded as known in virtue of 
being analytic of the concept of number. For does not the Nuisance Principle enjoy an 
equally good title to be regarded as analytic of the concept of nuisance? Yet inconsistent 
principles cannot both be 
end p.181

true, much less known. Pending exposure of some relevant disparity, should we not 
conclude that neither principle can, after all, be known on the basis of its stipulation?
If the neo-Fregean view of the philosophical significance of Frege's Theorem is to be 
sustainable, there must be a relevant difference: some further constraint(s), in addition to 
any which may be needed to ensure satisfaction of the minimal (and of course 
fundamental) condition of consistency, with which good abstractions must comply, but 
which the Nuisance Principle breaches. One natural proposal is to the effect that no 
acceptable explanation—whether it proceeds through an abstraction principle or takes 
some other shape—can carry implications for the size of extensions of concepts other than, 
and quite unconnected to, the concept to be explained. The requirement this suggests is that 
an acceptable abstraction principle should be conservative in a sense closely akin to that 
deployed by Hartry Field in his defense of Nominalism, according to which a mathematical 
theory M is conservative if its adjunction to a nominalistically acceptable theory N has no 
consequences for the ontology of N which are not already consequences of N alone. 30 



Since the Nuisance Principle constrains the extensions of all other concepts to be at most 
finite, it fails this requirement and cannot, therefore, constitute an acceptable explanation. 
Evidently the same will go for any other "limitative" abstraction principle (i.e., any 
abstraction which, while consistent, can have no models exceeding some assignable 
cardinality. 31 
There is a wider question here which merits investigation in its own right, quite apart from 
its obvious bearing on the prospects for extending the neo-Fregean approach beyond 
elementary arithmetic. What conditions, in general, are necessary and sufficient for an 
abstraction principle to be acceptable? The apparent need for conservativeness constraints, 
over and above any restrictions which may be needed to avoid inconsistency, is one 
important aspect of this larger question. Another issue concerns the requirement of 
consistency itself. If an appreciable body of mathematics can be generated from acceptable 
abstraction principles, we should not expect to be able to formulate a general theory of 
abstraction that is provably consistent—save, perhaps, relative to the assumption 
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of the consistency of some yet more powerful theory. It may, nevertheless, be possible to 
articulate some general restrictions which must be observed if inconsistency is to be 
avoided. One obvious danger here arises from the fact that an equivalence relation defined 
on the concepts on a specified underlying domain of objects may partition those concepts 
into more equivalence classes than there are objects in the underlying domain, so that a 
second-order abstraction may "generate" a domain of abstracts strictly larger than the 
initial domain of objects. This, in itself, need be no bad thing—indeed, it is essential, if 
there is to be a neo-Fregean abstractionist route to (classical) analysis. But it raises the 
specter of something like Cantor's Paradox. If that is to be avoided, it is natural to think, 
then we must bar all "inflationary" abstractions—abstractions which make impossible 
demands upon the cardinality of any determinate objectual domain. 32 But how precisely 
such a restriction should be formulated is a delicate and difficult question which we cannot 
further pursue here. 33 
There are several other grounds on which the analyticity of Hume's Principle may be, and 
indeed has been, disputed, to which we can here merely draw the reader's attention. Most 
obviously, perhaps, it may be claimed that no statement encumbered with significant 
existential implications can possibly be analytic, in any reasonable sense. Hume's 
Principle, however, certainly does carry such implications, since it entails the existence of 
infinitely many objects—each and every one of the natural numbers, at least. Again, while 
we know that Fregean arithmetic is consistent if (and only if) second-order arithmetic is 
consistent, we have no absolute guarantee that either theory is consistent; but if we don't 
know that Fregean arithmetic is consistent, how can we justifiably claim that Hume's 
Principle is analytic? Or—focusing again upon the principle's existential implications—it 



may be contended that, quite apart from the fact that no analytic principle ought to carry 
existential commitments at all, Hume's Principle carries particular such commitments 
which are, at best, highly questionable. For given that the principle, in conjunction with the 
second-order logical truth that there is a one-one map from any empty concept to itself, 
ensures the existence of zero defined as Nx:x ≠ x, it would seem that the neo-Fregean can 
have no ground for refusing to coinstantiate its second-order variables F and G by the 
complementary predicate of self-identity, so that the principle entails (together with another 
obvious second-order logical truth) the existence of the universal number Nx:x = x—the 
number, "anti-zero," of all the things that there are. But the existence of such a number is 
doubtful at best—perhaps worse, since under standard definitions, it is provable in 
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Zermelo-Fränkel set theory (ZFC) that there can be no cardinal number of all the sets there 
are. 34 

5. Abstraction Principles and Impredicativity

Formulated in the language of second-order logic, and with quantifiers made explicit, 
Hume's Principle is 

•

If we are to be able to prove, by means of this principle, the distinctness of the individual 
natural numbers as Frege proposed to define them (0 =  df Nx:x≠x, 1 =  df Ny:(y = Nx:x≠x), 
etc.), and to prove there to be infinitely many of them by proving, as Frege envisaged, that 
each natural number n is immediately followed by the number of numbers up to and 
including n, then it is essential that the principle's initial second-order quantifiers be taken 
as ranging over concepts under which numbers themselves fall, and hence that its first-
order quantifiers be taken as ranging over numbers as well as objects of other kinds. In 
short, if Hume's Principle is effectively to discharge the role in which the neo-Fregean 
casts it, its first-order quantifiers must be construed as ranging over, inter alia, objects of 
that very kind whose concept it is intended to introduce. Is that a cause for concern?
That it is—that the unavoidable impredicativity of Hume's Principle amounts to some sort 
of vicious circularity—has long been the general thrust of much of Michael Dummett's 
objection both to Frege's philosophy of arithmetic and, more recently, to neo-Fregean 
efforts to resuscitate it. Indeed, while Dummett has 
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developed a number of quite distinct lines of criticism of that enterprise, 35 it seems clear 
that it is the impredicativity of Hume's Principle which forms the focus of his principal 
complaint. It is, however, neither obvious that impredicativity is always harmful, nor easy 
to be clear why, exactly, Dummett takes it to be a fatal defect in this case. There is, of 
course, the comparison with Basic Law V—the form of Bad Company objection noted 
earlier. It is true enough that both principles are impredicative, and true also that the 
derivation of Russell's contradiction exploits precisely this feature of Law V—predicativity 
restrictions would certainly block the derivation, and in that sense, impredicativity may be 
held to be at least partly to blame for the contradiction. But impredicativity does not 
always lead to contradiction, and Hume's Principle is, as we have emphasized, at least very 
plausibly taken to be consistent. Dummett's thought seems to be that impredicativity is 
objectionable, regardless of whether it actually results in inconsistency. But why?
There seem to be a number of distinguishable lines of objection suggested by Dummett's 
discussion. One is that, for Frege at least, it was necessary to ensure that every statement 
about numbers possesses a determinate truth-value, and that the impredicativity of Hume's 
Principle obstructs this. 36 Another is that quantification over a domain of objects is in good 
order only if it is possible to supply an independent, prior characterization of the domain, 
and that this cannot be done for the domain over which Hume's Principle's impredicative 
first-order quantifiers are required to range. 37 Finally, there is the thought that the 
impredicative character of Hume's Principle disqualifies it from functioning as an 
explanation of the numerical operator because, considered as such, it would be viciously 
circular. 38 None of these objections, in our view, carries conviction. The first appears to 
rely either upon the questionable assumption that Frege's unswerving commitment to 
bivalence is indispensable to anything worth describing as a version of logicism or upon an 
unjustifiably exacting interpretation of the requirements for contextual explanation of a 
sortal concept. The second invokes an exorbitant—and indeed incoherent—condition on 
the intelligibility of quantification. And granted—crucially—the availability of a positive 
solution to the Caesar Problem, it does seem possible, contra the third, to explain how 
intelligent reception of Hume's Principle as an explanation could enable one, 
impredicativity notwithstanding, to understand numerical statements of arbitrary 
complexity. 39 
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6. Neo-Fregean Real Analysis



The minimal formal prerequisite for a successful neo-Fregean foundation for a 
mathematical theory is to devise presumptively consistent abstraction principles strong 
enough to ensure the existence of a range of objects having the structure of the objects of 
the intended theory—in the case of elementary arithmetic, for instance, the existence of a 
series of objects having the structure of the natural numbers (i.e., constituting an ω 
sequence). Second-order logic, augmented by the single abstraction, Hume's Principle, 
accomplishes this formal prerequisite. The outstanding question is then whether Hume's 
Principle, beyond being presumptively consistent, may be regarded as acceptable in a 
fuller, philosophically interesting sense. That raises the intriguing complex of metaphysical 
and epistemological issues just reviewed.
In parallel, the minimal formal prerequisite for a successful neo-Fregean foundation of real 
analysis must be to find presumptively consistent abstraction principles which, again in 
conjunction with a suitable—presumably second-order—logic, suffice for the existence of 
an array of objects that collectively comport themselves like the classical real numbers; 
that is, compose a complete, ordered field. Recently a number of ways have emerged for 
achieving this result.
One attractive approach is known as the Dedekindian Way.40 We start with Hume's 
Principle plus second-order logic. Then we use the Pairs abstraction, 

•

to arrive at the ordered pairs of the finite cardinals so provided. 41 Next we abstract over the 
Differences between such pairs, 

•

and proceed to identify the integers with these differences. We then define addition and 
multiplication on the integers so identified and, where m, n, p, and q are any integers, form 
Quotients of pairs of integers in accordance with this abstraction: 

•
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We may now identify a rational with any quotient Q m,n  whose second term n is 
nonzero. Then, defining addition and multiplication and the natural linear order on the 
rationals so generated, we can move on to the objects which are to compose the sought-for 
completely ordered field via the Dedekind-inspired Cut Abstraction: 

•



where 'r' ranges over rationals and the relation ≠ holds between a property, P, of rationals 
and a specific rational number, r, just in case any instance of P is less than or equal to r 
under the constructed linear order on the rationals. Cuts are the same, accordingly, just in 
case their associated properties have exactly the same rational upper bounds. Finally, we 
identify the real numbers with the cuts of those properties P which are both bounded above 
and instantiated in the rationals.
On the Dedekindian Way, then, successive abstractions take us from one-to-one 
correspondence on concepts to cardinals, from cardinals to pairs of cardinals, from pairs of 
finite cardinals to integers, from pairs of integers to rationals, and finally from concepts of 
rationals to (what are then identified as) reals. Although the path is quite complex in detail 
and the proof that it indeed succeeds in the construction of a completely ordered field is at 
least as untrivial as Frege's Theorem, it does make for a near-perfect neo-Fregean capture 
of the Dedekindian conception of a real number as the cut of an upper-bounded, nonempty 
set of rationals. True, the abstractions involved do not provide for the transformability of 
any statement about the reals, so introduced, back into the vocabulary of pure second-order 
logic with which we started out. But that—pure logicist—desideratum was already 
compromised in the construction of elementary arithmetic on the basis of Hume's 
Principle. As in that case, a weaker but still interesting version of logicism remains in 
prospect. If each of the successive abstractions invoked on the Dedekindian Way succeeds 
as an implicit definition of the truth-conditions of contexts of the type schematized on its 
left-hand side, then there is a route of successive concept formations that starts within 
second-order logic and winds up with an understanding of the Cuts and a demonstration of 
the fundamental laws of a canonical mathematical theory of them: in effect, a foundation 
for analysis in second-order logic and (implicit) definitions. Dedekind did not have the 
notion of an abstraction principle. But it seems likely that his logicist sympathies would 
have applauded this construction and its philosophical potential. 42 
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The Dedekindian Way contrasts significantly with another route explored by one of the 
present authors in recent work. 43 In claiming to supply a foundation for analysis—in 
particular, in claiming that the series of abstractions involved effectively leads to the real 
numbers—the Dedekindian Way may be viewed as resting on an essentially structural 
conception of what a real number is: in effect, the idea of a real number merely as a 
location in a certain kind of (completely) ordered series. For one following the 
Dedekindian Way, success just consists in the construction of a field of objects—the Cuts, 
as defined—having the structure of the classical continuum. Against that, we may contrast 
what is accomplished by Hume's Principle in providing neo-Fregean foundations for 
elementary arithmetic. The corresponding formal result is that Hume's Principle plus 
second-order logic suffices for the construction of an ω sequence. That is certainly of 



mathematical interest. But what gives Frege's Theorem its distinctive and additional 
philosophical interest is that Hume's Principle also purports to give an account of what  
cardinal numbers are. The philosophical payload turns not on the mathematical reduction 
as such but on the specific content of the abstraction by which the reduction is effected.
To enlarge: Hume's Principle effectively incorporates a variety of philosophical claims 
about the nature of number for which Frege prepares the ground philosophically in the 
sections of Grundlagen preceding its first appearance—for example, the claims (1) that 
number is a second-level property, a property of concepts, and it is concepts that are the 
things that have numbers, which is incorporated by the feature that the cardinality operator 
is introduced as taking concepts for its arguments; and (2) that the numbers themselves are 
objects, which is incorporated by the feature that terms formed using the cardinality 
operator are singular terms. And in addition, of course, Hume's Principle purports to 
explain (3) what sort of things numbers are. It does so by framing an account of their 
criterion of identity in terms of when the things that have them have the same one: 
numbers, according to Hume's Principle, are the sort of things that concepts share when 
they are one-to-one correspondent.
Now one could, if one wanted, read a corresponding set of claims about real number off 
the Cut Abstraction principle featured in the Dedekindian Way. One would then conclude, 
correspondingly, that real numbers are objects, that the things which have real numbers are 
properties of rationals, and that real numbers are the sorts of things that properties of 
rationals share just when their instances have the same rational upper bounds. One could 
draw these conclusions. But, apart from the first, they are unmotivated-seeming 
conclusions to draw. There is no philosophical case that real number is a property of 
properties of rationals which stands comparison with Frege's case that cardinal number is a 
property of 
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(sortal) concepts. On the contrary, the intuitive case is that real number belongs to things 
like lengths, masses, temperatures, angles, and periods of time. We could conclude that the 
Dedekindian Way incorporates poor answers to questions whose analogues about the 
natural numbers Hume's Principle answers relatively well. But a better conclusion is that 
the Dedekindian Way was not designed to take those kinds of questions on.
In order to understand what is at stake here, we need to appreciate that Hume's Principle 
accomplishes two quite separate foundational tasks. There is, a priori, no particular reason 
why a principle intended to incorporate an account of the nature of a particular kind of 
mathematical entity should also provide a sufficient axiomatic basis for the standard 
mathematical theory of that kind of entity. It's one thing to characterize what kind of entity 
we are concerned with, and another thing to show that and why there are all the entities of 
that kind that we standardly take there to be, and that they compose a structure of the kind 



we intuitively understand them to do. The two projects may be expected to interact, of 
course. But they are distinct. It is a peculiar feature of the standard neo-Fregean 
foundations for elementary arithmetic that the one core principle, Hume's Principle, 
discharges both roles. This is not a feature which we should expect to be replicated in 
general when it comes to providing neo-Fregean foundations for other classical 
mathematical theories. What the reflections of a moment ago suggest is that the 
Dedekindian Way, for its part, is best conceived as addressing only the second project.
It is the distinction between these two projects—the metaphysical project of explaining the 
nature of the objects in a given field of mathematical inquiry and the epistemological 
project of providing a foundation for the standard mathematical theory of those objects—
that, so far as one can judge from the incomplete discussion in Grundgesetze, seems to 
have been a principal determinant of the approach taken by Frege himself. Real numbers, 
as remarked, are things possessed by lengths, masses, weights, velocities, and such—things 
which allow of some kind of magnitude or quantity. Quantities are not themselves the 
reals, but the things which the reals measure. As Frege says: 
 … the same relation that holds between lines also holds between periods of time, masses, 
intensities of light, etc. The real number thereby comes off these specific kinds of 
quantities and somehow floats above them. (Grundgesetze §185) 
So if we want to formulate an abstraction principle incorporating an answer to the 
metaphysical question "What kind of things are the reals?" after the fashion in which 
Hume's Principle incorporates an answer to the metaphysical question "What kind of 
things are the cardinal numbers?" then quantities will feature, not as the domain of 
reference of the new singular terms which that abstraction will 
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introduce, but rather as the abstractive domain—that is, as the terms of the abstractive 
relation on the right-hand side.
However, it's clear that individual quantities don't have their real numbers after the fashion 
in which a particular concept, say Julio-Claudian Emperor of Rome, has its cardinal 
number. We are familiar with different systems of measurement, like the imperial and 
metric systems for lengths, volumes, and weights, or the Fahrenheit and Celsius systems 
for temperature, but there is no conceptual space for correspondingly different systems of 
counting. Of course, there can be different systems of counting notation: we can count in a 
decimal or binary system, for instance, or in Roman or Arabic numerals. But if they are 
used correctly, they won't differ in the cardinal number they deliver to any specified 
concept, but only in the way they name that number. By contrast, the imperial and metric 
systems do precisely differ in the real numbers they assign to the length of a specified 
object. One inch is 2.54 centimeters. The real number properly assigned to a length 



depends on a previously fixed unit of comparison. Thus real numbers are relations of 
quantities, just as Frege says.
These reflections seem to enforce a view about what a principle would have broadly to be 
like whose metaphysical accomplishment for the real numbers matches that of Hume's 
Principle for the cardinals. Where Hume's Principle introduces a monadic operator on 
concepts, our abstraction for real numbers will feature a dyadic operator taking as its 
arguments a pair of terms standing for quantities of the same type; more specifically, it will 
be a first-order abstraction: 

•

where a and b are quantities of the same type, c and d are quantities of the same type (but 
not necessarily of the type of a and b), and E is an equivalence relation on pairs of 
quantities whose holding ensures that a is proportionately to b as c is to d. In effect, the 
analogy is between the abstraction of cardinal numbers from one-one correspondence on 
concepts, and abstraction of real numbers from equiproportionality on pairs of suitable 
quantities.
A neo-Fregean who wishes to pursue this antistructuralist, more purely Fregean, 
conception of a foundation for analysis must therefore engage with each of the following 
three tasks.
First, a philosophical account is owing of what in the first place a quantity is—what the 
ingredient terms of the abstractive relation on the right-hand side of the Real Abstraction 
principle are.
Second—if the aspiration is to give a logicist treatment in the extended sense in which 
Hume's Principle provides a logicist treatment of number theory—it 
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must be shown that, parallel to the definability of one-one correspondence using just the 
resources of second-order logic, both the notion of quantity and the relevant equivalence 
relation, E, allow of (ancestral) 44 characterization in (second-order) logical terms. 45 
Third, a result needs to be established analogous to Frege's Theorem: specifically, it needs 
to be shown that there are sufficiently many appropriately independent truths of the type 
depicted by the right-hand side of Real Abstraction to ground the existence of a full 
continuum of real numbers. And while, as stressed, Hume's Principle itself suffices for the 
corresponding derivation for the natural numbers, here it is clear that additional input—the 
construction of a complete domain of quantities—is going to be required to augment the 
Real Abstraction principle. 46 
We have no space here to go further into the philosophical issues at stake between the 
Dedekindian Way and the more purely Fregean approach. A key question is the cogency, 
in the context of foundations for analysis, of what we term Frege's Constraint: that a 



philosophically satisfactory foundation for a mathematical theory must somehow 
intimately build in its possibilities of application. This may be taken to require that an 
abstraction to the special objects of a mathematical theory is satisfactory only if the 
abstractive domain on its right-hand side comprises the kinds of things that the 
mathematical objects in question are of—the kinds of things of which they provide a 
mathematical measure. A structuralist may be expected to reject Frege's constraint, or 
anyway this understanding of it. The matter is open. 47 
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7. Neo-Fregean Set Theory

Much further work is needed here. We give but the briefest sketch of some salient 
approaches and their problems.
An abstraction principle which can plausibly be seen as implicitly defining the concept of 
set will do so by fixing the identity conditions for its instances, and will—on pain of 
changing the subject—take the identity of sets to consist in their having the same members. 
So if we assume—what does not seem seriously disputable—that any plausible candidate 
will be a higher-order abstraction, then the equivalence relation involved had better be 
coextensiveness of concepts. What we are looking for is, accordingly, a consistency-
preserving restriction of Basic Law V, where the restriction is given by imposing a 
constraint on which concepts are to have properly extensionally behaved sets 
corresponding to them. 48 
Let's schematically represent the sought-after constraint using a second-level predicate 
"Good." Then two natural ways to restrict Basic Law V are 

•

and 

•

The main difference between these is that (A) is a conditionalized abstraction principle, 
whereas (B) is unconditional, with the restriction built into the relation required to hold 
between F and G for them to yield the same set—fairly obviously, the resulting relation is 
an equivalence relation. 49 Consequently, (B) yields a "set" for every F, regardless of 
whether it is Good or not, whereas (A) yields a set {x|Fx} only if we have the independent 
input that F is Good. If neither F nor G is Good, 
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the right-hand side of (B) holds vacuously, so we get that {x|Fx} = {x|Gx}—regardless of 
whether F and G are coextensive. That is, we get the same "set" from all Bad concepts. We 
get real sets via (B)—that is, objects whose identity is determined by their membership—
only from Good concepts.
So what might it be for a concept to be Good? Various suggestions have been canvassed. 
One general approach, first proposed by Boolos, 50 picks up on the well-entrenched 
"limitation of size" idea, that the set-theoretic paradoxes stem from treating as sets 
"collections" which are in some sense "too big"—the collection of all sets, of all sets that 
are not members of themselves, of all ordinals and so on. Following Boolos, define a 
concept F to be Small = Good if there is a one-one function taking the Fs into the concept 
self-identical but no one function taking the self-identicals into the Fs. The resultant 
restricted set abstraction in the style (B) is what Boolos called New V (and Wright called 
VE): 51 

•

Boolos showed that a significant amount of set theory can be obtained in the system 
consisting of New V and second-order logic. 52 But there are two serious problems with it. 
The first is that we don't get enough set theory. As Boolos showed, neither an axiom of 
infinity (that there is an infinite, properly behaved set) nor the power set axiom can be 
obtained as theorems on this basis—so the theory affords not even a glimpse of Cantor's 
Paradise.
A further, quite different, problem relates to the constraints needed to differentiate between 
acceptable abstraction principles and unacceptable ones. Earlier we noted the need for a 
constraint of a certain kind of conservativeness: acceptable abstraction principles should do 
no more than fix the truth-conditions of statements involving the entities whose concept 
they introduce. They should have nothing to say about the truth-values of statements whose 
ontology is restricted to entities of other kinds. The Nuisances abstraction, for instance, 
was faulted on precisely these grounds. Unfortunately, New V appears to be in difficulty 
for the same reason. The basic point is simple enough. 53 If the concept ordinal is Small, 
New V yields a properly behaved set of all the ordinals and will therefore generate the 
Burali-Forti contradiction. Hence ordinal must be Big. But in that case it is exactly as big 
as the universe (i.e., there is a one-one correspondence between ordinal and a(ny) universal 
concept, say self-identity. And 
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this, together with the fact that the ordinals are well-ordered by membership, entails global 
well-ordering—the existence of a well-ordering of the universe, and hence of any 



subuniverse consisting just of the ontology of a prior theory: a result which may well be 
independent of a suitably chosen such theory. So New V must be reckoned 
nonconservative.
This problem may be remediable by a suitable redefinition of Smallness. Reinterpret 
Goodness as Double Smallness, where a concept is doubly small if and only if it is 
(strictly) smaller than some concept which is itself (strictly) smaller than some concept; 
that is: 

•

This blocks the reasoning which shows that New V, as originally understood, implies 
global well-ordering. We can still show, of course, that ordinal cannot be Good—that is, 
now, Small2—since if it were, we would have the Burali-Forti paradox, just as before. So 
we have to agree that ordinal is Bad. But that just means that it is not Small2, and from this 
we cannot infer that it is bijectable onto any universal concept (or, indeed, onto any 
concept). 54 
The other, and more serious, of the two problems New V faces, as we noted, was its 
weakness: its inability to deliver either an axiom of infinity or a power set axiom as 
theorems. The same will go, of course, for New V reinterpreted with Good as Small2 and 
Small2 V. However, this need not be a crippling drawback from the neo-Fregean's point of 
view, if he can justify supplementing New V, or Small2 V, with other principles—most 
especially, other abstraction principles—which compensate. On this more catholic 
approach, we separate two distinct roles one might ask a set-abstraction principle to 
discharge: fixing the concept of set, on the one hand, and, on the other, serving as a 
comprehension principle. The claim would then be that New V's, or Small2 V's, 
shortcomings as a comprehension principle need not debar it from successfully discharging 
a concept-fixing role—of 
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serving as a means of introducing the concept, while leaving its extension to be filled out, 
largely or even entirely, 55 by other principles. An obvious first port of call for this 
approach would be to consider a system consisting of second-order logic augmented by, 
say, Small2 V, Hume's Principle, and an appropriate range of instances of a schematic form 
of the Cut Abstraction principle. Notice that it would be perfectly legitimate, for the 
purposes of this project, to restrict the domain of the < relation, featured in the definition of 
Small2, to concepts instantiated exclusively by the objects given by these privileged prior 
abstractions. 56 
A quite different direction, but still in keeping with the overall approach, would be to 
interpret Goodness not in terms of size but in terms of definiteness. Here definite concepts 



contrast with those which Michael Dummett has termed "indefinitely extensible." An 
indefinitely extensible concept is one, roughly, for which any attempt at an exact 
circumscription of the extension immediately gives rise to further intuitively acceptable 
instances falling outside that circumscription. One classic line of diagnosis of the set-
theoretic paradoxes, originating in effect with Russell, has it that they arise through 
reasoning about indefinitely extensible concepts such as ordinal number, cardinal number, 
and set itself as if they were definite, and in particular by unguardedly assuming that such 
concepts give rise to collections of entities apt to constitute sets. If it were possible to give 
sufficient of an exact characterization of indefinite extensibility to make that thought good, 
there would be both a sense of having accomplished a solution to the paradoxes and a clear 
motive for an appropriate version of either schema (A) or schema (B) which restricted the 
concepts determining sets to those which are definite. And if the sought-for 
characterization could somehow be given using only resources available in higher-order 
logic, we might have the basis for a strong and well-motivated neo-Fregean set theory.
It must be confessed that the hope at present seems somewhat utopian. No sufficiently 
clear account of the notion of indefinite extensibility, still less one deploying only logical 
resources, has yet been achieved. And even if one can be, it is by no means clear in 
advance that it will not be beset by problems of weakness analogous to those of the various 
Smallness abstractions. The crucial question, as far as overcoming the problem with 
infinity is concerned, is whether there is any 
end p.195

acceptable account of indefinite extensibility which, while embracing the usual suspects—
ordinal, cardinal, and set—ranks natural number as definite. Work so far has not found 
one. And even if that trick can be turned, it will be necessary that the characterization of 
natural number as definite on that basis can proceed on the basis of considerations 
formalizable in higher-order logic. Otherwise there will be no payoff in terms of the proof-
theoretic strength of the abstraction principle in question.

8. Neo-Fregean Logic

The classic logicist thesis about a particular mathematical theory is that its fundamental 
laws are obtainable on the basis just of definitions and logic. It is still, at the time of 
writing, a justifiable complaint that while much attention has been paid by neo-Fregeans, 
and their critics, to the first component in the recipe—issues to do with abstractions in 
general and Hume's Principle in particular—comparatively little has been given to the 
second component: the demands, technical and philosophical, to be made on the logical 



system which is to provide the medium for the proofs the neo-Fregean needs. That system 
will be either, to all intents and purposes, the higher-order logic pioneered in Frege's 
Begriffsschrift or some substantial fragment of it. Even if it is granted that all the 
outstanding questions concerning abstractions may be settled in the neo-Fregean's favor, 
the interest of the neo-Fregean reconstructions of classical mathematical theories will very 
substantially depend upon their being possible to return logicist-friendly answers to a 
number of fundamental questions about logical systems of this kind.
The significance which a successful logicist treatment of a particular mathematical theory 
was traditionally believed to carry was based on the assumption that logic is interestingly 
set apart from, and somehow more fundamental than, other formal a priori disciplines—
that it is marked off by, for instance, its generality, its implication in anything recognizable 
as rational thought, and by the special character of its distinctive vocabulary—the 
connectives and other logical constants. It is only in the setting of an acceptance that logic 
is, in some such way, metaphysically and epistemologically privileged that a reduction of 
mathematical theories to logical ones—more accurately, to logical theories and legitimate 
(implicit) definitions—can be philosophically any more noteworthy than a reduction of any 
mathematical theory to any other. The great issue raised is therefore whether the 
philosophy of logic can indeed provide a clear account answering to our sense of the 
fundamentality of logic and its separation from other a priori disciplines and, more 
specifically, whether—in the context of such an account—higher-order logic will indeed 
be classified as properly so conceived.
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A key issue here concerns the ontology of higher-order logic. When Quine famously 
quipped that he regarded higher-order logic as "set theory in sheep's clothing," his point 
was not that, in his view, set theory might have a case to count as logic; it was, rather, that 
higher-order logic had better be regarded as mathematics. However, someone who was 
persuaded that Quine was wrong about that—that, qua logic, higher-order logic loses 
nothing to first-order logic—might still be concerned about the ontology apparently 
demanded by higher-order quantification. Such a thinker might thus be persuaded that 
there was a logicist insight to be recovered by neo-Fregeanism but still thoroughly 
skeptical whether anything to render the ontology of traditional mathematical theories 
more palatable can be achieved by the neo-Fregean's abstractionist story, the invocation of 
the Context Principle, and the rest, when the logical component of the reducing theory—
higher-order logic plus abstraction principles—incorporated such indigestible ontological 
presuppositions of its own.
A frequent type of response would be to accept the problem at face value—to accept that 
any ontology which was allowed to be distinctively involved in higher-order quantification 
would indeed be problematical—and try to maintain that in contrast to first-order 



quantification, higher-order quantification actually incorporates no special ontological 
commitments: that it is best construed substitutionally, for instance. Or else second-order 
quantification might be understood in the manner, explored by George Boolos, whereby 
the only entities involved are those already quantified over at first order (viz., objects). The 
meaning of higher-order quantifiers is determined by postulating an analogy between their 
relationship to plural denoting expressions and the relationship between first-order 
quantification and ordinary singular terms. 57 Each of those proposals, however, would 
have important limitations from the neo-Fregean perspective. A substitutional 
interpretation of higher-order quantification looks obviously insufficient to sustain the 
demands placed on higher-order logic by the kind of neo-Fregean treatment of analysis 
canvassed above, for instance, while Boolos's construal extends no further than existential 
quantification into the places marked by monadic predicates. 58 
Ingenuity may come up with further possibilities. For instance, it might be possible to 
reduce relational quantification, of arbitrary degree, to monadic quantification in the 
context of a first-order ontology enriched by appropriate n-tuples of objects, yielded in turn 
by appropriate first-order abstraction principles. 59 
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But without prejudging the prospects for such reductionist approaches, we ourselves are 
inclined to favor a different direction. The thought is intuitively compelling that 
quantificational statements cannot import a type of ontological commitment that is not 
already present in their instances. Thus, if the quantifiers of higher-order logic were indeed 
best interpreted as calling for an ontology of sets, or setlike entities of some sort, the same 
should be said about the simple predications which instantiate them. Alternatively, it might 
be argued that since simple predication, unlike singular reference, incorporates no special 
ontology, higher-order quantification doesn't either. 60 That thought might be taken to 
demand a substitutional interpretation of higher-order quantification. But there are at least 
two other possibilities to explore. First, suppose we can lucidly conceive of thoughts—
propositions—as literally internally structured entities. 61 Then we can grasp the idea of 
one thought resulting from another merely by variation on some internal structural theme 
they both exhibit, and perhaps also the idea of all thoughts which so result (or at least, all 
which satisfy some other specific restriction). And in that case there has to be a way of 
understanding quantification which liberates it from the idea of range—the association 
with a domain of entities of some kind or other which is the (Quinean) root of the 
ontological problems with higher-order logic. Simply, let 

( F)Q(F) 



be the weakest thought whose truth suffices for that of any thought accessible by playing 
the prescribed kind of variation on the place marked by the dots in 
Q …  
Likewise, ( F)Q(F) will be the strongest thought for whose truth the truth of any such 
thought suffices.
This construal has a kind of substitutional flavor, but it doesn't have the usual limitation of 
substitutional quantification of being confined to a particular linguistic repertoire. It can 
literally be of unrestricted generality, or as unrestricted a generality as makes thinkable 
sense. Whether higher-order quantification implicates an ontology now depends on 
whether or not the kind of "thought-component" for which the dots mark a place does. If 
that component involves direction upon an object—the thought-analogue of singular 
reference—then of course it will. So first-order quantification does. But it is only if one has 
argued independently that the thought-components that correspond to predication are 
entity-involving that higher-order quantification will be entity-involving.
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The other possibility is more Fregean and more squarely in keeping with the neo-Fregean 
approach to abstract ontology in general. It is to apply the Context Principle, conceived as 
a principle concerning Bedeutung, to incomplete expressions as well as to complete ones. 
This approach would hold that, just as the occurrence of a singular term in a true 
(extensional) statement demands an object as its referent, so the occurrence of an n-place 
predicate in such a statement demands a concept under which the object(s) referred to 
therein are thereby brought. And just as, in the case of reference to abstract objects, any 
sense of epistemic impasse is to be offset by explaining what is to refer to and know about 
such objects in terms of competence in the discourse in which their names occur, so the 
epistemology of the entities answering to predication would be accounted for in terms of 
competence in the use of the predicates associated with them. In brief, the proposal would 
be that higher-order logic should be accepted at face value, as quantifying over entities 
which constitute the semantic values of incomplete expressions, and that worries about the 
character of such entities, and about their epistemic acceptability, are to be addressed in 
exactly the same kind of way, mutatis mutandis, as the way in which neo-Fregeanism 
approaches the issues to do with abstract singular reference. Of course, a number of issues 
immediately loom large, not least the paradox of "the Concept Horse," the nature of the 
semantic relationship between incomplete expressions and the entities over which higher-
order logic quantifies, and how (finely) these entities are individuated. But perhaps enough 
has been said to indicate why someone who is content that the neo-Fregean approach to 
abstract singular reference is broadly along the right lines might be hopeful that no 
specially opaque or intractable issue might be posed by higher-order quantification as such.



Finally, one more technical matter arising in this context concerns the varying demands 
placed on the underlying logic by different phases of the neo-Fregean reconstruction of 
mathematics. J. L. Bell (1999) has shown that the higher-order logic necessary for the 
demonstration of Frege's Theorem on the basis of Hume's Principle is in fact quite weak. 62 

By contrast, it's obvious enough that any abstraction which is to generate a classically 
uncountable infinity of objects—like that canvassed for the real numbers—must draw on a 
classically uncountable higher-order domain. So the intriguing and difficult issue therefore 
arises whether it is possible to justify a conception of the higher-order ontology which can 
sustain this demand; and whether, in particular, it is possible to do so on the basis 
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of the approaches to higher-order quantification canvassed a moment ago, which inevitably 
effect a very close tie between (n-adic) concept and (item of a) thinkable predication. The 
possibility must be taken seriously, it seems to us, that the most tractable philosophies of 
higher-order logic will have the side effect that a neo-Fregean treatment of analysis will be 
constrained to be constructivist, and that the classical continuum will be out of reach. 
(Whether that would be cause for regret is, of course, a further question.)
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7. Logicism Reconsidered
Agust n Rayo 

This chapter is divided into four sections.* The first two identify different logicist theses, 
and show that their truth-values can be established given minimal assumptions. Section 3 
sets forth a notion of "content-recarving" as a possible constraint on logicist theses. Section 
4—which is largely independent from the rest of the paper—is a discussion of 
"neologicism."

1. Logicism

1.1. What Is Logicism?

Briefly, logicism is the view that mathematics is a part of logic. But this formulation is 
imprecise because it fails to distinguish among the following three claims: 

1.  Language-Logicism 
The language of mathematics consists of purely logical expressions. 

 2. 
 

Consequence-Logicism 
There is a consistent, recursive set of axioms of which every mathematical truth is a 
purely logical consequence. 
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3.  Truth-Logicism 
Mathematical truths are true as a matter of pure logic. 



In fact, this is still not what we want. Consider Language-Logicism as an example. When 
taken at face value, standard mathematical languages do not consist of purely logical 
expressions. (For instance, when taken at face value, the standard language of arithmetic 
contains the individual constant "0," which is not a purely logical expression.) So if 
Language-Logicism is to have any plausibility, it should be read as the claim that 
mathematical sentences can be paraphrased in such a way that they contain no nonlogical 
vocabulary. Similarly for Consequence-Logicism and Truth-Logicism: if they are to have 
any plausibility, they should be read, respectively, as the claim that mathematical truths 
can be paraphrased in such a way that they are a purely logical consequence of the relevant 
set of axioms, and as the claim that mathematical truths can be paraphrased in such a way 
that their truth is a matter of pure logic. Let us therefore distinguish the following logicist 
theses (relative to a mathematical language with an intended model ): 

 Notation: A paraphrase-function * is a function such that, for any sentence φ in the 
domain of *, φ* is a paraphrase of φ. 

1. 
 
Language-Logicism 
There is a paraphrase-function * such that, for any sentence φ of , φ* contains no 
nonlogical vocabulary. 

2. 
 

Consequence-Logicism (Semantic Version) 
There is a paraphrase-function * and a consistent, recursive set of sentences  such 
that, for any sentence φ of which is true (false) according to , φ* (the negation of 
φ*) is a semantic consequence of . 

3. 
 
Consequence-Logicism (Syntactic Version) 
Like the semantic version, except that "semantic consequence of " is replaced by 
"derivable from  on the basis of purely logical axioms and rules of inference." 

4. 
 
Truth-Logicism (Semantic Version) 
There is a paraphrase-function * such that, for any sentence φ of which is true (false) 
according to , φ* (the negation of φ*) is a logical truth. 

5. 
 
Truth-Logicism (Syntactic Version) 
Like the semantic version, except that "logical truth" is replaced by "derivable from the 
empty set on the basis of purely logical axioms and rules of inference." 

In stating these five logicist theses, we have left open two important issues. First, there is 
the question of what it takes for one sentence to be a paraphrase of another. Is synonymy 
required, or could we settle for less? Second, there is the question of what should be 
counted as logic. Which expressions count as logical? Which axioms and rules of inference 
are logical? Which sentences are logical truths? These 
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are difficult questions, which we cannot hope to address here. In section 2 we will evaluate 
the logicist theses on the basis of different assumptions about logic and paraphrase, but 
refrain from assessing the assumptions themselves.

1.2. Why Bother?

The five logicist theses are connected to important philosophical problems. Here are some 
examples: 

1. 
 
 On the assumption that statements of pure logic carry no commitment to abstract 
objects, Language-Logicism might be used as part of a nominalist account of 
mathematics, that is, an account of mathematics according to which statements of pure 
mathematics carry no commitment to abstract objects. (See chapters 15 and 16 in this 
volume.) 1 
2. 
(a) 
 

If the semantic version of Consequence-Logicism is true, then every 
mathematical sentence has a determinate truth-value, provided only that 
the relevant axioms are determinately true and that semantic consequence 
preserves determinate truth. Such a result is important for certain brands of 
structuralism, which face the challenge of explaining how it is that finite 
beings like ourselves can succeed in picking out the standard mathematical 
structures. (See chapters 17 and 18 in this volume.) 

(b) 
 
If, in addition, the syntactic version of Consequence-Logicism is true, then 
one can come to know (at least in principle) any mathematical truth by 
deriving it from an appropriate set of axioms, provided only that the 
axioms are known to be true and that derivations preserve knowledge. 

3. 
(a) 
 

If the semantic version of Truth-Logicism} holds, then every mathematical 
truth is a logical truth. 

(b) 
 
If, in addition, the syntactic version of Truth-Logicism holds, then we get a 
very impressive result: one can come to know (at least in principle) any 
mathematical truth by carrying out a purely logical derivation, provided 
only that logical derivations preserve knowledge. 

1.3. Some Brief Historical Remarks



An important focus of traditional logicist projects was Truth-Logicism. Famously, Frege's 
Foundations of Arithmetic and Basic Laws of Arithmetic attempted to 
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establish a version of Truth-Logicism according to which mathematical truths can be 
proved merely on the basis of "general logical laws and definitions". The precise 
motivation behind Frege's defense of Truth-Logicism is a matter of scholarly debate. 2 
Frege's project collapsed with the discovery that one of its Basic Laws leads to 
contradiction. In the latter part of the twentieth century, however, the project was 
revitalized in a somewhat different form by Crispin Wright and Bob Hale, largely as an 
attempt to secure a version of the epistemological result in 3(b) of section 1.2. (For more 
on neo-Fregeanism, see section 4 of the present text and chapter 6 in this volume.)
The logical empiricists of the first half of the twentieth century were also interested in 
Truth-Logicism. Their program was based on the doctrine that any meaningful statement 
concerns either a "matter of fact" (and, if true, is knowable only a posteriori), or a "relation 
of ideas" (and, if true, is "true in virtue of meaning" and consequently knowable a priori). 3 

In order to resist the idea that mathematical statements concern "matters of fact," it was 
therefore crucial to logical empiricism that every mathematical truth be shown to be "true 
in virtue of meaning" and consequently knowable a priori. But if every mathematical truth 
can be known on the basis of a purely logical derivation, as in 3(b), then mathematical 
truths are indeed "true in virtue of meaning" and knowable a priori—assuming that logical 
truths are "true in virtue of meaning" and that purely logical derivations preserve a priori 
knowledge, as logical empiricists believed.
It is not clear, on the other hand, whether Truth-Logicism was Russell's aim in Principia  
Mathematica. It might well have consisted of Language-Logicism together with 
Consequence-Logicism.4 (For more on the logicism of Frege and Russell, see chapter 5 in 
this volume.)

2. An Assessment of Logicism

2.1. Logic and Paraphrase

In stating our five logicist theses in section 1.1, we left open the question of what should be 
counted as logic. Two possible answers are that logic is first-order logic, and that logic is 
higher-order logic. More precisely, 
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 The First-Order View 

 A sentence is a logical truth just in case it can be paraphrased as a first-order sentence 
which is true in every model of the standard first-order semantics. 5 An axiom is logical 
just in case it is a logical truth. A rule of inference is logical just in case it preserves 
logical truth. Logical expressions are those that can be paraphrased as an expression of 
pure first-order logic.

 
 The Higher-Order View 

Like the first-order view, except that "first-order" is everywhere replaced by "higher-
order." 6 (For more on higher-order languages, see chapters 25 and 26 in this volume.) 
In order to read the logicist theses in accordance with the first-order view, all we need to 
do is insist that the relevant paraphrase-functions deliver first-order sentences as outputs, 
and understand logical notions in accordance with the standard semantics for first-order 
languages. Similarly for the higher-order view.
These are certainly not the only ways of answering the question of what should be counted 
as logic—one might think, for instance, that an infinitely long sentence can be logically 
true. 7 But they are the only ones we will consider here.
A second issue which we left open is the question of what it takes, in the context of 
logicism, for one sentence to count as a paraphrase of another. This is a difficult problem. 
But, whatever the constraints on paraphrases turn out to be, it is reasonable to expect that 
any legitimate paraphrase-function will be recursive and will preserve truth-values. And 
we will see there is a lot that can be learned about the logicist theses on the basis of these 
rather minimal constraints.
Formally, let us say that a paraphrase-function * is minimally adequate for a mathematical 
language with an intended model just in case the following conditions are satisfied: 

1.  Every sentence of is in the domain of *. 
2.  The restriction of * to sentences of is recursive. 
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3. 
 
There is a model  (intuitively, the intended model of the paraphrases) such that, for 



any sentence φ of , φ if and only if  φ*. 

2.2. The First-order View

When the logicist theses are read in accordance with the first-order view, the following 
relations obtain: (see figure 7.1) 

 [fov -1] The syntactic and semantic versions of Truth-Logicism and Consequence-
Logicism are equivalent, since first-order logic is sound and complete according to the 
first-order view. 
 [fov -2] Truth-Logicism implies Consequence-Logicism, since Truth-Logicism is the 
special case of Consequence-Logicism when  is empty. 
 [fov -3] When paraphrase functions are assumed to be minimally adequate, Language-
Logicism implies Consequence-Logicism.8 

These implications suffice to decide the question of whether the five logicist theses are 
true, in the context of the first-order view. For, assuming paraphrase-functions are 
minimally adequate, it is a consequence of Gödel's Incompleteness Theorem that the 
syntactic version of Consequence-Logicism is false for any interesting fragment of 
mathematics. 9 And since each of the other logicist theses implies the syntactic version of 
Consequence-Logicism, it follows that each of the other logicist theses must also be false.
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Fig. 7.1. Implications among the five logicist theses, when read in accordance with the 
first-order view. (Arrows go from implicans to implicatum.)

2.3. The Higher-order View

When the logicist theses are read in accordance with the higher-order view, the following 
relations obtain (see figure 7.2): 

 [hov -1] The syntactic versions of Truth-Logicism and Consequence-Logicism imply the 
corresponding semantic versions, since higher-order logic is sound according to the 
higher-order view. (The converse implications do not hold because higher-order logic is 
incomplete.) 
 [hov -2] Each version of Truth-Logicism implies the corresponding version of 
Consequence-Logicism, since Truth-Logicism is the special case of Consequence-
Logicism when  is empty. 
 [hov -3] If the semantic version of Consequence-Logicism obtains on the basis of a finite 
axiomatization, then there is a minimally adequate paraphrase-function which makes 
Language-Logicism true. 10 



The final implication holds because, when the semantic version of Consequence-

Logicism obtains on the basis of a finite axiomatization, , the paraphrase-function taking 
a 
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Fig. 7.2. Implications among the five logicist theses, when read in accordance with the 
higher-order view. (Arrows go from implicans to implicatum.)

higher-order sentence φ  to the result of universally Ramsifying →φ  is minimally 
adequate. 11 And the result of universally Ramsifying →φ  is a higher-order sentence 
containing no nonlogical vocabulary.
Let us now turn to an assessment of the five logicist theses, from the perspective of the 
higher-order view.



2.3.1. The Syntactic Versions of Consequence- and Truth-Logicism

When it comes to the syntactic versions of Consequence- and Truth-Logicism, the higher-
order view constitutes no improvement over the first-order view. Assuming paraphrase-
functions are minimally adequate, it is a consequence of Gödel's Incompleteness Theorem 
that the syntactic version of Consequence-Logicism is false for any interesting fragment of 
mathematics. 12 And, since the syntactic version of Truth-Logicism implies the syntactic 
version of Consequence-Logicism, it follows that the syntactic version of Truth-Logicism 
must also be false.

2.3.2. The Semantic Version of Consequence-Logicism

Because there are semantic consequences of higher-order theories which are not derivable 
on the basis of any sound deductive system, nothing we have said so far entails that the 
semantic version of Consequence-Logicism must fail in the context of the higher-order 
view. But does it?
For the special case of arithmetic, we have a positive result, thanks to semantic 
completeness: the second-order Dedekind-Peano Axioms semantically imply every true 
sentence of the language of pure second-order arithmetic. 13 From this the 
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semantic version of Consequence-Logicism follows immediately, in the context of the 
higher-order view.
Similar results hold for other branches of pure mathematics. 14 In the case of set theory, 
however, there is a problem. Unlike the second-order Dedekind-Peano Axioms, the axioms 
of second-order ZFC are not guaranteed to be semantically complete: there may be a 
sentence of the language of pure second-order set theory such that neither it nor its 
negation is a semantic consequence of the axioms. (This will be the case if there are 
models of second-order set theory whose domain is larger than the first strongly 
inaccessible cardinal.) All we have is a partial result: if we add to the axioms of second-
order ZFC a sentence specifying how many sets there are, then we are guaranteed semantic 
completeness. 15 
Thus, one possibility is to enrich the axioms of second-order ZFC with a sentence S μ of 
pure second-order logic to the effect that there are no inaccessible cardinals. That would 
certainly yield semantic completeness. Unfortunately, S μ is not universally regarded as 



true. Many set theorists endorse a Global Reflection Principle, to the effect that there is a 
set α such that every true sentence in the language of higher-order set theory is true when 
the quantifiers are restricted to the elements of α. And the Global Reflection Principle 
implies that S is false because it implies that there is an inaccessible cardinal (since the 
standard set-theoretic axioms are true, the Reflection Principle implies that they are also 
true when the quantifiers are restricted to the members of some set, and this is possible 
only if there is an inaccessible cardinal.)
As it turns out, matters are worse still: if the Global Reflection Principle is true, then no 
recursive set of true sentences in the language of higher-order set theory semantically 
implies every true sentence in the language of higher-order set theory. 16 Thus the Global 
Reflection Principle implies that there is no hope of producing a semantic completeness 
result in the case of set theory.
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So much for pure mathematics. In the case of applied mathematics it is unreasonable to ask 
for a semantic completeness result, since no set of mathematical axioms should imply, for 
instance, that Mars has two moons (or that it doesn't). But one might hope for a relative 
semantic completeness result, to the effect that there is a set of axioms which, together 
with the set of true sentences containing no mathematical vocabulary, semantically implies 
every true sentence in some particular fragment of applied mathematics, and the negation 
of every false one. As it turns out, it is possible to prove a relative completeness result for 
higher-order applied arithmetic. 17 Thus Consequence-Logicism holds for higher-order 
applied arithmetic, modulo the set of nonarithmetical truths.

2.3.3. Language-Logicism

When all we require of paraphrase-functions is minimal adequacy, it follows from [hov -3] 
that any higher-order theory with a finite and complete axiomatization can be paraphrased 
using no nonlogical vocabulary. Thus, thanks to the semantic completeness results 
discussed in the preceding section, Language-Logicism can be shown to be true for the 
case of pure higher-order arithmetic.
But minimal adequacy is a very weak constraint on paraphrase functions, and some 
advocates of logicism might hope for more. One way to strengthen the constraint is by 
making use of semantic notions. For instance, one might require paraphrase-functions to 
preserve content. We will say something about this in section 3, but for the moment it is 
best to focus on a syntactic constraint instead. Informally, say that a paraphrase-function * 
is compositional just in case the compositional structure of φ* mirrors the compositional 



structure of φ, for every φ in the domain of *. (For a formal characterization of this 
constraint, see the appendix.) Paraphrase-functions based on Ramsey-conditionals are not 
compositional. Thus, when compositionality is required, Ramsey-conditionals do not 
deliver Language-Logicism.
For the case of pure higher-order arithmetic, however, there are compositional paraphrase 
functions which deliver formulas of pure higher-order logic as outputs. One is implicit in 
Whitehead and Russell's Principia (see chapter 5 in this volume). More recently, Harold 
Hodes has set forth a paraphrase-function that works by treating first-order quantifiers 
ranging over natural numbers as third-order quantifiers ranging over finite cardinality 
object-quantifiers (that is, second-order concepts true of all and only first-order concepts 
under which precisely n objects fall, for some n).18 Hodes's paraphrase-function can be 
shown to be 
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minimally adequate on the assumption that the universe is infinite, and its restriction to 
pure higher-order arithmetic always delivers formulas of pure higher-order logic as 
outputs. Thus, when no more is required of paraphrase-functions than compositionality and 
minimal adequacy, Language-Logicism can be shown to be true for the case of pure 
higher-order arithmetic in the context of the higher-order view.

2.3.4. The Semantic Version of Truth-Logicism

We noted in section 2.3.1 that the syntactic version of Truth-Logicism fails in the context 
of the higher-order view. But, for all that has been said so far, it might still be the case that 
the semantic version of Truth-Logicism holds.
None of the paraphrase-functions we have discussed so far deliver this result. Consider, for 
instance, the paraphrase-function , which takes each sentence φ  of pure second-order 
arithmetic to the result of universally Ramsifying →  (where   is the conjunction of 
the Dedekind-Peano Axioms). In order for to deliver Truth-Logicism, φ  would have to 
be a logical truth whenever φ is true on the intended interpretation, and a logical falsehood 
whenever φ is false on the intended interpretation. This is certainly the case when we 
restrict our attention to models with infinite domains. But it is not the case when models 
with finite domains are allowed, since φ  is true on any model with a finite domain, 
independently of whether φ is true on the intended interpretation.
A similar problem afflicts Hodes's paraphrase-function. When we restrict our attention to 
models with infinite domains, the Hodes-paraphrase of φ is a logical truth just in case φ is 



true on the intended interpretation, for any sentence φ in the language of higher-order 
arithmetic. But this is not the case when models with finite domains are allowed.
Might other paraphrase-functions do better? In an important sense, the answer is "no." On 
the assumption that paraphrase-functions are required to be compositional, the semantic 
version of Truth-Logicism must fail for any interesting fragment of mathematics, in the 
context of the higher-order view. (See appendix for proof.)
A final point is worth mentioning. So far we have made the (standard) assumption that 
first- and higher-order quantifiers are domain-relative. In other words, we have 
presupposed that which individuals the truth-value of a quantified sentence depends on is 
not a logical matter and, accordingly, that the range of the quantifiers may vary from 
model to model. But Timothy Williamson has recently made a case for logically  
unrestricted quantifiers: quantifiers whose range consists, as a matter of logic, of 
absolutely everything. 19 If Williamson's logically unrestricted quantifiers are allowed, then 
the fact that there are at least two objects in 
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existence suffices to guarantee that when the quantifiers are regarded as logically 
unrestricted, " x y(x≠y)" is logically true. Similarly, the fact that there are infinitely many 
objects in existence suffices to guarantee that when the quantifiers are regarded as logically 
unrestricted, a second-order sentence stating that the universe is infinite is logically true.
When logically unrestricted quantifiers are allowed, the status of Truth-Logicism changes 
dramatically. The fact that there are infinitely many objects ensures that when quantifiers 
are regarded as logically unrestricted, the Hodes-paraphrase of φ is a logical truth 
(falsehood) just in case φ is true (false) on the intended interpretation, for any φ in the 
language of pure higher-order arithmetic. It also ensures that, when quantifiers are 
regarded as logically unrestricted, φ  is a logical truth (falsehood) whenever φ is true 
(false) on the intended interpretation, for any φ in the language of pure second-order 
arithmetic. Finally, when the quantifiers are regarded as logically unrestricted, one can 
show that there is a minimally adequate (but noncompositional) paraphrase-function 
verifying the semantic version of Truth-Logicism for the language of pure higher-order set 
theory, given the assumption that there are strongly inaccessibly many objects. 20 
This concludes our assessment of the five logicist theses. Figure 7.3 summarizes some of 
the main results.

2.4. What Have We Learned?



We have seen that Truth-Logicism fails on natural assumptions about logic and paraphrase. 
Although this casts doubt on the view that every mathematical truth is a truth of logic, it 
does not constitute a decisive refutation. One way of maintaining Truth-Logicism is by 
adopting a conception of logic distinct from the first- and higher-order views. Frege, for 
example, took Basic Law V—the principle that the extension of the Fs equals the extension 
of the Gs just in case the Fs are the Gs—to be "purely logical." 21 (Though of course he 
later discovered that Basic Law V leads to contradiction.) Another way of resisting the 
first- and higher-order views is by adopting Williamson's logically unrestricted quantifiers. 
But it is 
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Fig. 7.3. Summary. afor the case of pure higher-order arithmetic. bfor the case of pure and 
applied higher-order arithmetic (modulo the set of non-arithmetical truths). ctrue for the 
case of pure higher-order arithmetic when logically unrestricted quantifiers are allowed.
important to be clear that logically unrestricted quantifiers have an epistemological cost, 
since their legitimacy would destroy any hope of establishing a straightforward connection 
between logical truth and a priori knowledge. 22 

The failure of Truth-Logicism on the first- and higher-order views makes it seem 
implausible that one could acquire a priori knowledge of the standard mathematical axioms 
merely by carrying out logical derivations. (We will see in section 4 that neo-Fregeans 
have argued for the weaker claim that one can acquire a priori knowledge of the standard 
arithmetical axioms merely by setting forth an appropriate stipulation and going on to carry 
out appropriate logical derivations.)

We have also seen that, on the higher-order view, the semantic version of Consequence-
Logicism holds for the case of (pure and applied) higher-order arithmetic. This delivers the 
result that every arithmetical sentence is either determinately true or determinately false, 
provided only that appropriate arithmetical axioms are determinately true and that higher-
order consequence preserves determinate truth. 23 As noted in section 2.3.2, the Global 
Reflection Principle implies that there is no hope of producing a semantic completeness 
result for the case of set theory, but it is worth noting that it does not preclude a 
determinacy result. By working within the language of set theory with ur-elements, McGee 
(1997) and Uzquiano (2002) have found axiomatizations of second-order set theory with 
the feature that the pure sets of any two models are isomorphic, provided only 
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that the models in question have domains consisting of everything there is. 24 Accordingly, 
by insisting that one's quantifiers are to range over absolutely everything, 25 one could carry 
out a recursively specifiable stipulation capable of delivering the result that every sentence 
in the language of pure set theory is either determinately true or determinately false. As 
before, this relies on the assumption that the appropriate set-theoretic axioms are 
determinately true and that higher-order semantic consequence preserves determinate truth.
Finally, we have seen that on the higher-order view, Language-Logicism holds for the case 
of pure higher-order arithmetic. This result might be used as part of a nominalist account of 
mathematics. (And, of course, Nominalism is of interest even if one is not a Nominalist; 
for instance, a Nominalist account of higher-order applied arithmetic would conclusively 
undermine the thought that we are justified in believing standard mathematical theories 
because they are indispensable for the natural sciences.)



3. Recarving Contents

The only semantic constraint on paraphrase-functions we have considered so far is 
preservation of truth-value. Are there other semantic constraints one might reasonably 
impose?
One option, of course, is to require strict synonymy. But perhaps a more liberal constraint 
can be extracted from the following passage in Frege's Foundations of Arithmetic: 
The judgement "line a is parallel to line b", or, using symbols, "a//b", can be taken as an 
identity. If we do this, we obtain the concept of direction, and say: "the direction of line a 
is identical with the direction of line b". Thus we replace the symbol // by the more generic 
symbol =, through removing what is specific in the content of the former and dividing it 
between a and b. We carve up the content in a way different from the original way, and 
this yields a new concept. (§64) 
Thus, the sentences "line a is parallel to line b" and "the direction of line a is identical to 
the direction of line b" are taken to express the same content, only "carved up" in a 
different way. And, as Frege observed, something similar might be said for 
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the case of arithmetic: the sentences "the Fs can be put in one-one correspondence with the 
Gs" and "the number of the Fs is identical to the number of the Gs might be taken express 
the same content, only "carved up" in a different way.
In this section we will consider the following three questions: 

1. 
 
Is there an interesting way of making the notion of content recarving precise? 

2. 
 
Is there a paraphrase-function such that, for any sentence φ in some interesting 
fragment of mathematics, φ and φ  express the same content, only "carved up" in a 
different way? 

3. 
 
If exists, does it verify any of the logicist theses? 

It is best for expositional purposes to begin with question 2, while working with the 
informal characterization of content-recarving provided by Frege's remark. Later we will 
return to question 1, and say something about how the notion of content-recarving might 
be made precise. We end with question 3.

3.1. The Second Question



First, some notation. We let "F  G" be a second-order formula expressing one-one 
correspondence between the Fs and the Gs, 26 and interpret "N(n,F)" as "n numbers the 
Fs." 27 
Next, we set forth a paraphrase-function . Intuitively, works by paraphrasing talk of the 
number of the Fs by talk of the Fs themselves. 28 Formally, may be characterized as 
follows, where "m 1 ," "m 2 ," … are first-order variables ranging over numbers, and "Z 1 ," 
"Z 2 ," … are second-order variables ranging over an unrestricted domain: 

•  m i (φ) F = Z i   (φ) F; 
•  m i  = m j F = Z i   Z j ; 
•  N(m i , X) F = Z i   X ; 
•  ¬φ F = "¬"  φ F 
•  φ ψ F = φ F  " "  ψ F; 
•  φ→ψ F = φ F  "→"  ψ F. 
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As an example, consider the sentence "the number of the Fs = the number of the Gs." In 
our notation, it can be formulated as 

•

The result of applying is 

•

which is equivalent to 

•

Thus, the result of applying to "the number of the Fs = the number of the Gs" is 
equivalent to "F G." In a Fregean spirit, one might be tempted to say that the application 
of has resulted in a recarving of content.
What happens when we apply to other arithmetical formulas? For instance, what happens 
when we apply it to a sentence such as "the number of the planets = 9"? When numerical 
predicates are defined in the obvious way, 29 



•

"the number of the planets = 9" can be formulated as 

•

30 
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And the result of applying to this sentence is equivalent to 

•

which is in turn equivalent to 

•

Thus, the result of applying to "the number of the planets = 9" is equivalent to " ! 9 

x(Planet(x))." One might again be tempted to say, in a Fregean spirit, that the application of 
has resulted in a recarving of content.

It is easy to define "plus " and "times " in terms of N(n,F). Consider "plus " as an example: 

•

where 

•

A sentence such as " n m (n + m = m + n)" can then be formulated as 

•

The result of applying is equivalent to31 

•

And, again, in a Fregean spirit, one might be tempted to say that the application of has 
resulted in a recarving of content.



As it turns out, can be made to encompass every sentence of pure and applied nth-order 
arithmetic, and it can be done in such a way that the result of applying to a sentence of 
pure n-th order arithmetic is always a sentence of pure second-order logic. As one might 
have hoped, is a compositional and minimally adequate paraphrase-function.32 
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3.2. The First Question

Is there any interesting way of making the notion of content-recarving precise? Hale 
(1997) sets forth one proposal, which is intended as a defense of the Neo-Fregean Program. 
Here we will consider another, which is not.
I would like to suggest that one must ask not whether φ expresses a recarving of the 
content expressed by φ′ when φ and φ′ are considered in isolation, but whether φ expresses 
a recarving of the content expressed by φ when φ is considered in the context of a set of 
sentences A and φ′ is considered in the context of a set of sentences B. More specifically, 
the proposal is this: 
The content expressed by φ is a recarving of the content expressed by ψ (when φ is 
considered in the context of a set of sentences A and φ′ is considered in the context of a set 
of sentences B) just in case the content expressed by φ relative to A is the same the content 
expressed by ψ relative to B. 
What is it to express a content relative to a set of sentences? Let me begin with an informal 
explanation. Suppose it is right to say that φ and ψ express the same content simpliciter just 
in case (1) φ and ψ have the same logical structure; and (2) nonlogical primitives 
occupying corresponding places in the logical structure of φ and ψ have the same 
semantic-value. One can then say that the content expressed by φ relative to A is the same 
as the content expressed by ψ relative to B just in case (1) the logical structure, LSA, that is 
"displayed" by φ in the context of A is isomorphic to the logical structure, LSB, that that is 
"displayed" by ψ in the context of B; and (2) if E is an expression in φ that "functions" in 
the context of A as a nonlogical primitive and occupies a certain position in LSA, and E′ is 
an expression that "functions" in the context of B as a nonlogical primitive and occupies a 
corresponding position in LSB, then the semantic-value of E is "analogous" to the semantic-
value of E′.
The notion of an AB -recarving embodies a rigorous version of this informal explanation: 
Let A and B be sets of formulas, let be a one-one function from A onto B, and suppose 
that the following conditions are met: 

1.  preserves the logical networking of A. 
2.  For any φ A, φ and φ  are 



1.  preserves the logical networking of A. 
equisatisfiable. 

Then we shall say that for any φ A, φ is an AB -recarving of φ .
The requirement of preservation of logical networking is a way of capturing the thought 
that the logical structure "displayed" by a sentence φ in A is 
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isomorphic to the logical structure "displayed" by φ  in B. And the requirement of 
equisatisfiability is a way of capturing the thought that any expression in φ that "functions" 
in the context of A as a nonlogical primitive is mapped onto an expression of φ  that 
"functions" in the context of B as nonlogical primitive with an "analogous" semantic-value.
Although the appendix provides a precise characterization of the notions of preservation of 
logical networking and equisatisfiability, an example should suffice to convey the basic 
idea.
Let A be the set of arithmetical formulas,33 and let B be the result of applying (from 
section 3.1) to formulas in A. preserves the logical networking of A because it satisfies 
three conditions. First, is compositional. Second, respects the logical connectives of 
sentences in A (e.g., ¬φ  = "¬" φ ). Third, maps identity-statements in A to formulas 
that "function" as identity statements in B. For instance, maps "m 1  = m 2 " to "Z 1 Z 2 ," 
which "functions" as an identity statement in B because (1) " " is reflexive, symmetric, and 
transitive, and (2) for any sentence φ  of B containing only Z i free, the universal closure 
of 

•

is true.34 (It is important to note that although "Z 1   Z 2 " "functions" as an identity 
statement within the context of B, it doesn't do so within the context of the entire language, 
since condition (2) does not generally hold for sentences outside B. For instance, the 
universal closure of "Z 1   Z 2 →(Z 1 (a)↔Z 2 (a))" is always false.)
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Let us now turn to equisatisfiability. Consider the following sentence, which is sometimes 
called "HP": 

•

35 



Assuming HP, φ and φ  can be shown to be equisatisfiable for any φ A. In essence, this is 
because two conditions are met. First, is compositional. Second, we have the following: 
Let φ(m i ) be a formula in A containing only m i free, and let ψ(Z i ) be the result of 
applying to φ(m i ). Then φ(m i ) is true of the number of the Gs just in case ψ(Z i ) is true 
of the Gs. 
Putting all of the above together, we get the result that on the assumption that HP is true, φ 
is an AB -recarving of φ  for any φ in A. A similar result can be proved for Hodes's 
paraphrase-function, described in section 2.3.3.

3.3. The Third Question

What can be concluded about the logicist theses? Since the result of applying to a 
sentence of pure n-th order arithmetic is always a sentence of pure second-order logic, 
can be shown to verify Language-Logicism, in the context of the higher-order view. In 
addition, can be shown to verify the semantic version of Consequence-Logicism for the 
case of pure and applied nth-order arithmetic.36 ,37 When the intuitive notion of content-
recarving is cashed out in terms of AB -recarvings and 
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HP is assumed, this yields the result that Language- and Consequence-Logicism are both 
verified by a paraphrase-function which preserves content, modulo recarvings.

4. The Neo-Fregean Program

This final section will be devoted to the Neo-Fregean Program (or "neologicism," as it is 
sometimes called). Despite its roots as an attempt to rescue Frege's logicist project from 
inconsistency, neo-Fregeanism has increasingly developed a life of its own, and must be 
assessed on its own terms.38 This makes the present section largely independent from the 
rest of the paper.
The core of the Neo-Fregean Program is the contention that it is possible to acquire an a 
priori justification for arithmetical statements in a special kind of way. Let N, HP  be the 
following linguistic stipulation: 
The second-level predicate "N" is to be used in such a way that HP (introduced in section 
3.2) turns out to be true. 



Neo-Fregeans believe that merely as a result of setting forth N, HP , one can acquire an a 
priori justification for the belief that HP is true. But HP deductively implies (definitional 
equivalents of) the second-order Dedekind-Peano Axioms.39 So, if the Neo-Fregean story is 
right, then N, HP  yields an a priori justification for the second-order Dedekind-Peano 
axioms.40 
The Neo-Fregean program has given rise to many objections and replies. We will make no 
attempt to survey the literature here.41 Instead, we will focus on a problem which I believe 
is especially important, and surprisingly underdeveloped. (For a broader perspective on the 
Neo-Fregean program, see chapter 6 in this volume.)
The problem arises as follows. Say that a linguistic stipulation is weakly successful if it has 
the effect of rendering its definienda meaningful. Say that a linguistic stipulation is 
strongly successful if it has the effect of rendering its definienda meaningful in such a way 
that the sentence targeted by the stipulation turns out to be true. N, HP  is of little interest 
to the Neo-Fregean unless it is strongly 
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successful. (If it is only weakly successful, then it doesn't have the effect of rendering HP 
true, and a fortiori the Neo-Fregean's proposal cannot yield the result that HP is known to 
be true.) But HP can be true only if there are infinitely many objects.42 So N, HP  can only 
be strongly successful if there are infinitely many objects.
So far, all we have is the conclusion that either there are infinitely many objects or N, HP  
is not strongly successful. But this gives way to a natural worry: Isn't an antecedent 
justification for the infinity of the universe required for N, HP  to deliver a justification 
for the belief that HP is true? After all, consider the following stipulation: 
The singular term "Zack" is to be used in such a way that the sentence "Zack is the man 
currently in my kitchen" turns out to be true. 
Nobody would think that this stipulation can deliver a justification for the belief that Zack 
is the man currently in my kitchen unless one has an antecedent justification for the belief 
that there is a (unique) man currently in my kitchen. Why should the situation be any 
different when it comes to N, HP ? More generally, the following proposal suggests itself: 

The Straight Proposal 

If a linguistic stipulation is to be strongly successful, the world must cooperate. In 
particular, the result of existentially Ramsifying the sentence targeted by the stipulation 
must be true.43 This is because the target sentence can be true only if its existential 



Ramsification is true,44 and strong success can obtain only if the target sentence is rendered 
true. 
In order for the setting forth a stipulation to deliver a justification for believing the 
stipulation's target sentence, one must have an antecedent justification that the world 
cooperates. In particular, one must have an antecedent justification for believing the 
existential Ramsification of the stipulation's target sentence. 
What is true in general is true for N, HP . Since the existential Ramsification of HP is 
equivalent (modulo choice principles) to the infinity of the universe, the setting forth of N, 
HP  can deliver a justification for believing HP only if one has an antecedent justification 
for the infinity of the universe. 
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The first paragraph of the Straight Proposal should be uncontroversial, even by the lights 
of Neo-Fregeans. But the final two paragraphs are not, and Neo-Fregeans must find an 
alternative proposal if their views are to have any plausibility. The problem of finding a 
plausible Neo-Fregean alternative to the Straight Proposal is the main focus of the present 
section.45 

4.1. Conditional Stipulations

Neo-Fregeans are keen to observe that N, HP  is, in a certain sense, conditional.46 More 
specifically, they argue that N, HP  succeeds in assigning a concept to "N" independently 
of how matters stand in the world. Facts about the world—in particular, facts about one-
one correspondence—enter the picture by determining what extension the concept will 
take.
Whatever the value of this observation in other contexts, it is not helpful as a rebuttal of the 
Straight Proposal. For if there are only finitely many objects, then the existential 
Ramsification of HP is false, and there can be no concept (whatever its extension) 
satisfying the constraints imposed by N, HP . Thus, insofar as proponents of the Straight 
Proposal are worried about whether one can be justified in 
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thinking that N, HP  is strongly successful in the absence of an antecedent justification for 
the belief that the universe is infinite, they will also be worried about whether one can be 
justified in believing that N, HP  succeeds in creating a concept of the requisite kind in the 
absence of an antecedent justification for the belief that the universe is infinite.



4.2. The Abstraction Thesis

Some presentations of the Neo-Fregean program make heavy use of content recarving.47 

Specifically, they rely on the view that as a result of setting forth N, HP , 
comes to have the same content as F G , carved up in a 

different way. Call this the Abstraction Thesis.
It is important to be clear that the Abstraction Thesis is a special case of the view the N, 
HP  is strongly successful, since it is a special case of the view that as a result of setting 
forth N, HP , HP is meaningful and true. Thus, insofar as proponents of the Straight 
Proposal are worried about whether one can be justified in thinking that N, HP  is strongly 
successful in the absence of an antecedent justification for the belief that the universe is 
infinite, they will also also be worried about whether one can be justified in accepting the 
Abstraction Thesis in the absence of an antecedent justification for the belief that the 
universe is infinite.
The Abstraction Thesis is therefore not a good way of countering the Straight Proposal, in 
the absence of further argumentation. In fact, commitment to the Abstraction Thesis can 
only complicate the task of offering a Neo-Fregean argument for the view that N, HP  is 
strongly successful. For however difficult the task might have been when all N, HP  is 
expected to deliver is a material equivalence, matters can only be worse if it is also 
expected to deliver sameness of content.
It is worth noting that in section 3.2 we relied on the assumption that HP is true to show 
that φ is an AB -recarving of φ . In particular, we relied on the assumption that HP is 
true to show that is an AB -recarving of F G . Thus, in the 
absence of further argumentation, the proposal about content-recarving we set forth in 
section 3 does not deliver a justification for believing that N, HP  is strongly successful. It 
does, however, supply a way of understanding the Abstraction Thesis according to which 
the Abstraction Thesis is true on the assumption that N, HP  is strongly successful.
Why, then, is the Abstraction Thesis of any interest? In connection with logicism, there is 
at least this: if the Abstraction Thesis is true, then a content-preserving paraphrase-function 
verifies Language-Logicism for the special case of numerical identities. Neo-Fregeans 
sometimes sound as if they believe something further: that if the Abstraction Thesis is true, 
then there is a sense in which every theorem of arithmetic is "logical." Perhaps the 
paraphrase-function (from section 3.1) supplies a way of spelling out this stronger claim.

4.3. Success by Default



One way of offering an alternative to the Straight Proposal is by defending a default 
epistemology, according to which it may be sufficient for a belief to be justified that there 
be no reasons to the contrary.48 In particular, Neo-Fregeans might attempt to defend 
something like the following:49 
Success by Default 
In the absence of reasons for thinking that a stipulation fails to meet the adequacy 
conditions in a certain set S, we are justified in thinking that it is strongly successful. 
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If Success by Default is true, then we needn't have an antecedent justification for the belief 
that the universe is infinite in order for N, HP  to deliver a justification for HP, as 
proponents of the Straight Proposal would have it. All we need is the absence of reasons 
for thinking that N, HP  fails to meet the conditions in S.
Unfortunately, Success by Default is far from being an uncontroversial principle. In order 
to defend it, Neo-Fregeans must carry out the following two tasks: 

1.  A specification of the conditions in S must be given. 
2.  It must be argued that a default epistemology is appropriate for linguistic stipulations. 

Much discussion in the Neo-Fregean literature has centered upon task 1. The main 
adequacy condition in S is the requirement that the stipulation in question involve an 
abstraction principle, that is, a principle of the form 

•

for R an equivalence relation.50 Unfortunately, this requirement will not do on its own. 
There are a number of abstraction principles giving rise to stipulations that Neo-Fregeans 
cannot regard as successful. This is what has come to be known as the Bad Company  
Objection. The simplest example of a problematic abstraction principle is Frege's Basic 
Law V, which is inconsistent and, hence, unsatisfiable. Neo-Fregeans must therefore add a 
requirement of consistency to S. But consistency cannot be the end of the matter. Heck 
(1992), Boolos (1997), and Weir (2003), among others, have set forth an array of 
consistent but pairwise incompatible abstraction principles. Since Success by Default can 
be taken to provide support for only one or the other of a pair of consistent but 
incompatible abstraction principles, Neo-Fregeans are forced to postulate additional 
adequacy conditions. Recent efforts include conservativeness,51 modesty,52 stability,53 
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and irenicity.54 But Neo-Fregeans have yet to find a fully satisfactory set of adequacy 
conditions.
What about task 2? The literature on skepticism offers some general discussion on default 
epistemologies, mostly in connection with perceptual beliefs.55 It is argued, for example, 
that, in the absence of reasons to the contrary, I am now justified in thinking that here is a 
hand and here is another. Unfortunately, there is no obvious way of extending these 
conclusions to the realm of linguistic stipulation. And, as far as I know, the adequacy of a 
default-epistemology for the case of linguistic stipulation has never been defended in print. 
Unless this omission can be remedied, default-epistemologies are unlikely to pose a serious 
threat to the Straight Proposal.

4.4. Further Challenges

The Neo-Fregean program faces at least two further challenges. One concerns second-
order logic. Since Neo-Fregeans wish to show that N, HP  yields an a priori justification 
for the Dedekind-Peano Axioms, they must argue not only that HP can be known a priori, 
but also that the second-order derivation of the Dedekind-Peano Axioms from HP 
preserves a priori knowledge. Assessing the status of second-order quantification gives rise 
to difficult questions which cannot be reviewed here. (See chapters 25 and 26 in this 
volume.)
Neo-Fregeans also face the Indeterminacy Challenge. It arises from the observation that 
many different assignments of semantic-value to the second-level predicate "N" are 
compatible with the truth of HP. In particular, it is compatible with the truth of HP that the 
members of any ω-sequence whatsoever serve as referents for the finite numerals (which 
can easily be defined on the basis of "N"). But it would seem to follow, at least at first 
sight, that the success of N, HP  does not by itself suffice to determine whether the 
referent of "0" is, for instance, Julius Caesar. This is bad news for the Neo-Fregean on the 
assumption that the following principle obtains: 
(*) An expression cannot be meaningful if there are several different assignments of 
semantic value, all of which are equally acceptable by the lights of our linguistic practice.56 
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In addressing a related challenge,57 Hale and Wright have offered an argument to the effect 
that—contrary to what one might have thought—the success of N, HP  does, in fact, 
suffice to determine that the referent of "0" is not Julius Caesar. It is based on the idea that 
N, HP  establishes one-one correspondence as the "criterion of identity" for the sortal 

concept number. If it is also conceded that something other than one-one correspondence is 



the "criterion of identity," belonging to the sortal concept person, and that no object can 
fall under sortal concepts with different "criteria of identity," then the referent of "0" 
(which falls under the sortal number) must be distinct from Julius Caesar (which falls 
under the sortal person)—or so the argument goes.
Whether or not this sort of argument can be made to work (and whether or not it succeeds 
in answering the the challenge it was intended to address), it does not suffice to answer the 
Indeterminacy Challenge. For, as Hale and Wright are aware, their story is compatible with 
the possibility that the success of N, HP  does not determine whether the referent of "0" is 
the number 7, or any other object falling under the sortal number. And, with (*) on board, 
this is enough to give rise to trouble. It is important to note, however, that the 
Indeterminacy Challenge is an instance of a general problem in the philosophy of 
mathematics,58 and Neo-Fregeans are free to emulate responses offered by some of their 
rivals. For example, they can offer resistance to (*) by arguing that it threatens the 
meaningfulness of ordinary English.59 

Appendix

Compositionality

We say that a function * is compositional with respect to a set S of sentences in a first-
order language just in case there are 

• 
 
a function 

• 
 
a higher-order formula ζ containing θ 1 and θ 2 as subformulas and no free occurrences 
of variables outside θ 1 and θ 2 ; 

• 
 
a higher-order formula ζ ¬ containing θ 1 as a subformula and no free occurrences of 
variables outside θ 1 ; 

end p.229

• 
 
a higher-order formula ζ containing θ 1 as a subformula and no free occurrences of 
variables outside θ 1 ; 

• 
 
for each n-place atomic predicate P i n of , a formula ξ P i 

n containing free occurrences 
of all and only the variables α 1 , … , α n ; 



such that the following conditions obtain: 60 

•  φ ψ  = ξ [θ 1 / φ ][θ 2 / ψ ] 
•  ¬φ  = ξ ¬ [θ 1 / φ ] 
•  ( x i )(φ)  = ξ [α/ x i ][θ 1 / φ ] 
•  P i n(x j 1 , … x j n )ℽ  = ζ P i 

n [α 1 / x j 1 ] … [α n / x j n ℽ ] 
•  For any variable x i in , x i is a variable. 
•  If φ is a sentence of S, then φ  is a sentence. 
•  For any sentence of S in the range of *, φ* = φ . 

where ζ[θ/φ] is the result of replacing every occurrence of θ in ζ by φ, and ζ[α/v] is the 
result of replacing every occurrence of α in ζ by v.

Proposition

Let be a first-order language with an intended model and suppose that all numerical 
identities can be interpreted in the theory of . Let * be a function such that (1) every 
sentence in is in the domain of *, (2) there is a higher-order language ′ such that every 
sentence in the range of * is a sentence of ′, and (3) * is compositional with respect to . 
Then there is no model  such that  has a finite domain and, for any sentence φ of ,

 φ if and only if  φ*. 
Proof: If φ is a formula of ′ with one free first- or higher-order variable α, say that the 
extension of φ relative to  is the set of semantic values s(α) for s a variable-assignment 
satisfying φ in . Since  has a finite domain, there cannot be an infinite set C such that 
(a) for some first- or higher-order variable α every member of C is a formula containing 
only α free, and (b) no two elements of C have the same extension relative to .
Assume, for reductio, that there is a model  such that  has a finite domain and such 

that, for any sentence φ of , φ if and only if  φ*. Since all numerical 
identities can be interpreted in the theory of , a formula 

•
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is true in whenever n≠m and false in whenever n≠m. Call this formula χ n,m . By our 
assumption, χ* n,m is true in  whenever n≠m, and false in  whenever n ≠ m.



Let n ≠ m. We know that * is compositional with respect to . Let be as in the definition 
of compositionality. By the definition of compositionality, and must 
contain free occurrences of the variable x 1 , and no free occurrences of other variables. 
Moreover, compositionality ensures that χ* n, m is the result of substituting for 
occurrences of in χ* n, m . Since χ* m, m is true in  and χ* n, m is false in , it 
follows that the extension of relative to  is different from the extension of 

relative to .
Consider the set C of formulas , for n a natural number. We know that no two 
formulas in C have the same extension relative to . But we had noted above that this is 
impossible on account of 's finite domain. □

Recarving Contents

Let L be an interpreted higher-order language, and allow the variables of L of any given 
type to be classified according to different "groups." Let α i n,m,k  be the i-th m-place nth-
order variable of the k-th group in L.
Say that a formula "α 1 n,m,k ≡ α 2 n,m,k" is an identity-predicate for variables of kind α 1 n,m,k  

with respect to a set S just in case (a) "α 1 n,m,k ≡ α 2 n,m,k" is reflexive, transitive, and 
symmetric, and (b) the following condition obtains for any formulas φ  and ψ  in S: 
If ψ  is the result of replacing every free occurrence of α i n,m,k  in φ  by α i n,m,k  (and 
perhaps relabeling variables to avoid clashes), then the universal closure of α i n,m,k ≡ α j 
n,m,k → (φ ↔ ψ)  is a true sentence of L for any i and j. 
Let A and B be sets of formulas of L, and let be a compositional, 61 one-one function from 
A onto B. We shall say that is an identity-isomorphism with respect to A and B just in 
case there are formulas "F(α 1 n,m,k,α 1 n′,m′,k′)," "α 1 n,m,k ≡ α 2 n,m,k," and "α 1 n′,m′,k′ ≡ α 2 n′,m′,k′" of 
L such that the following conditions obtain: 
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•
  
"α 1 n,m,k ≡ α 2 n,m,k" is an identity-predicate for variables of kind α i n,m,k  with respect to A. 

•
  
"α 1 n′,m′,k′ ≡ α 2 n′,m′,k′" is an identity-predicate for variables of kind α i n′,m′,k′  with respect to 
B. 

•
  
When is as in the definition of compositionality, α i n,m,k  = α i n′,m′,k′ . 

•
  
The universal closures of the following are true sentences of L: 

•



•
  
"α 1 n,m,k ≡ α 2 n,m,k" is an identity-predicate for variables of kind α i n,m,k  with respect to A. 

For φ A, we say that φ  and φ  are AB -equisatisfiable with respect to variables of 
kind i n,m,k  if is an identity-isomorphism with respect to A and B, and the following 
additional condition obtains: 

•  Let α 1 n,m,k  … α l n′,m′,k′  be the free variables in φ . Then the universal closure of 

•

is a true sentence of L, where φ  is φ . 

When there is no risk of confusion, we use " φ  and φ  are equisatisfiable" as an 
abbreviation for " φ  and φ  are AB -equisatisfiable with respect to every kind of 
variables occurring in A."
Finally, we say that preserves the logical networking of A if is an identity-isomorphism 
with respect to A and B, and preserves logical connectives.
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8. Formalism
Michael Detlefsen 

1. Introduction: The Formalist Framework



Viewed properly, formalism is not a single viewpoint concerning the nature of 
mathematics. Rather, it is a family of related viewpoints sharing a common framework—a 
framework that has five key elements.
Among these is its revision of the traditional classification of the mathematical sciences. 
From ancient times onward, the dominant view of mathematics was that it was divided into 
different sciences. Principal among these were a science of magnitude (geometry) and a 
science of multitude (arithmetic).
Traditionally, this division of mathematics was augmented by an ordering of the two parts 
in terms of their relative basicness and which was to be taken as the more paradigmatically 
mathematical. Here it was geometry that was given the priority.1 The formalist outlook 
typically rejected this traditional ordering of the mathematical sciences. Indeed, from the 
latter half of the nineteenth century onward, it typically reversed it. This reversal is the first 
component of the formalist framework.
A second component is its rejection of the classical conception of mathematical proof and 
knowledge. From Aristotle on down, proof and knowledge were 
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conceived on a genetic model. According to this model, we know a thing best when we 
know it through its "cause." In mathematics, this cause was taken to reside in basic 
definitions and principles of construction (e.g., Euclid's first three postulates). Generally 
speaking, a theorem concerning a given type of object was taken to be properly proved or 
demonstrated by showing how to construct objects of its type as objects having the 
property asserted of them in the theorem. This allowed one to witness the formation of the 
objects from their rudiments, and this exhibition of the formation of objects became an 
important part of the traditional standard for rigor.
These were the essential elements of the classical conception of proof. Formalists rejected 
both ideas.
They rejected the genetic conception of proof by denying that the only proper knowledge 
of a thing comes through knowledge of its causes. They rejected as well the traditional 
"presentist" conception of rigor which saw it as consisting primarily in the keeping of an 
object continuously before the visual imagination or intuition of the prover during the 
course of a proof. Indeed, they moved towards a conception of rigor that emphasized 
abstraction from rather than immersion in intuition and meaning. This change in the 
conception of rigor is the third component of the general formalist framework.
The fourth and perhaps most distinctive component of the formalist framework was its 
advocacy of a nonrepresentational role for language in mathematical reasoning. This idea 
reached full consciousness in Berkeley. Being particularly impressed with the algebraists' 
use of imaginary elements, he came to the general view that there are uses of expressions 



in reasoning whose utility and justification is independent of the (semantic) contents of 
those expressions.
The fifth and final component of the formalist framework is what I call its creativist 
component. This is the idea that the mathematician, qua mathematician, has a freedom to 
create instruments of reasoning that promise to further her epistemic goals (e.g., the 
improvement of cognitive efficiency). This was used by formalists in the nineteenth 
century to counter charges that they would make mathematics an essentially mechanical 
matter, the exercise of sheer technique (technē). Formalists agreed with nonformalists that 
the end of mathematical reasoning is the acquisition of genuine knowledge. They did not 
agree, however, that the only proper, or even the best, way to pursue this end was through 
the exclusive use of contentual reasoning.
The above are the chief characteristics of the historically and philosophically important 
variants of formalism. They are all, in one way or another, related to two important 
developments in the history of mathematics. One of these was the emergence and rapid 
development of algebraic methods from the seventeenth century onward. The second was 
the erosion of the authority of classical geometry and its methods throughout much of the 
same period.
The former gained impetus from various sources. Wallis, for example, argued for a 
reversal of the priority traditionally granted to geometry over arithmetic. In 
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particular, he argued that many of the traditional geometrical laws were based on 
arithmetical rather than geometrico-constructional properties of geometrical figures.
The latter derived in part, of course, from the discovery of non-euclidean geometries in the 
early part of the nineteenth century. This discovery suggested that (classical) geometrical 
intuition might not be the final authority even in geometry. This was further supported by 
the discoveries of Bolzano and Weierstrass (and others) in the mid-nineteenth century that 
suggested that geometrical intuition was not a reliable guide to the development of 
analysis. Mathematicians were therefore forced to look to arithmetic in order to find a 
foundation for analysis.
The remainder of this essay is largely an attempt to further our understanding of the five 
elements of the formalist framework just summarized. We begin, in the next section, with 
an overview of the classical genetic conception of proof. Following that, we describe the 
main challenges to the classical view that emerged in the late Middle Ages and the 
Renaissance. In the fourth section we consider the emergence of algebra and its two 
motivating ideals—what we call the invariantist and symbolical ideals. We argue there that 
formalism amounts to more than just an emphasis on algebraic methods or a general retreat 
from intuition. In the fifth section we identify the main factors comprising modern 
formalism, the formalism which found expression in the writings of Peacock and the 



Cambridge algebraists and was later developed more fully by Hilbert. In the final section, 
we consider a variety of challenges to formalism and suggest some general conclusions.

2. The Traditional Viewpoint

2.1. The Aristotelian Division of Mathematics

Aristotle (cf. book Delta of the Metaphysics, 1020a7-14) defined mathematics as the study 
of quantity (poson2 ), with quantity being generally conceived as that which is divisible 
into constituent parts. The division of a quantity was taken to admit of two basic forms: (1) 
division into discrete parts and (2) division into parts continuous with one another. 
Quantity admitting of division of the first type was termed plēthos by Aristotle (loc. cit.). 
The usual English translation is 
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multitude or plurality, which is intended to suggest that it is a type of quantity whose 
amount is to be determined by counting its parts.
Quantity of the second sort was termed megethos (loc. cit.), generally translated as 
magnitude. It was understood as being divisible into parts (each itself a magnitude) joined 
together by common boundaries. The location of each part with respect to others was taken 
to be discernible, including, of course, parts joined to a given part by a common border. 
The extent of a magnitude was to be determined by measurement, a comparison of a 
magnitude with a unit of the same type.
Aristotle's division between basic types of quantities gave rise to a corresponding division 
between two branches of mathematics—arithmetic (arithmetikē), or the science3 of 
multitude, and geometry (geōmetria), or the science of magnitude.4 
Beginning with the discovery of incommensurables,5 there was a long tradition of 
regarding magnitude as the more basic of the two types of quantity. In ancient times, 
numbers were mainly regarded as whole numbers, or numbers used in counting. They were 
also, however, related to geometrical objects, as in the Pythagoreans' theory of figured 
(figurate) numbers, and their ratios or proportions were studied in the ancient theory of 
means and proportions.
end p.239



Irrational quantities were different. They did not represent the results of counting, they did 
not suggest the shapes of geometrical figures, and they did not represent proportions 
expressible as ratios of (whole) numbers.6 
Ratios of incommensurables were thus quantities that admitted of representation as 
geometrical quantities but not as numbers or arithmetical quantities. Since all arithmetic 
quantities (i.e., all numbers) were geometrically representable, this suggested that 
magnitude was the more fundamental of the two basic types of quantity: all quantities 
could be represented as magnitudes, but not all quantities could be represented as 
multitudes (or "figures" or ratios thereof).
Of multitude and magnitude, then, magnitude appeared to be the more basic. This led to a 
corresponding priority of the science of magnitude (geometry), and its methods, to the 
science of number (arithmetic), and its methods.7 

2.2. Traditional Ideals of Proof

The discovery of incommensurables thus supported the establishment of classical 
geometrical method as the paradigm for mathematical method. It also played a role in 
determining a leading methodological ideal of classical geometry—what I will call the 
constructive ideal.
The constructive ideal had both a genetic component and a constructional component. 
Both represented epistemic ideals. According to the genetic component, knowledge of a 
geometrical object was at its best when it came through knowledge of that object's cause—
knowledge, that is, of its genesis, or how it came to be the object that it is. According to the 
constructional component, this knowledge of cause or genesis was at its highest when it 
consisted in knowledge of how to construct the object in question.
Aristotle gave the classical statement of the genetic ideal. 
We suppose ourselves to possess unqualified scientific knowledge of a thing, as opposed to 
knowing it in the accidental way in which the sophist knows, when we think that we know 
the cause (aitia) on which the fact depends as the cause 
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of the fact and of no other, and, further, that the fact could not be other than it is. [An.  
post.], I, 2 (71b9-11)8 
This was, moreover, taken to apply as much to mathematical as to nonmathematical 
objects. The question was what cause might come to in the case of mathematical objects. 
To help answer this question, Aristotle famously distinguished four notions of cause—
formal, material, efficient, and final. 



Evidently we have to acquire knowledge of the original causes (for we say we know each 
thing only when we think we recognize its first cause), and causes are spoken of in four 
senses. In one of these we mean the substance, i.e. the essence (for the "why" is referred 
finally to the formula [logos], and the ultimate "why" is a cause and principle [archē]; in 
another, the matter or substratum; in a third the source of the change; and in the fourth the 
cause opposed to this, that for the sake of which and the good (for this is the end of all 
generation and change). [Metaph., Rev.], I, 3 (983a25-31) 
Aristotle believed that it was the first or formal notion of cause that applied to 
mathematical knowledge.
The salient feature of a formal cause was that it did not depend upon or consist in any type 
of motion. Rather, it was a form of causation that reflected the inherent nature of the object 
itself. The idea was that the nature or essence of an object itself exerts a type of 
determinative force on its becoming and its development.
One could thus acquire epistēmē of a mathematical object by knowing its formal cause—
that is, its nature or essence. The nature or essence of an object, however, was supposed to 
be given by a proper definition of that object. Grasp of the nature of a mathematical object 
should therefore consist in grasp of its proper definition. From this it follows that, at 
bottom, knowledge of cause in mathematics consists in knowledge of a definition. As 
Aristotle so succinctly put it: 
The "why" is referred ultimately … in mathematics … to the "what" (to the definition of 
straight line or commensurable or the like). … [Physics, Rev.], II, 7 (198a16-18) 
The genetic component of the constructive ideal in geometry thus called for knowledge of 
the definitions of mathematical objects. In itself, however, this does not indicate a 
constructive approach to proof. The constructive element entered, rather, through the 
second component of the constructive ideal—what I am calling the constructional 
component. This component amplifies the genetic component by expressing an ideal for its 
realization. It maintains that the best kind of definition of a geometrical object is one that 
indicates how it is to be constructed.
This constructional component of the constructive ideal was not particularly Aristotelian in 
character. Still less, of course, was it Platonist. It is therefore perhaps surprising that the 
Neoplatonist Proclus should have attributed a systematic role 
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to construction in his account of the ancient distinction between problems and theorems.9 
 … the propositions that follow from the first principles he [Euclid] divides into problems 
and theorems, the former including the construction of figures, the division of them into 
sections, subtractions from and additions to them, and in general the characters that result 
from such procedures … the latter concerned with demonstrating inherent properties 



belonging to each figure. Just as the productive sciences have some theory in them, so the 
theoretical ones take on problems in a way analogous to production. [Proclus], 63 
The overall purpose of construction, according to Proclus, was to take the reasoner from 
the given of a problem/theorem to that which is sought in it ([Proclus], 159). 
[Geometry] calls "problems" those propositions whose aim is to produce, bring into view, 
or construct what in a sense does not exist, and "theorems" those whose purpose is to see, 
identify, and demonstrate the existence or nonexistence of an attribute. Problems require us 
to construct a figure, or set it at a place, or apply it to another, or inscribe it in or 
circumscribe it about another, or fit it upon or bring it into contact with another, and the 
like; theorems endeavor to grasp firmly and bind fast by demonstration the attributes and 
inherent properties belonging to the objects that are the subject-matter of geometry. 
[Proclus], 157-158 
Constructions were taken to be built up from (applications of) postulates in something like 
the same way in which proofs were taken to be built up from axioms ([Proclus], 163).
They were also, however, taken to play a role in proof. One particular such role was that of 
establishing existence. The idea was that before a proof can rightly appeal to a geometrical 
entity (e.g., a point), the existence of that entity must be established, and the way to 
establish that existence was to construct the entity or, perhaps, to give directions for its 
construction.
In this vein, speaking of Euclid's proof of proposition 4, book I, Proclus wrote: 
The propositions before it have all been problems … our geometer follows up these 
problems with this first theorem. … For unless he had previously shown the existence of 
triangles and their mode of construction, how could he discourse about their essential 
properties and the equality of their angles and sides? And how could he have assumed 
sides equal to sides and straight lines equal to other straight lines unless he had worked 
these out in the preceding problems and devised a method by which equal lines can be 
discovered? … It is to forestall such 
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objections that the author of the Elements has given us the construction of 
triangles. … These propositions are rightly preliminary to the theorem. … [Proclus], 182-
183 
Proclus thus seems to have seen constructions as, among other things, the means of 
establishing the existence of items dealt with in proofs.10 
As noted above, however, this was not the settled view of the Greeks. Indeed, it was a 
matter of considerable controversy.11 
Plato famously held that to be knowable, an object must be eternal and immutable. 
Knowledge, for him, was a contemplation of essence, not of genesis (cf. [Plato.], 526e). 
Geometrical knowledge, in particular, was "the knowledge of that which always is, and not 



of a something which at some time comes into being and passes away … geometry is the 
knowledge of the eternally existent" ([Plato., 527b).
Plato criticized the common view and practice of geometry as being confused on this point. 
The "language" of the usual geometer, he wrote, "is most ludicrous … for they speak as if 
they were doing something and as if all their words were directed toward action. For all 
their talk is of squaring and applying and adding and the like, whereas in fact the real 
object of the entire study is pure knowledge." ([Plato., 527a).
Plato thus regarded the bulk of geometers as confused about their subject. They conceived 
of their subject as centrally concerned with the generation or production of objects, when 
in truth it was a science of the eternally existing and ungenerated. For Plato, then, 
constructed objects were produced and not eternal, and they could not, for that reason, be 
the objects of geometrical knowledge. They could at best serve as representations of real 
objects and provide some sort of practical guide to their knowledge. As Proclus, describing 
the views of the Platonists Speusippus and Amphinomus, put it: 
There is no coming to be among eternals … hence a problem [as opposed to a theorem] has 
no place here [in the theoretical science of geometry], proposing as it does to bring into 
being or to make something not previously existing—such as to construct an equilateral 
triangle, or to describe a square when a straight line is given, or to place a straight line 
through a given point. Thus it is better, according to them [Speusippus and Amphinomus], 
to say that all these objects exist and that we look on our construction of them not as 
making, but as understanding them, taking eternal things as if they were in the process of 
coming to be. [Proclus], 64 
Menaechmus, a student of Eudoxus and an important figure in the early Academy, was 
among those geometers holding the view thus criticized. He took 
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construction to be central to geometry, and conceived of it generally as a process by which 
objects were produced or generated.12 
Proclus tried to harmonize these views. The school of Speusippus was right, he said (cf. 
[Proclus], 64), because the problems of geometry are different from those of mechanics in 
that the latter but not the former "are concerned with perceptible objects that come to be 
and undergo all sorts of change" (ibid.).
The school of Menaechmus, on the other hand, was also right because "the discovery of 
theorems does not occur without recourse to … intelligible matter" (ibid.).13 Proclus's 
suggestion was thus to offer a distinction between the understanding (gnōstikōs, dianoia) 
and the imagination (phantasia) and to say that the understanding keeps the definition 
(logos) of the eternal, changeless geometric objects fixedly in mind while the imagination, 
"projecting its own ideas" (ibid.) is a production (poiētikōs) of figures, sectionings, 
superpositions, comparisons, additions, subtractions, and the other acts of construction 



(poiētikōs, sustasis). The change that takes place is therefore in the actions of the 
imagination of the constructor, which actions form the efficient cause of the figure 
constructed. It is not in the understanding, whose "action" remains that of a Platonic 
contemplation of an eternal form which serves as the formal cause of the figure 
constructed.14 The figures produced by the efficient causation of the imagination are thus 
constructions of or from the figures contemplated in the understanding.15 
end p.244

Indeed, the constructor (or his constructive actions) becomes the efficient cause of a 
triangle in his imagination by virtue of his having the form (logos) of the triangle in his 
understanding. Thus, the triangle the diagrammer constructs is in one sense a product of his 
diagramming actions. In another it is a product of the form he holds in his mind: 
 … from art proceed the things of which the form is in the soul of the artist. (By form I 
mean the essence of each thing and its primary substance.) [Metaph.], 1032a32-b1 
If Proclus' account of the controversy within the early Academy concerning the place of 
constructions in geometry is correct, the constructive ideal had a significant following 
among ancient geometers.16 Another indication of this is the above-mentioned distinction 
in the Elements between postulates and axioms.17 Other ancient geometers, too, gave 
construction a prominent place in their work. Among these were Apollonius (e.g. in his 
constructive definition of the cone (cf. [Apollonius], 1)) and Archimedes (e.g. in his 
operations on circles, spheres and cylinders (cf. [Archimedes], e.g. Prop. 5)). This tradition 
continued throughout the Middle Ages and Renaissance and into the modern era.
In addition to the criticisms of the Platonists noted above, there were other criticisms of the 
constructive ideal. These included criticisms of both its constructional and its genetic 
components. On the constructional side, this led to a discussion of the forms of motion that 
ought to be admissible in construction. Discussion focused on the use of "mixed motion" 
or "mixed line" (cf. [Proclus], 84-86, 211ff.) constructions. This was construction via lines 
or points moving at equal or fixed proportional rates of speed (e.g. Hippias's quadratrices). 
This type of construction (commonly termed "mechanical" or "instrumental" (organikos or 
mēchanikos), as opposed to properly "geometrical" (geometrikos)) was believed by some 
to require the marking of motion in both the imagination and the understanding. That is, it 
required essential use of or reference to motion not only to visualize but also to understand. 
As such, it violated the terms of Proclus's Platonistic compromise by not confining motion 
to what properly belonged only to the imagination.
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The controversy concerning the propriety of "mechanical" construction and the proper 
separation of it from truly geometrical construction continued for a long time. During part 



of this time, there also arose a controversy concerning the propriety of the genetic element 
of the constructive ideal—that is, the idea that there is, properly speaking, causation in 
geometry (and in mathematics generally). This was generally regarded as posing a deeper 
challenge to the classical constructive ideal than the controversy over the proper office of 
construction in geometry. It is to this discussion that we now turn.

3. Medieval and Renaissance Challenges to the Ancient Ideals

A remnant of the constructional component of the constructive ideal was thus preserved by 
the Neoplatonists of late antiquity. Various of the Jesuit commentators of the late Middle 
Ages and Latin Renaissance, however, launched sweeping criticisms of the constructive 
ideal, including its genetic component. Of these, the critique of Ludovicus Carbone in his 
1599 treatise Introductio in universam philosophiam seems to have been particularly 
influential.18 This treatise offered a classification of the sciences based on Aristotle's 
conception of scientia (epistēmē) as knowledge based on demonstration or knowledge of 
cause. According to this classification, there were five speculative sciences and two 
practical sciences.19 The speculative sciences were a science of God, a science of 
intelligences, a science of being in common, a science of natural bodies, and a science of 
quantity. The two practical sciences were logic and ethics.
The sciences in this classification were ranked according to their nobility and their 
certitude. In the ranking according to certainty, mathematics was at the top. In the ranking 
according to nobility, it was at the bottom. This agreed with the relatively widespread 
belief, shared by Carbone, that there are no genuine definitions, no genuinely causal 
connections, and, hence, no truly genuine demonstration or scientia in mathematics (cf. 
Wallace [Wallace 1984], 131-132).
A concise statement of this general viewpoint was given by the Jesuit Benedictus Pererius 
in his 1576 treatise De communibus omnium rerum naturalium principiis et affectionibus. 
He there argued for a more Platonistic viewpoint according to which mathematical objects 
are or should be treated as having no essential connection to motion (efficient cause) or 
any other genuine type of cause. 
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My opinion is that mathematical disciplines are not proper sciences.… To have science 
(scire) is to acquire knowledge of a thing through the cause on account of which the thing 
is; and science (scientia) is the effect of demonstration: but demonstration (I speak of the 
most perfect kind of demonstration) must be established from those things that are per se 
and proper to that which is demonstrated, but the mathematician neither considers the 



essence of quantity, nor treats of its affections as they flow from such essence, nor declares 
them by the proper causes on account of which they are in quantity, nor makes his 
demonstrations from proper and per se but from common and accidental predicates. 
[Pererius 1576], i.12, p. 2420 
A central example used to illustrate this claim was Euclid's proof that the interior angles of 
a triangle sum to two right angles (cf. prop. 32 in book I of the Elements). In his proof, 
Euclid both extended the base of the triangle and constructed a line parallel to one of its 
sides. For Pererius, this made the proof noncausal (and hence nonscientific) because 
neither the extension of the base of a triangle nor the construction of a line parallel to one 
of its sides is an essential property of the triangle in itself or of the construction of the 
triangle itself. This being so, Euclid's proof could not rightly be seen as providing a causal 
demonstration (i.e., a demonstration from the essence of the triangle).21 
The charge that mathematics did not preserve the genetic ideal was familiar to Christopher 
Clavius and the other mathematicians at the Collegio Romano22 in the latter part of the 
sixteenth century. Clavius and his student Josephus Blancanus systematically opposed the 
charge, insisting that there is genuine causation and, hence, genuine demonstration and 
genuine scientia in mathematics. To accept anything less, they believed, was to jeopardize 
the place of mathematics in the curriculum of the Jesuit universities. Their reasoning was 
essentially this: if there is not genuine causal demonstration in mathematics, then 
mathematical knowledge is not knowledge of the highest type; and if mathematical 
knowledge is not knowledge of the highest type, then it does not deserve a prominent place 
in a university curriculum. Clavius and Blancanus therefore viewed the Platonistic 
arguments of Carbone, Piccolomini, and Pereira as a serious threat to the place of 
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mathematics in the universities, and they called upon the "teachers of philosophy" to stop 
characterizing mathematics as falling short of the genetic ideal. 
It will … contribute much … if the teachers of philosophy abstain from those questions 
which do not help in the understanding of natural things and very much detract from the 
authority of the mathematical disciplines in the eyes of the students, such as those in which 
they teach that the mathematical sciences are not sciences. …  
[Clavius 1586], quoted in [Crombie 1977], 6623 
More substantively, Blancanus argued that the quantities studied in geometry and 
arithmetic are formed from intelligible matter, which is abstracted from sensible matter. 
Because of this, he maintained, it is possible to define the essences of objects composed of 
such matter, and these definitions will in turn provide the middle terms necessary for true 
formal-causal (logos or archē) demonstration. He also argued that intelligible matter, like 
sensible matter, is composed of parts, and that such parts are capable of providing the 



material causes of the properties of intelligible objects as well as their formal causes. He 
thus maintained that both material and formal causation operate in mathematics.24 
In addition to Clavius and Blancanus, Galileo too shared this view, at least during the 
earlier part of his life. So, too, it seems, did many other mathematicians and philosophers. 
So much so, in fact, that it became the prevailing view of mathematical knowledge in the 
seventeenth century and remained influential for a considerable time thereafter. The 
following two remarks, one by a mathematician and one by a philosopher, are thus 
representative of the common view of seventeenth-century thinkers regarding the nature of 
mathematical knowledge. 
 … Mathematical Demonstrations are eminently Causal … because they only fetch their 
Conclusions from Axioms which exhibit the principal and most universal Affections of all 
Quantities, and from Definitions which declare the constitutive Generations and essential 
Passions of particular Magnitudes. From whence the Propositions that arise from such 
Principles supposed, must needs flow from the intimate Essences and Causes of the 
Things. [Barrow 1664], 8325 
 … demonstrations are flawed unless they are scientific, and unless they proceed from 
causes, they are not scientific. Further, they are flawed unless their conclusions are 
demonstrated by construction, that is, by the description of figures, 
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that is, by the drawing of lines. For every drawing of a line is motion, and so every 
demonstration is flawed, whose first principles are not contained in the definitions of the 
motions by which figures are described. [Hobbes 1666], vol. 4, 42126 

4. The Emergence of Formalism

Modern formalism emerged against the backdrop of two noteworthy developments. One 
was a general decline in the importance of intuition as a guide to proof.27 The other was the 
general increase in popularity of algebraic methods that began in the seventeenth century.
Modern formalism historically accompanied these developments. This notwithstanding, 
there is no necessary conceptual connection between them. The decline of intuition was a 
broad and complex phenomenon that left ample room for nonformalist responses. Similarly 
for the ascent of algebraic method. It arose from a variety of motives, only some of which 
were formalist.
Such, at any rate, is the argument I will sketch in the remainder of this section. The 
remaining element in the emergence of formalism—the symbolic element—will be 
discussed in section 5.



4.1. The Decline of Intuition

It has been suggested that the fundamental influence shaping nineteenth-century formalism 
was the general loss of confidence in geometric intuition that reached a critical point in the 
late nineteenth century. The following remark by the early twentieth-century 
mathematician-philosopher Hans Hahn gives a fairly typical assessment of this crisis. 
Because intuition turned out to be deceptive in so many instances and because propositions 
that had been accepted as true by intuition were repeatedly proved false by logic, 
mathematicians became more and more sceptical of the value of intuition. They learned 
that it is unsafe to accept any mathematical proposition, much less to base any 
mathematical discipline, on intuitive convictions. Thus a demand arose for the expulsion of 
intuition from mathematical reasoning and for the complete formalization of 
mathematics. … every new mathematical 
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concept was to be introduced through a purely logical definition; every mathematical proof 
was to be carried through by strictly logical means. 
 …  
It is not true, as Kant urged, that intuition is a pure a priori means of 
knowledge … rather … it is force of habit rooted in psychological inertia. [Hahn 1980], 
93, 101 
Hahn makes two charges here that it is important to distinguish. One is the sweeping claim 
that belief in a mathematical proposition ought never to be based on intuition. The other is 
the more cautious claim that reliance on intuition ought rightly to be banished from 
mathematical reasoning or inference. Commitment to the latter does not entail 
commitment to the former.
The latter is primarily a concern for rigor; a concern which, moreover, was clearly in 
evidence prior to the nineteenth-century developments mentioned above. It was widely 
known among seventeenth-century geometers that the proofs in the Elements were not so 
rigorous as had commonly been supposed. Specifically, they were known to rely upon 
assumptions that were not stated in the axioms and postulates. Lamy and Wallis, to 
mention but two seventeenth-century figures, each noted a number of such lapses.
Lambert, a century later, offered both a diagnosis and a cure. His diagnosis was that lapses 
in rigor were principally due to the tacit smuggling of undeclared (even unrecognized) 
elements of our intuitive grasp of geometrical figures into the inferences of geometric 
proofs. His prescribed cure was direct. He called for proof to proceed solely on the basis of 



its "algebraic" character (i.e., the syntactic character of the expressions occurring in it) and 
in abstraction from its subject matter. In determining whether a given proposition follows 
from others, he thus maintained, we should abstract away from everything having to do 
with the representation (Vorstellung) of the object or thing(s) (Sache) with which the proof 
is concerned. In this respect, a proof should "never appeal to the thing itself … but be 
conducted entirely symbolically [durchaus symbolisch Vortrage]" ([Lambert 1786], 162). 
Thus, a proof should treat its premises "like so many algebraic equations [algebraische  
Gleichungen] that one has ready before him and from which one extracts x, y, z, etc. 
without looking back to the object itself [ohne daß man auf die Sache selbst zurücke sehe]" 
(ibid.).
This was in radical opposition to the traditional conception of rigor. It also anticipated the 
formal conception of rigor and reasoning that was to be put into effect in the geometrical 
work of Pasch and Hilbert a century later (cf. [Pasch 1882] and [Hilbert 1899]). Its main 
contention was that rigorous verification of the validity of an inference should not require 
appeal to its subject matter. As Pasch later put it: 
 … if geometry is to be genuinely deductive, the process of inferring must always be 
independent of the sense of geometrical concepts just as it must be 
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independent of diagrams. It is only relations between geometrical concepts that should be 
taken into account in the propositions and definitions dealt with. In the course of the 
deduction, it is certainly legitimate and useful, though by no means necessary, to think of 
the reference of the concepts involved. In fact, if it is necessary so to think, the deficiency 
of the deduction and the inadequacy of the method of proof is thereby revealed. … [Pasch  
1882], 98 
The modern conception of rigor thus required that both intuition and meaning be 
eliminable from the verification of the validity of the inferences that are made in a proof. It 
did not, however, require and did not justify a similar eliminability of intuition from the 
verification of the propositions that are used as the premises of such proofs. It did not, 
therefore, justify anything as radical as Hahn's claim that "it is unsafe to accept any 
mathematical proposition, much less to base any mathematical discipline, on intuitive 
convictions" ([Hahn 1980], 93). Nor was it generally claimed to do so.
The justification of this more radical proposal to eliminate intuition was generally based 
not on lapses in traditional rigor but on the more challenging discoveries of Bolzano and 
Weierstrass and others of curves that "cannot possibly be grasped by intuition" ([Hahn  
1980], 87) and "can only be understood by logical analysis" (ibid.). The existence of such 
curves suggested, if it did not strictly imply, that logical analysis was superior to intuition 
as a means of determining the truth of mathematical propositions. This being so, logical 



analysis should replace intuition everywhere possible in order to minimize the chances of 
error.
This, of course, raises the question of whether use of logical analysis instead of intuition is 
always or even generally a means of minimizing the likelihood of error. My interest in 
formalism does not require that I offer an answer to this question here. The formalist can 
treat it as an open question. This is because he does not require the exclusion of intuition 
from mathematics but, rather, the inclusion of the nonintuitive (even the noncontentual) in 
it.28 The elimination of intuition is therefore not an essential element of formalism. Hilbert 
made this clear in his criticism of the logicists Dedekind and Frege when he said that their 
attempts were "bound to fail" ([Hilbert 1926], 376) because the very use of logical 
inference and the performance of logical operations require that something be given to 
intuitive representation prior to all thinking.
The elimination of intuition is therefore not a necessary ingredient of formalism. Neither, I 
will argue, is it a sufficient condition. It is both a historical and a philosophical mistake to 
think otherwise. The pivotal commitment of formalism is not the negative one of 
eliminating intuition. Rather, it is a view concerning the nature of language—namely, that 
it can serve as a guide to thought even when it does not function descriptively. This general 
view was put forward by Berkeley in 
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the eighteenth century, partly as an attempt to account for the usefulness of imaginary 
expressions in algebra. We will discuss it further in section 5. For the moment, however, 
we will consider more closely the questions of what might constitute a retreat from 
intuition and whether formalism is essentially a case of such.

4.2. Formalism and the Retreat from Intuition

In the remark quoted from Lambert, we already see a tendency to associate formalism with 
what might be called the algebraic way of thinking, where this is taken to consist in some 
type of abstraction from the intuitive contents of geometrical objects. In this subsection, I 
want to consider what such abstraction might, or perhaps should, be seen as coming to. It is 
not, I think, so clear as it may first appear to be. Locating some of the unclarities will help 
us to see better why formalism is not to be identified in any simple way with a retreat from 
intuition.
To begin with, let's try to get clearer on what is to count as intuition. The classical 
conception of intuition emphasized its immediacy. Plato first, but later Descartes (1596-
1650), too, identified it with immediate knowledge of the (purely) intelligible, or what the 



Greeks referred to as noēsis (where this was distinguished from knowledge arising from 
the senses, or aesthesis). Descartes described this noetic conception of intuition as follows: 
By intuition I understand, not the fluctuating testimony of the senses, nor the misleading 
judgment that proceeds from the blundering constructions of imagination, but the 
conception which an unclouded and attentive mind gives us so readily and distinctly that 
we are wholly freed from doubt about that which is understood. … intuition is the 
undoubting conception of an unclouded (purae) and attentive mind. … [Descartes 1970a], 
7 (rule III) 
Locke (1632-1704) in his Essay Concerning Human Understanding also emphasized the 
immediacy of intuition, as well its clarity and certainty. 
 … if we … reflect on our own ways of thinking, we will find, that sometimes the mind 
perceives the agreement or disagreement of two ideas immediately by themselves, without 
the intervention of any other: and this I think we may call intuitive knowledge. … this kind 
of knowledge is the clearest and most certain that human frailty is capable of. … [it] is 
irresistible, and, like bright sunshine. [Locke 1689], vol. II, pp. 176-177 
Unlike Descartes, however, Locke found the central qualities of clarity and certainty not in 
the noemata of pure intellection (i.e., the ideas of reason or reflection) but in the ideas of 
sense. He thus maintained a basically empiricist conception of intuition while Descartes 
maintained a rationalist conception.
Kant (1724-1804) fashioned a view lying somewhere between these extremes. Specifically, 
he divided intuition into two types (or, perhaps better, two 
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components): the pure, which supplied the form(s) of experience, and the empirical, which 
supplied its matter or content. He employed this division to obtain a conception of intuition 
that allowed it to possess robust content while at the same time retaining an element of 
apriority. 
In whatever manner and by whatever means a mode of knowledge may relate to its objects 
(Gegenstände), intuition (Anschauung) is that through which it is in immediate relation to 
them, and to which all thought (Denken) as a means is directed. But intuition takes place 
only in so far as the object is given to us. This … is only possible … in so far as the mind 
(Gemüt) is affected in a certain way. The capacity for receiving representations 
(Vorstellungen) through the mode in which we are affected by objects, is entitled 
sensibility. Objects are given to us by means of sensibility, and it alone yields 
intuitions. …  
The effect (Wirkung) of an object upon the faculty of representation … is sensation 
(Empfindung). That intuition which is in relation to the object through sensation, is entitled 
empirical (empirisch). The undetermined object of an empirical intuition is entitled 
appearance (Erscheinung). 



That in the appearance which corresponds to sensation I term its matter (Materie); but that 
which so determines the manifold of appearance (Mannigfaltige der Erscheinung) that it 
allows of being ordered … I term the form (Form) of appearance. That in which alone the 
sensations can be posited and ordered … cannot itself be sensation; and therefore, while 
the matter of … appearance is given to us a posteriori only, its form (Form) must lie ready 
(bereitliegen) for the sensations a priori in the mind. … The pure form of sensible 
intuitions … must be found in the mind a priori. This pure form of sensibility may … be 
called pure intuition. [Kant 1781], A19-20, B33-35 
It is important for our purposes to consider the significance of Kant's distinction between 
pure and empirical intuition. What, we should ask, is the essence of this distinction? Our 
answer is that it is an attempt to distinguish the variable (Materie) from the invariable 
(Form) elements of intuition and to allign mathematics with the invariable.
We thus already see in Kant's distinction between the form and matter of intuition a certain 
type of retreat from intuition—namely, a retreat from its variable elements. We see 
something of the same in Locke's distinction between primary (invariant) and secondary 
(variant) qualities of objects and in his identification of objective knowledge with 
knowledge of the former. In each case, there is a variant type of intuition from which the 
enterprise of knowledge is separated. At the same time, there is an invariant intuition to 
which knowledge remains bound. Knowledge generally and, in the case of Kant, at least, 
mathematical knowledge in particular, is identified with the grasp of certain invariants of 
experience.

4.2.1. The Invariantist Ideal

Commitment to invariantist ideals was already clear in the methodological writings of 
various mathematicians and mathematically engaged philosophers in Locke's 
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day. It took a variety of forms, however, one of which was a shift of focus, generally 
attributed to Viète (1540-1603) and Descartes, from particular quantities to quantities in 
general or, to use the traditional terminology, from particular quantities to species of 
quantities.29 
The leading idea of this generalized arithmetic was that while some properties of 
mathematical quantities are due to those quantities being the particular quantities they are, 
others of their properties are due to more general features that those quantities share with 
other quantities. Viète was interested in this latter type of property. In this spirit, he 
inquired into the relations that exist between the coefficients and the roots of equations 



generally, and discovered that there are invariances in such relations. One example is the 
general relation that exists between the coefficients and roots of a second-degree equation 
when the coefficient of the second term of the equation is the negative of two numbers 
whose product is the third term. Under this condition, the two numbers in question are 
roots of the equation, regardless of the particular values of the quantities to which the 
coefficients may be attached. This suggests that certain relationships between coefficients 
and roots of quadratic equations are due not to the particular quantities with which an 
equation is concerned, but to certain standing properties that endure regardless of the 
particular quantities dealt with.
Descartes intensified this search for the most general laws of quantity. It was, indeed, the 
leitmotif of his mathesis universalis. He believed that these laws would illuminate not only 
arithmetic but geometry. Indeed, he believed that it was these laws that guided the work of 
ancient geometers. Unfortunately, Descartes maintained, the ancients coveted the 
admiration of others more than they loved truth and, so, hid their methods to keep others 
from seeing how easy and unremarkable many of their discoveries really were. This was a 
familiar theme among the early developers of algebra (cf. the quote from Pedro Nuñez' 
algebra in [Wallis 1685], ch. II, 3, the remark by Viète) in ch. V [Viète 1983], p. 27 and the 
claim by Wallis in ch. II of [Wallis 1685], p. 3).
The secret of the Greeks was Algebra, and it was this realization, said Descartes, that 
recalled him from 
 … the particular studies of Arithmetic and Geometry to a general investigation of 
Mathematics, and thereupon … to determine what precisely was universally meant by that 
term … as I considered the matter carefully it gradually came to light that all those matters 
only were referred to Mathematics in which order and measurement are investigated, and 
that it makes no difference whether it be in numbers, figures, stars, sounds or any other 
object that the question of measurement arises. I saw consequently that there must be some 
general science to explain that element as a whole which gives rise to problems about order 
and 
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measurement, restricted as these are to no special subject matter. [Descartes 1970a], 13 
This general or universal mathematics (mathesis universalis) "contained everything on 
account of which the others [that is, the particular mathematical sciences] are called parts 
of Mathematics" (ibid.). A genetically penetrating proof of a truth of this general 
mathematics would therefore not depend upon the special properties of any particular 
quantity or kind of quantity.
Seen this way, algebra was intended to serve the genetic ideal. In addition to this, however, 
it also promised to make mathematical thinking more economical by keeping it focused. 
Descartes expressed this idea as follows: 



By this device [symbolic algebra] not only shall we economize our words, but, which is the 
chief thing, display the terms of our problem in such a detached and unencumbered way 
that, even though it is so full as to omit nothing, there will nevertheless be nothing 
superfluous to be discovered in our symbols, or anything to exercise our mental powers to 
no purpose, by requiring the mind to grasp a number of things at the same time. [Descartes  
1970a], 67 
The Oxford mathematician John Wallis (1616-1703) made similar points in his 1685 
Treatise of Algebra. As regards the simplification of thinking, he wrote: 
This Specious Arithmetick, which gives Notes or Symbols (which he [Viète] calls Species) 
to Quantities both known and unknown, doth (without altering the manner of the 
demonstration, as to the substance,) furnish us with a short and convenient way of 
Notation; whereby the whole process of many Operations is at once exposed to the Eye in 
a short Synopsis. [Wallis 1685], preface, a5 
Wallis did, then, consider (some kind(s) of) brevity or efficiency to be a prime virtue of 
algebraic reasoning—particularly as a means of what he called investigation (i.e., "finding 
out of things yet unknown," [Wallis 1685], 305-306) as distinct from demonstration. 
Wallis's view of algebra was, however, also deeply motivated by what he took to be its 
capacity to genetically improve upon the demonstrations of classical geometry. He argued, 
in particular, that some of the deepest properties of geometrical figures are due not to their 
manner of construction but to more basic algebraic or arithmetic characteristics which hold 
of them not as geometrical quantities but as quantities per se: 
 … beside the supposed construction of a Line or Figure, there is somewhat in the nature of 
it so constructed, which may be abstractly considered from such construction; and which 
doth accompany it though otherwise constructed than is supposed. [Wallis 1685], 291 
Again we see here an invariantist ideal—the idea that geometry ought to be concerned with 
the most invariant features of geometrical figures. In Wallis's view, these were (at least in 
some instances) arithmetical features of those figures and not features dictated by the 
manner of their construction. He thus proceeded 
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Fig. 8.1: Area of Triangle.

to offer arithmetic or algebraic proofs—proofs appealing only to a figure's general 
characteristics as a quantity—of various classical properties of geometrical figures.30 He 
applied this to the classical problem of quadrature. A good example was his 
"demonstration" of the classical law of area for the triangle ( ).31 
The basic idea of the proof is that the interior of a triangle ABC can be approximated by a 
stack of thin rectangles (call them composing rectangles) that approximates ever more 
closely the interior of ABC as the common height of the rectangles is allowed to go to 0.32 

(See figure 8.1.) Thus, let the length of the base AB of ABC be b, and its height (i.e., the 



length of CD) be h. As h c (the common height of the composing rectangles) goes to 0, the 
sum of the heights of the composing rectangles approaches h, and the sum of their areas 
approaches the area of ABC.
How is the sum of the areas of the composing rectangles to be reckoned? Wallis reasoned 
that since the sides of a triangle are straight lines (and hence of constant slope) and the 
composing rectangles are of uniform height, every move from one rectangle to the next 
one down in the stack will result in the same change in the length of the base of that 
rectangle. For each value of h c , then, the 
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lengths of the bases of the composing rectangles will form an arithmetic progression.33 

This, in turn, implies that for each value of h c the areas of the composing rectangles will 
form an arithmetic progression.34 
This being so, we can use the law concerning sums of arithmetic progressions to find the 
joint area of the composing rectangles. The sum of an arithmetic progression is the average 
size of its terms times their number. The average size of the terms of a progression is the 
average of its largest and smallest terms. The sum of an n-element arithmetic progression 
whose smallest element is k 1 and whose largest element is k n is thus (k 1  + k n )/2 × n.
Letting n c be the number of composing rectangles, the sum of their areas will then be 

•

where s is the length of the base of the smallest rectangle. Since s approaches 0 as h c 

approaches 0, and since the product n c h c approaches h as h c approaches 0, we can say 
that the quotient 1/2(n c b c s + n c  + h c  + b) approaches 

•

as h c approaches 0.
Using Wallis's arithmetical computation for the area of a triangle, then, we can always 
come closer than any assigned value to the value determined by the classical law for the 
area of a triangle (i.e., ). By the principle of exhaustion, it then follows that the 
value determined by Wallis's procedure and the value determined by the classical law are 
the same. Q.E.D.35 
Wallis took this and similar proofs to show that the genetic ideal is not always well served 
by joining it to a constructive ideal. The real "causes" of truths concerning geometrical 
figures do not always reside in the manner of their construction, but in certain of their 
construction-invariant arithmetical features. Because these arithmetical invariants are more 
persistent than their geometrical counterparts, the features they signify are deeper and more 



revealing of the essence of geometrical objects than are the associated constuctional 
properties.
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This posed a challenge to the traditional Aristotelian injunction against metabasis, and it 
did so in the name of genetically deeper proof. Wallis thus maintained that his algebraic 
methods were not only satisfactory but, in many cases, genetically superior to the methods 
of classical geometry: 
 … this Abstractio Mathematica (as the Schools call it,) is of great use in all kind of 
Mathematical considerations, whereby we separate what is the proper Subject of Inquiry, 
and upon which the Process proceeds, from the impertinences of the matter (accidental to 
it,) appertaining to the present case or particular construction. 
For which reason, whereas I find some others (to make it look, I suppose, the more 
Geometrical) to affect Lines and Figures; I choose rather (where such things are 
accidental) to demonstrate universally from the nature of Proportions, and regular 
Progressions; because such Arithmetical Demonstrations are more Abstract, and therefore 
more universally applicable to particular occasions. Which is one main design that I aimed 
at in this Arithmetick of Infinites. [Wallis 1685], 29236 
For Wallis, then, as also for Descartes, fidelity to the genetic ideal did not entail fidelity to 
the constructive ideal. In particular, it devalued that intuition which consists in the use of 
vision or the visual imagination to construct geometric figures. It did so on the grounds that 
preoccupation with such intuition can be, and oftentimes is, preoccupation with the less 
rather than the more invariant and, as such, is preoccupation with the genetically less deep. 
Thus it was that adherence to the classical genetic ideal itself provided a motive for the 
retreat from intuition that began in earnest in the seventeenth century.
Something of the same spirit animated that nineteenth-century "revival" of synthetic 
method in geometry known as projective geometry. We now briefly consider this.
4.2.2. Projective Geometry and the Principle of Continuity
There was, of course, a need to be clearer about invariance and its connection with 
objectivity, and this became a central concern of eighteenth- and nineteenth-century 
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geometry. Jean-Victor Poncelet (1788-1867), one of the founders of projective geometry, 
proposed a solution in the form of a principle—the so-called Principle of Continuity 
(PC).37 He presented it in the preface to the 1822 edition of his famous Traité des  
propriétés projectives des figures: 
Let us consider some geometrical diagram, its actual position being arbitrary and in a way 
indeterminate with respect to all the possible positions it could assume without violating 



the conditions which are supposed to hold between its different parts. Suppose now that we 
discover a property of this figure. … Is it not clear that if, observing the given conditions, 
we gradually alter the original diagram by imposing a continuous but arbitrary motion on 
some of its parts, the discovered properties of the original diagram will still hold 
throughout the successive stages of the system always provided that we note certain 
changes, such as that various quantities disappear, etc.—changes that can easily be 
recognized a priori and by means of sound rules? [Poncelet 1822], vol. 1, p. xii 
There are, I think, few clearer examples of philosophical ambition in the history of 
mathematics. Poncelet asserts nothing less than that properties of figures that change 
across what he calls "gradual" transformations cannot properly be regarded as being among 
their real properties.
But what, really, does this say? Two readings, at least, seem possible. One is metaphysical, 
the other methodological. On the metaphysical reading, the PC says that any figure D 

(=derived figure) obtained from another figure O (=original figure) by means of a 
"gradual" transformation is co-real with, and has the same lawlike features as, O .
Clearly, such properties as the size of an angle or the length of a line segment are not 
invariant under gradual transformation. We can increase or decrease the sizes of both 
angles and line segments by degrees. They are therefore not among the properties that the 
PC would count as real or objective properties of figures.
The PC thus demotes to nonreal or nonobjective various properties counted as real or 
objective by traditional geometry. Curiously, it also gives rise to entities that could only be 
regarded as imaginary from an intuitive standpoint. A classical example is the so-called 
point at infinity of plane projective geometry. The following reasoning illustrates its 
interaction with the PC.
Consider a pair of lines L 1 , L 2 arranged in nonparallel fashion (figure 8.2). Call this the 
original figure. This figure can be changed by "gradual" transformation into the figure 
shown in figure 8.3, in which L 1 and L 2 are parallel. This can be 
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Fig. 8.2:

done, for example, by pivoting L 1 and L 2 as arranged in figure 8.2 about the points p 1 and 
p 2 in the direction indicated by the arrows.
The metaphysical interpretation of the PC implies that the lawlike properties that hold of 
the original figure should also hold of the parallel figure shown in figure 8.3. One of the 
lawlike properties of the original figure, however, is that L 1 , L 2 have exactly one point of 
intersection. At every point in the transformation of figure 8.2 into figure 8.3, L 1 and L 2 

have a unique point of intersection. Moreover, continuing the rotation of L 1 and L 2 about 
p 1 and p 2 "past" their parallel orientation in figure 8.3, L 1 and L 2 once again continuously 
have a unique point of intersection. If, therefore, the parallel orientation of L 1 and L 2 in 
figure 8.3, is not to violate the PC by representing a "jump" or discontinuity in the 
continuous transformation of the original figure, there must be a unique point at which L 1 , 
L 2 intersect in it, too. The PC thus implies the existence of a point of intersection for 
parallel lines.
On its metaphysical reading, then, the PC can dictate the introduction of what, from an 
intuitive vantage, could only be regarded as imaginary or ideal (=unreal) elements.
On the methodological reading, the PC has a different function—namely, that of a 
directive that enforces a type of simplicity. On this reading, the PC says (roughly) that if 
one figure can be obtained from another by means of gradual 



Fig. 8.3:
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transformation, then, even if there is no supporting intuition (and perhaps even if there is 
contrasting intuition), it is nonetheless good method to ascribe the same general features to 
the one figure as to the other.
The "dualities" of projective geometry bear witness to the fruitfulness of this understanding 
of the PC. They arrange theorems into pairs, each element of which can be obtained from 
the other by a uniform scheme of substitutions. The well-known point/line duality of plane 
projective geometry, for example, allows one to obtain the theorem 
(a) For every two lines, there is exactly one point that is their meet 
from the theorem 
(b) For every two points, there is exactly one line that is their join, 
and vice versa. One need only replace every occurrence of the term "point" (resp. "line") 
with an occurrence of the term "line" (resp. "point"), and every occurrence of the term 
"meet" (resp. "join") with an occurrence of the term "join" (resp. "meet") in order to obtain 
the one from the other.
The dualities suggest that certain terms (e.g., "point," "line," "meet," "join," etc.) that 
function as constants in ordinary (i.e., metric) geometry function as variables in projective 
geometry. This, in turn, indicates a greater level of generality or abstraction—hence a 
greater genetic depth—for projective geometry as over against ordinary metric geometry.
The status and/or plausibility of the PC is not, however, our main concern here. Rather, we 
are concerned with the invariantist ideal—the idea that invariance is the mark of the 
objective—and what the relationship between the PC and this ideal may be. We believe 
that the PC embodies an invariantist ideal—one which contends that only those properties 
of geometrical figures are real that are invariant under continuous transformation. It thus 
also embodies a retreat from intuition—specifically, a retreat from that type of intuition 



that is particular to a particular intuitive viewpoint or vantage. The PC not only retreats 
from intuition, however. It also violates it by giving rise to such counter-intuitive results as 
the existence of points at infinity.
The invariantist ideal of knowledge became a mainstay of mathematical method of the 
later nineteenth and early twentieth centuries. This is illustrated by Cayley's work in 
geometry in the mid-nineteenth century in which (cf. [Cayley 1859]) he identified a 
function which possessed the same algebraic features as a metric or distance function, but 
which was nonetheless invariant under the transformations of projection and section. 
Cayley took this to show that metric geometries could be derived from purely nonmetric 
properties of descriptive geometry. He concluded that "The metrical properties of a figure 
are not the properties of the figure considered per se apart from everything else, but its 
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properties when considered in connexion with another figure, viz. the conic termed the 
Absolute" ([Cayley 1889], vol. 2, 92).
The invariantist ideal was developed further by Felix Klein in his well-known Erlanger  
Program. Klein went beyond Cayley to show how to systematically generate non-
Euclidean geometries from projective geometry using different choices of conics for the 
Absolute (cf. [Klein 1871]).38 Projective geometry thus came to be seen as providing a 
general framework for metric geometry.39 
The general epistemology of this approach was summed up well by the twentieth-century 
philosopher-mathematician Friedrich Waismann. He wrote: 
The properties which projective geometry brings to light are more intimately tied to the 
space structures and harder to destroy than the properties considered in the usual 
geometry. … on ascending from the usual or "metric" geometry to affine and then to 
projective geometry, the differences of the configurations vanish more and more, and the 
deeper lying, more general, characteristic features come to the fore instead. [Waismann  
1951], 177 

4.3. Conclusion

In closing, let me summarize the argument of this section. Our question has been: To what 
extent should formalism be seen as consisting in a retreat from intuition? Our answer, 
generally, has been "to no very great extent." In saying this, however, we must be careful 
to distinguish the intuition of classical geometry, with its emphasis on visualizability, from 
the very different type of intuition that Kant labeled a priori. A priori intuition emphasized 
certain invariances in our visual experience that are due to the existence of various 



standing conditions which order it. Kant may not have correctly identified which 
conditions these are, but in emphasizing their invariant nature, he anticipated the leitmotif 
of the geometry that was to come after him. This is what I will call the invariantist ideal, 
an ideal which, in one form or another, has been a leading ideal of mathematics since the 
late seventeenth century.
What, at bottom, is this ideal? One way of describing it is as a commitment to the classical 
ideal of genetic depth in proof. But what does this commitment represent? At bottom, it 
represents a commitment to objectivity—that is, a commitment to finding the properties of 
geometric figures that are in the 
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figures themselves, as opposed to those properties that are "in" the mind of the geometer. 
This was at least among the principal motives driving Descartes's development of algebra, 
and it seems to have been a principal motive guiding Wallis as well.
Kant changed the goal from objectivity to intersubjectivity, but this preserved the emphasis 
on invariance since the intersubjective is that which is invariant from subject to subject.
Formalism is not, I believe, primarily the development of an invariantist motif. It is 
centered instead on an instrumentalist conception of language and its use in reasoning. So, 
at any rate, I will argue.

5. Symbolic Formalism

The instrumentalist conception of language allows for purely symbolic uses of signs in our 
reasoning—uses that do not depend in any essential way on the semantic content of the 
signs involved or on their even having such content. This is the central doctrine of the 
position I am calling symbolic formalism or, more simply, formalism. This central doctrine 
is itself composed of two key elements. The first is what I will call the creative or 
creativist element—the idea that the mathematician is free to introduce or "create" methods 
out of considerations of convenience or efficiency as distinct from evaluation of content. 
The second is the distinctively symbolic element—namely, that nonsemantical uses of 
signs may, at least on occasion, constitute such conveniences. In the next few subsections, 
I'll reprise the basic history of these ideas leading up to the mature formalism of Hilbert. I'll 
then close the section with a discussion of Hilbert's views.

5.1. The Berkeleyan Conception of Language and Reasoning



Symbolic formalism received its chief historical impetus from the rapid development of 
algebra in the sixteenth and seventeenth centuries. Impressed by this development, 
Berkeley (1685-1753), in the early eighteenth century, attempted to sketch a general 
philosophical framework for it. The cornerstone of this framework was a conception of 
language and thought that contrasted strongly with the "received opinion" of the day—
namely, that language gains its cognitive significance by semantic means, specifically, by 
its expression of ideas and their combinations (cf. [Berkeley 1710], 36-37).
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Against this view, Berkeley urged a broadly instrumentalist function of language. He took 
the practice of algebraists to illustrate this, though he regarded the general phenomenon as 
much broader (cf. [Berkeley 1732], vol. 3, 307).40 
 … it is a received opinion, that language has no other end but the communicating [of] our 
ideas, and that every significant name stands for an idea. … a little attention will discover, 
that it is not necessary (even in the strictest reasonings) [that] significant names which 
stand for ideas should, every time they are used, excite in the understanding the ideas they 
are made to stand for: in reading and discoursing, names being for the most part used as 
letters are in algebra, in which though a particular quantity be marked by each letter, yet to 
proceed right it is not requisite that in every step each letter suggest to your thoughts, that 
particular quantity it was appointed to stand for. … the communicating of ideas marked by 
words is not the chief and only end of language, as is commonly supposed. [Berkeley  
1710], 3741 
Berkeley gave various examples intended to clarify the instrumental use of language. One 
of these was the use of counters or chips in a card game. He noted, first, that the chips were 
not used "for their own sake" (cf. [Berkeley 1732], 291), as it were, but for the sake of 
determining how money was to be exchanged between the players at game's end. Chips or 
counters therefore ultimately had semantic significance. This notwithstanding, the players 
were not obliged to keep the semantic values of the counters before them as they played 
the game. Nor was there any advantage in doing so. It was enough that, at the end of the 
game, the counters could be converted to the money they were agreed to signify. As 
Berkeley put it: 
 … it is sufficient the players at first agree on their [the counters'] respective values, and at 
last substitute those values in their stead. … words may not be insignificant, although they 
should not, every time they are used, excite the ideas they signify in our minds; it being 
sufficient that we have it in our power to substitute things or ideas for their signs when 
there is occasion. It seems to follow that there may be another use of words besides that of 
marking and suggesting distinct ideas, to wit, the influencing [of] our conduct and actions, 
which may be done … by forming rules for us to act by. … A discourse … that directs how 



to act or excites to the doing or forbearance of an action may … be useful and significant, 
although the words whereof it is composed should not bring each a distinct idea into our 
minds. [Berkeley 1732], 291-292, (brackets added) 
There is an important formalist message in this—namely, that reasoning can, at some level, 
proceed on the basis of syntactically marked regularities of expressions, without adversion 
to supposed semantic contents. This is, 
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moreover, true even of rigorous reasoning, though this ran strongly counter to the 
prevailing conception of rigor in Berkeley's day.
That conception of rigor was what I will call the presentist conception. It saw rigor as 
consisting in the keeping of the subject matter of a piece of reasoning continually before 
the mind—or, more commonly, before the intuition—of the reasoner. Poncelet expressed 
the idea as follows. 
In ordinary geometry, which one often calls synthetic … the figure is described, one never 
loses sight of it, one always reasons with quantities and forms that are real and existing, 
and one never draws consequences which cannot be depicted in the imagination or before 
one's eyes by sensible objects. [Poncelet 1822], xix42 
The paradigm of presentist procedure was the constructive proof of classical synthetic 
geometry. The diagrams and diagrammatic operations of classical synthetic proof were 
believed to offer the best means of keeping the subject matter of a proof before the prover's 
mind. They did so by "mirroring" the objects and constructions of classical geometry. This 
relationship of mirroring or resemblance was, however, utterly absent from the symbolic 
methods of the algebraists. The rigor of those methods was therefore open to serious 
question. The semantic mysteriousness of various of the algebraists' symbols (e.g., ) 
only added to the dubiousness of their methods. The Scottish cleric and mathematician 
John Playfair summed up the general situation this way: 
The propositions of geometry have never given rise to controversy, nor needed the support 
of metaphysical discussions. In algebra, on the other hand, the doctrine of negative 
quantity and its consequences have often perplexed the analyst, and involved him in the 
most intricate disputations. The cause of this diversity in sciences which have the same 
object must no doubt be sought for in the different modes which they employ to express 
our ideas. In geometry every magnitude is represented by one of the same kind; lines are 
represented by lines, and angles by an angle, the genus is always signified by the  
individual, and a general idea by one of the particulars which fall under it. By this means 
all contradiction is avoided, and the geometry is never permitted to reason about the 
relations of things which do not exist, or cannot be exhibited. In algebra again every  
magnitude being denoted by an artificial symbol, to which it has no resemblance, is liable, 
on some occasions, to be neglected, while the symbol may become the sole object of 



attention. It is not perhaps observed where the connection between them ceases to exist, 
and the analyst continues to reason about the characters after nothing is left which they can 
possibly express; if then, in the end, the 
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conclusions which hold only of the characters be transferred to the quantities themselves, 
obscurity and paradox must of necessity ensue. [Playfair 1778], 318-319 (emphasis 
added)43 
On the presentist conception, then, rigor was compromised at any point in an algebraic 
argument where there was an expression whose object was not directly present to the 
reasoner's mind or intuition, and this is something that occurs frequently in algebraic 
reasoning. Indeed, one might say that it is typical, even paradigmatic, of algebraic 
reasoning. The constructional proofs of classical synthetic geometry were taken to avoid 
this by dint of a relationship of resemblance between the diagrams used in them and the 
geometrical objects with which the proofs were ultimately concerned. Such, at any rate, 
was the prevailing view.
Mathematicians of Berkeley's day often emphasized the reliability of judgments based on 
the above-mentioned resemblance. Baron Francis Maseres (1731-1824), for example, 
posited a distinction between two cognitive faculties, a faculty of understanding and a 
faculty of sense or intuition, claiming that the latter was more reliable than the former. The 
latter he took to be the faculty employed in classical geometric proof. The former he took 
to be the faculty used in algebraic reasoning. He thus emphasized 
 … the greater facility with which a writer may impose upon himself as well as his readers, 
and fancy he has a meaning where, in reality, he has none, in treating of an abstract 
science, such as Algebra, that addresses itself only to the understanding, than in treating of 
such a science as Geometry, that addresses itself to the senses as well as to the 
understanding; for the impossibility, or difficulty, of representing a false, or obscure, 
conception in lines to the eye, would immediately strike either the writer or the reader, and 
make them perceive its falsehood or its ambiguity; whereas when things are expressed only 
in words, or in any abstract notation, wherein the senses are not concerned, men are much 
more easily deceived: and for the same reasons, a defect of proof, or a hasty extension of a 
conclusion justly drawn in one case to several other cases that bear some resemblance, but 
not a complete one, to it, may be much more easily perceived in Geometry than in Algebra. 
[Maseres 1758], ii-iii44 
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Berkeley's claim that reasoning in which the reasoner's mind was not continually fixed on 
the meanings of the expressions involved could nonetheless be rigorous was thus counter 
to the traditional view of rigor.45 
This, however, only committed him to the view that signs need not, in all their uses, 
function to express ideas. It is a further step, though perhaps not a great one, to say that 
there are signs that do not in any of their uses express ideas.
Berkeley seems to have taken this further step in arriving at his general view of the 
significance of algebraic language: 
 … the true end of speech, reason, science, faith, assent, in all its different degrees, is not 
merely, or principally, or always, the imparting or acquiring of ideas, but rather something 
of an active operative nature, tending to a conceived good: which may sometimes be 
obtained, not only although the ideas marked are not offered to the mind, but even  
although there should be no possibility of offering or exhibiting any such idea to the mind:  
for instance, the algebraic mark, which denotes the root of a negative square, hath its use  
in logistic operations, although it be impossible to form an idea of any such quantity. 
[Berkeley 1732] , 307 (emphasis added)46 
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The cognitive significance of language was therefore not, in Berkeley's view, exclusively a 
result of its semantic usage. It could, in addition, have a kind of logistic use whose aim was 
to assist the mind in reasoning, judging, extending, recording, and communicating 
knowledge even when it was not used to express ideas (cf. [Berkeley 1732], 304-305). As 
Berkeley put it: 
A discourse … that directs how to act or excites to the doing or forbearance of an action 
may … be useful and significant, although the words whereof it is composed should not 
bring each a distinct idea into our minds. [Berkeley 1732], 292 
This, as we will now see, became a popular view among mathematicians of the eighteenth 
and nineteenth centuries.

5.2. The Usefulness of Algebra

Despite their ultimate preference for classical synthetic proof, eighteenth-century 
mathematicians widely acknowledged the usefulness of algebraic methods. A typical 
expression of this is the following remark of MacLaurin (1698-1746) in reference to the 
methods employed by Wallis in [Wallis 1656]. 
His demonstrations, and some of his expressions … have been excepted against. But it was 
not very difficult to demonstrate the greatest part of his propositions in a stricter 



method. … He chose to describe plainly a method which he had found very commodious 
for discovering new theorems; and … this valuable treatise contributed to produce the 
great improvements which soon followed after. … In general, it must be owned, that if the 
late discoveries were deduced at length, in the very same method in which the ancients 
demonstrated their theorems, the life of man could hardly be sufficient for considering 
them all: so that a general and concise method, equivalent to theirs in accuracy and 
evidence, that comprehends innumerable theorems in a few general views, may well be 
esteemed a valuable invention. [MacLaurin 1742], 114 
Here, as in the remark by Leibniz quoted earlier, we see admiration for both the efficiency 
and the reliability of algebraic methods. This did not, however, imply an unqualified 
acceptance of them. MacLaurin, indeed, said that they generally lack the clarity and 
plainness that geometric methods ought ideally to possess. His overall assessment was thus 
that algebraic methods 
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 … may be of use, when employed with caution, for abridging computations in the 
investigation of theorems, or even of proving them where a scrupulous exactness is not 
required; and we would not be understood to affirm, that the methods of indivisibles and 
infinitesimals, by which so many uncontested truths have been discovered, are without a 
foundation. But geometry is best established on clear and plain principles; and these 
speculations [the infinitistic speculations of Wallis] are ever obnoxious to some 
difficulties. … Geometricians cannot be too scrupulous in admitting of infinites, of which 
our ideas are so imperfect. [MacLaurin 1742], 113 
This was a common view among mathematicians of the eighteenth and early nineteenth 
centuries. There were, however, exceptions to this common view and exceptions of three 
types. On the one hand, there were those who thought it did not go far enough in its 
approval of algebraic methods. Wallis was a prime example of this. As noted earlier, he 
regarded his methods as more than mere instruments. They were, in his view, methods of 
genuine proof. Indeed, they were superior methods of proof because they provided a truer 
and more probing genetic account of many of the theorems of classical geometry than did 
the traditional constructional proofs.
Others—for example, Maseres (cf. [Maseres 1758]) and William Frend (1757-1841) (cf. 
[Frend 1796]—regarded the prevailing view as too tolerant of algebraic methods. They 
believed this to be particularly true of its attitude toward the use of negative and imaginary 
quantities.
More common and influential than either of the above, though, were attempts to justify 
imaginary elements by comparing them to more commonly accepted elements of the 
mathematical universe. These attempts were not as ambitious as Wallis's. They did not, in 
particular, argue that use of negative, imaginary, and infinite numbers are necessary for 



genetically penetrating proofs. They did, however, try to put them on an equal footing with 
more commonly accepted numbers.
Gauss's celebrated defense of the imaginary and complex numbers is a case in point (cf. 
[Gauss 1831]). This defense centered on the provision of a geometrical interpretation for 
these numbers—an interpretation which Gauss believed provided a basis in classical 
geometrical intuition for their acceptance.
The basics of this interpretation are as follows. Each complex number c is first represented 
as an arithmetic sum, a + bi (where a, b are real numbers and i is the imaginary number 

). a + bi is thus uniquely determined by the pair of reals (a, b), and can be interpreted 
as the point in the (Cartesian) plane whose real coordinate x is a and whose complex 
coordinate iy (measuring the number of units of i) is b. The value of a + bi is then taken to 
be the Euclidean distance of a + bi from the origin O of this plane, which, by the 

Pythagorean metric, is .
Given this interpretation of distance (or absolute value), addition and multiplication can be 
defined as geometrical operations. Addition is planar translation 
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(vector addition) and operates according to the so-called parallelogram law. The sum of c 1 

(= a 1  + b 1 i) and c 2 (= a 2  + b 2 i) is the point whose x coordinate is a 1  + a 2 and whose 
iy coordinate is b 1  + b 2 . Multiplication is a more complex operation, but it, too, can be 
represented geometrically as a composition of rotations (about O) and dilations.47 
Gauss initially maintained that his interpretation justified the use of (expressions for) 
imaginary and complex numbers as means of proof: 
 … the arithmetic of the complex numbers is … capable of the most intuitive sensible 
representation [der anschaulichsten Versinnlichung], and although the author in the present 
account has pursued a purely arithmetical treatment, he nevertheless also gave the 
necessary hints for this sensible representation—a sensible representation which makes the 
insight come to life, and is therefore to be recommended. … By this device the effect of 
the arithmetical operations on the complex quantities becomes capable of sensible 
representation that leaves nothing to be desired. … in this way the true metaphysics of the 
imaginary quantities is placed in a bright new light. [Gauss 1831], 174-17548 
He did not remain confident in this view, however. A few years following the publication 
of the geometrical interpretation, he voiced doubts concerning the legitimacy of imaginary 
numbers as means of arithmetic proof. His misgivings seem to have been motivated by an 
ideal of genetic purity reminiscent of Aristotle, who believed that one ought not to cross 
genetic lines in demonstrations. Gauss seems to have held a similar scruple, though he 
applied it in the opposite direction. That is, instead of disallowing arithmetic reasoning in 
geometry, as Aristotle had done, he questioned the use of spatial (i.e., geometrical) 



intuition in arithmetic. He expressed these misgivings in a letter to Moritz Drobisch 
(August 14, 1834): 
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The representation (Darstellung) of the imaginary quantities as relations of points in the 
plane is not so much their essence (Wesen) itself, which must be grasped in a higher and 
more general way, as it is for us humans the purest or perhaps a uniquely and completely 
pure example of their application. [Gauss 1870-1927], vol. X, 106 
Gauss expressed his misgivings more publicly in the 1849 Jubiläumschrift, where, 
commenting on proofs of the existence of roots of equations, he wrote: 
At bottom the real content (eigentliche Inhalt) of the entire argumentation belongs to a 
higher realm of the general, abstract theory of quantity (abstracten Grössenlehre), 
independent of the spatial. The object of this domain, which tracks the continuity of related 
combinations of quantities, is a domain about which little, to date, has been established and 
in which one cannot maneuver much without leaning on a language of spatial pictures 
(räumlichen Bildern). [Gauss 1870-1927], vol. III, 7949 
This suggests that Gauss lost confidence in his geometrical interpretation as a means of 
revealing the essential nature of the complex numbers. His remark to Drobisch that his 
interpretation provided a "uniquely pure" example of the application of the complexes 
might nonetheless imply that he took his interpretation as establishing their consistency.
Whatever Gauss's own views of his interpretation may have been, however, it was widely 
viewed by others as justifying the use of complex expressions in proofs.

5.3. Peacock's Formalism

At roughly the same time, there was a revival of formalist ideas. This was perhaps most 
prominent in England, where the leading figure was George Peacock, a key figure in the 
Cambridge School of the 1830s and 1840s.50 He believed that interpretation was necessary 
for the "final result" of reasoning ([Peacock 1830], xiv), but he did not believe that such 
interpretation need be applied to the "intermediate part[s] of the process of reasoning 
which lead[s] to" (ibid.) that result.
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The similarity to Berkeley's views stands out. According to Boole, something like this 
view had become common among early and mid-nineteenth-century thinkers. 



That language is an instrument of human reason, and not merely a medium for the 
expression of thought, is a truth generally admitted. … whether we regard signs as the 
representatives of things and of their relations, or as the representatives of the conceptions 
and operations of the human intellect, in studying the laws of signs, we are in effect 
studying the manifested laws of reasoning. [Boole 1854], 2451 
This was the conception of mathematical reasoning adopted by Peacock and the 
Cambridge algebraists. We will call it the symbolic conception. According to it, 
mathematical reasoning need not involve the constructional manipulation of intuitions or 
the logical manipulation of propositions. It can instead consist in the syntactic 
manipulation of uninterpreted (even uninterpretable) signs.
Symbolic reasoning is thus very different from contentual reasoning—that is, reasoning 
with the semantic contents of expressions, be they intuitive or conceptual in character. That 
notwithstanding, it is subject to constraints that are based on concern for its use in 
producing contentually correct results. For Peacock, this generally meant that a system of 
algebraic laws must preserve the laws of contentual arithmetic: 
Algebra may be considered, in its most general form, as the science which treats of the  
combinations of arbitrary signs and symbols by means of defined though arbitrary laws: 
for we may assume any laws … so long as our assumptions are … not inconsistent with 
each other: in order, however, that such a science may not be one of useless and barren 
speculations, we choose some subordinate science as the guide merely, and not as the 
foundation of our assumptions, and frame them in such a manner that Algebra may become 
the most general form of that science … and as Arithmetic is the science of calculation, to 
the dominion of which all other sciences, in their application at least, are in a greater or 
less degree subject, it is the one which is usually, because most usefully, selected for this 
purpose. [Peacock 1830], §7852 
There are a number of points in this passage that call for comment. The first concerns 
Peacock's use of the terms "Algebra" and "Arithmetic." The former is here used 
synonymously with "Symbolical Algebra," a term that Peacock employed widely 
throughout his writings. "Algebra" is thus to be contrasted with "Arithmetic" or 
"Arithmetical Algebra." Peacock took the latter to be composed of evident necessary 
truths. He regarded the former as composed of evidentially arbitrary but epistemically 
useful assumptions (cf. [Peacock 1830], §§ 71-77) or conventions (cf. [Peacock 1830], 
viii).
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A second point concerns what Peacock meant by "defined though arbitrary" laws. Of the 
notion of definition involved here, he says that we must take the signs involved in such 
laws "not merely as the general representatives of numbers, but of every species of 
quantity" ([Peacock 1830], ix) and that we must "give a form to the definitions of the 



operations of Algebra, which must render them independent of any subordinate science" 
(ibid.). Whatever the "definitions" of the signs of a symbolical algebra are, then, Peacock 
regarded them as independent of the subject matter of any "subordinate" science which 
may suggest it. Specifically, they are not deducible from the definitions of the suggesting 
science. Later, we will consider another crucial difference separating the definitions of a 
symbolical algebra from the definitions of its suggesting science(s) as well. This is that, in 
a suggesting science, the definitions of terms are taken to determine the rules concerning 
their use; in a symbolical algebra, on the other hand, "the rules determine the meanings of 
the operations, or more properly speaking, they furnish the means of interpreting them" 
([Peacock 1834], 200).
A third and final point concerns the constraints Peacock placed on the choice of laws for a 
symbolical algebra. My comment here will of necessity be longer and more involved than 
those just given. It descends to the very elements of Peacock's views of algebra.
Peacock explicitly required that the laws of algebra be consistent with each other. A little 
reflection reveals, however, an additional consistency constraint, one implicit in Peacock's 
requirement that symbolical algebra be useful, or, in his words that it not be a body of 
"useless and barren speculations" ([Peacock 1830], §78).
Peacock saw the usefulness of symbolical algebra as depending upon its preservation of 
certain arithmetic laws—namely, those vital to its capacity as a "science of calculation, to 
the dominion of which all other sciences … are in a greater or lesser degree subject" 
([Peacock 1830], §78).53 In contemporary terminology, the usefulness of symbolical 
algebra depends upon its being a conservative extension of its "science of suggestion," the 
suggesting science of arithmetic.54 
The idea that a symbolical extension of a "suggesting" science55 should conserve its laws 
(or the laws that underwrite its computational utility, at any rate) 
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was enshrined in a general methodological principle that Peacock formulated in 1830 and 
which, in one form or another, became influential in the later nineteenth and early 
twentieth centuries. Peacock called it the Principle of the Permanence of Equivalent  
Forms (PPEF, for short) and stated it as follows.:56 
 … if we discover an equivalent form in Arithmetical Algebra or any other subordinate 
science, when the symbols are general in form though specific in their nature, the same 
must be an equivalent form, when the symbols are general in their nature as well as in their 
form.57 [Peacock 1830], §132 
Two clarificatory remarks are in order. The first concerns Peacock's distinction between 
generality of form and generality of nature or value (cf. [Peacock 1842-1845], vol. II, 
§631). The second concerns his notion of equivalence between algebraic expressions, 
specifically expressions containing variables.



In referring to the form of a symbol as "general," Peacock meant that it was a variable 
rather than a constant. In calling its nature or value general he seems to have meant that it 
could serve as a variable ranging not only over a given particular type of quantity, but over 
any quantity of any type. A symbol general as to both form and nature, then, would be a 
variable ranging over all quantities of all types.
As regards equivalence, Peacock regarded two variable-containing expressions, " " and 
"G," as equivalent when " ‍= G.' There are questions, however, as to what such an equation 
could or should mean.
When the variables contained in " " and "G" vary over arithmetical entities (e.g., numbers, 
or some more particular kind of number), it may seem that there is a readily available 
answer: namely, that "  = G" is true when each instance of " ‍= G" is a truth of 
arithmetic.58 
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Such a view is not, however, without problems. There might, for example, be arithmetic 
equalities that do not become algebraic equalities (i.e., laws of symbolical algebra) when 
their variables, which are specific as to nature (i.e., are restricted to numbers), are replaced 
by variables that are general as to nature (i.e., range over quantities of all types). There is 
thus a need for a more precise identification of those arithmetical laws the conservative 
extension of which is supposed to be the basis of the fruitfulness of symbolical algebra.
This problem notwithstanding, the central thrust of the PPEF seems clear. It is intended to 
mark a distinction between two types or levels of algebra, the arithmetical and the 
symbolical, and to make clear that to be fruitful, the latter must substantially conserve the 
laws of the former. The PPEF thus requires that the laws of symbolical algebra be 
consistent not only with themselves but also with the laws of arithmetical algebra.
Peacock emphasized, however, that satisfaction of this constraint does not by itself provide 
a justification or foundation for symbolical algebra. 
[The] … derivation of Algebra from Arithmetic, and the close connection which it has 
been attempted to preserve between those sciences … has led to … the opinion, that one is 
really founded upon the other: there is one sense, which we shall afterwards examine, in 
which this opinion is true: but in the strict and proper sense in which we speak of the 
principles of a demonstrative science, which constitute the foundation of its propositions, it 
would appear from what we have already stated, that such an opinion would cease to be 
maintainable … [the relationship of] the principles and operations of Arithmetic to those of 
Algebra … is not necessary but conventional. … Arithmetic can only be considered as a 
Science of Suggestion, to which the principles and operations of Algebra are adapted, but 
by which they are neither limited nor determined. [Peacock 1830], vii-viii (brackets added) 
The rules of symbolic combination which are thus assumed have been suggested only by 
the corresponding rules in arithmetical algebra. They cannot be said to be founded upon 



them, for they are not deducible from them; for though the operations of addition and 
subtraction, in their arithmetical sense, are applicable to all quantities of the same kind, yet 
they necessarily require a different meaning when applied to quantities which are different 
in their nature, whether that difference consists in the kind of quantity expressed by the 
unaffected59 symbols, or in the different signs of affection of symbols denoting the same 
quantity; neither does it necessarily follow that in such cases there exists any interpretation 
which 
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can be given of the operations, which is competent to satisfy the required symbolical 
conditions. [Peacock 1834], 197-19860 
Symbolic algebra was thus, in Peacock's view, suggested by arithmetical algebra, not 
founded (in Peacock's strict deductive sense) by it. Its laws were conventional or 
assumptive in character—even, in a sense, arbitrary. 
In arithmetical algebra, the definitions of the operations determine the rules; in symbolical 
algebra, the rules determine the meanings of the operations, or more properly speaking, 
they furnish the means of interpreting them. … We call those rules … assumptions, in as 
much as they are not deducible as conclusions from any previous knowledge of those 
operations which have corresponding names: and we might call them arbitrary 
assumptions, in as much as they are arbitrarily imposed upon a science of symbols and 
their combinations, which might be adapted to any other assumed system of consistent 
rules. [Peacock 1834], 200-201 
For Peacock, then, the laws of symbolical algebra were not read off a subject matter they 
were intended to describe. Rather, they preceded any such interpretation and, indeed, 
determined it. This idea—that the laws of symbolical algebra are essentially assumptions 
or postulates that precede any interpretation or definition of the quantities and operations 
with which they deal—is what I will call the creativist element of Peacock's viewpoint.
It is important to note, however, that Peacock took this view of the status of symbolical 
algebra only as regards its strict (deductive) foundation. He allowed that the laws of 
symbolical algebra are founded upon the laws of arithmetical algebra in a "looser" sense. 
Indeed, this is required by his basic distinction between a symbolic algebra and its so-
called suggesting science. Symbolical algebra is not deducible from arithmetical algebra, 
but it is suggested by it. 
But though the science of arithmetic, or of arithmetical algebra, does not furnish an 
adequate foundation for the science of symbolical algebra, it necessarily suggests its 
principles, or rather its laws of combination; for in as much as symbolical algebra, though 
arbitrary in the authority of its principles, is not arbitrary in their application, being 
required to include arithmetical algebra as well as other sciences, it is evident that their 
rules must be identical with each other, as far as those sciences proceed together in 



common; the real distinction between them will arise from the supposition or assumption  
that the symbols in symbolical algebra are perfectly general and unlimited both in value  
and representation, and that the operations to which they are subject are equally general  
likewise. [Peacock 1834], 195 (emphasis Peacock's) 
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Peacock thus attached importance to the matter of whether a system of laws was justified 
by appeal to a prior scheme of definitions or meanings. He articulated his ideas in the form 
of a distinction between definition and interpretation.
Arithmetical algebra, he maintained, begins with definitions—definitions intended to 
capture the established meanings of the terms involved. These definitions determine the 
rules or laws of arithmetical algebra (cf. [Peacock 1834], 200). 
To define, is to assign beforehand the meaning or conditions of a term or operation. … It is 
for this reason, that we define operations in arithmetical algebra conformably to their 
popular meaning. … [Peacock 1834], 197, note * 
Symbolical algebra, on the other hand, begins with conditions or laws. These conditions 
determine the meanings or interpretations assignable to them: 
 … to interpret, is to determine the meaning of a term or operation conformably to 
definitions or to conditions previously given or assigned. … we interpret [terms or 
operations] in symbolical algebra conformably to the symbolical conditions to which they 
are subject. [Peacock 1834], 197, note * 
In sum: 
In arithmetical algebra, the definitions of the operations determine the rules; in symbolical 
algebra, the rules determine the meaning of the operations … we might call them arbitrary 
assumptions, in as much as they are arbitrarily imposed upon a science of symbols and 
their combinations, which might be adapted to any other assumed system of consistent 
rules. [Peacock 1834], 200-201 
We see in Peacock's conception of symbolical algebra the seeds of the more mature 
variants of formalism that were to follow. They adopted, albeit with modification, his 
essentially creativist conception of symbolic instruments. They also retained his basic 
conception of the constraints that should govern the use of such instruments—specifically, 
that they should be consistent and should preserve the laws of basic arithmetic. This 
notwithstanding, there were also differences. It is to these differences that we now turn.

5.4. The Axiom of Solvability: Basic Character



By the latter half of the nineteenth century, there was widespread acceptance of Peacock's 
Principle of Permanence.61 Different variants of the principle emerged 
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over time, but they shared a common theme; namely, that Algebra should preserve (to the 
greatest extent possible) the arithmetic laws of the simplest quantities, the positive whole 
numbers. We'll refer to this general principle as the Principle of Permanence.
Preservation of the laws of the whole numbers was not, however, the only factor 
influencing the development of algebra. Were it otherwise, there would not have been a 
reason to extend the basic domain (i.e., the domain of the positive whole numbers) in the 
first place. To explain why arithmetic was extended to successively broader domains 
requires something other than the Principle of Permanence.
This is where the Axiom of Solvability seems to have entered the scene. It was, according to 
Hilbert, a central precept of correct mathematical method: 
However unapproachable … problems may seem to us and however helpless we stand 
before them, we have, nevertheless, the firm conviction that their solution must follow by a 
finite number of purely logical processes.62 Is this axiom of the solvability (emphasis 
added) of every problem a peculiarity characteristic of mathematical thought alone, or is it 
possibly a general law inherent in the nature of the mind, that all questions which it asks 
must be answerable?63  … The conviction of the solvability of every mathematical problem 
is a powerful incentive to the worker. We hear within us the perpetual call: There is the 
problem. Seek its solution. You can find it by pure reason, for in mathematics there is no 
ignorabimus. [Hilbert 1901], 444-445 
The drive to solve problems was thus, in Hilbert's view, the (or at least a) central drive of 
the mathematician. It impelled him to create. Nowhere is this fundamental urge more in 
evidence than in the historical development of the number-concept, the following 
"summary of which expresses the basic ideas well: 
One … begins by premissing certain propositions whose validity is in no way doubtful. 
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These are: 

There does not exist a number (from the sequence 0, 1, … ), which when added to 1 gives 
0. 
There does not exist a number (integral), which multiplied by 2 gives 1. 
There does not exist a number (rational), whose square is 2. 
There does not exist a number (real), whose square is −1. 



Then one says: in order to overcome such an inconvenience, we extend the concept of 
number, that is, we introduce, manufacture, create (as Dedekind says) a new entity, a new 
number, a sign, a sign-complex, etc., which we denote by −1, or 1/2, or , or , which 
satisfies the condition imposed. [Peano 1910], 22464 
Each of Peano's "premises" amounts to an observation concerning the nonexistence of a 
number to serve as a solution to a given "problem." The extension of the number-concept 
consists in the successive addition of these "solutions."
This extension reaches a natural end with the addition of the complexes. Unlike the 
naturals, integers, rationals, and reals, the complexes form an algebraically closed set—
that is, a set that contains at least one solution (i.e., root) for every polynomial whose 
coefficients are elements of that set. This is essentially what the Fundamental Theorem of  
Algebra (in one of its forms) tells us: every polynomial with complex coefficients has a 
complex solution. There is therefore no "unsolved problem"—no rootless polynomial—to 
serve as a basis for extending the number concept beyond the complexes.
Together, the Axiom of Solvability and the Principle of Permanence guided the 
progressive extension of the number-concept. The Axiom of Solvability expressed the 
mathematician's goal to solve problems. The Principle of Permanence acted as a constraint 
upon the application of this axiom. It required that newly introduced numbers preserve the 
basic laws of arithmetic. More precisely, it required that the laws governing new numbers 
be consistent with the laws governing the old ones.
A tidy picture. Tidier, indeed, than the truth. We'll consider some of the complications 
shortly, after a brief survey of the historical background against which this conception of 
method arose.

5.5. The Axiom of Solvability: Historical Background

In Hilbert's own thinking, the Axiom of Solvability was a challenge to the epistemic 
pessimism voiced by certain leading scientists of his day. I refer, of course, to such 
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figures as Emil and Paul du Bois-Reymond, Rudolf Virchow ([Virchow 1878]), and even 
Brouwer. All of these, in one way or another, argued for limitations on human knowledge. 
In the case of Virchow, especially, these "limitations" became "restrictions." In particular, 
they became proposals for reforming the curricula in German gymnasia and universities. 
Roughly, the proposal was that only fact, not theory, was to be taught. Darwin's theories, 
in particular, were not to be taught.



Thus arose the well-known Ignorabimusstreit of late nineteenth-century Germany. The 
more pessimistic (some would say the more modest) parties to this controversy advocated 
a doctrine of ignorance. Specifically, they advocated the Ignorabimus65 doctrine—the view 
that there are permanent, irremediable limitations on our knowledge, including our 
scientific and mathematical knowledge. The leading exponent of this doctrine was the 
eminent German physiologist Emil du Bois-Reymond (1818-1896). In an influential set of 
essays and scientific addresses in the 1870s, he argued, in particular, that a complete 
formulation of the truths of mechanics is impossible. His mathematician brother, Paul 
(1831-1889), extended the idea to mathematics, arguing that there are inherent limitations 
on our knowledge of the continuum.66 
Such large-scale, principled pessimism was, of course, a theme familiar from Kant's 
critical epistemology. Kant began the First Critique with the observation that there are 
questions we cannot avoid asking, but also can not, without antinomy, answer: 
Human reason has this peculiar fate that in one species of its knowledge it is burdened by 
questions which, as prescribed by the very nature of reason itself, it is not able to ignore, 
but which, as transcending all its powers, it is also not able to answer. [Kant 1781], A vii 
Hilbert's Axiom of Solvability—the claim that every exactly formulated problem can be 
solved—announced his opposition to this pessimism and became a central theme of his 
early foundational work. It reflected the general optimism of the algebraic movement in 
mathematics. Viète (1540-1603) expressed this optimism well in one of the founding 
statements of the algebraic movement: 
 … the analytic art … claims for itself the greatest problem of all, which is: 
TO LEAVE NO PROBLEM UNSOLVED [Viète 1983], 3267 
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The optimism expressed in Hilbert's Axiom of Solvability thus reflected the general 
optimism of the algebraic method. As we will now see, there was not only optimism in 
Hilbert's Program but also determination—a determination which also ran parallel to the 
thinking of the early algebraists.
To see this, recall the antipathy expressed by Descartes toward the ancient geometers. In 
their writings, he said, they presented themselves as proceeding by synthesis alone. They 
did so, however, "not because they were wholly ignorant of the analytic method" 
([Descartes 1970b], 49), but "because they set so high a value on it that they wished it to 
themselves as an important secret" (ibid.).68 The Greek geometers thus used algebra to 
discover their theorems, but they attempted to conceal this fact from posterity in order to 
make their work appear more ingenious than it truly was. Such, at any rate, was Descartes's 
view.
Wallis expressed similar sentiments [Wallis 1685]: 



It [the present treatise] contains an Account of the Original, Progress, and Advancement of 
(what we now calle) Algebra, from time to time shewing its true Antiquity (as far as I have 
been able to trace it;) and by what Steps it hath attained to the Height at which now it is. 
That it was in the use of old among the Grecians, we need not doubt; but studiously 
concealed (by them) as a great Secret. 
Examples we have of it in Euclid, at least in Theo, upon him; who ascribes the invention of 
it (amongst them) to Plato. 
Other Examples we have of it in Pappus, and the effects of it in Archimedes, Apollonius, 
and others, though obscurely covered and disguised. [Wallis 1685], preface, a369 
It is to me a thing unquestionable, That the Ancients had somewhat of like nature with our 
Algebra; from whence many of their prolix and intricate Demonstrations were derived. 
And I find other modern Writers of the same opinion with me therein. …  
But this their Art of Invention, they seem very studiously to have concealed: contenting 
themselves to demonstrate by Apogogical Demonstrations, (or reducing to Absurdity, if 
denied,) without shewing us the method, by which they first found out those Propositions, 
which they thus demonstrate by other ways. 
Of which, Nuñes or Nonius in his Algebra (in Spanish) fol. 114. b. speaks thus: O how 
well had it been if those Authors, who have written in Mathematics, had delivered to us  
their Inventions, in the same way, and with the same Discourse, as they were found! And  
not as Aristotle says of Artificers in Mechanics, who shew us the Engines they have made,  
but conceal the Artifice, to make them the more 
end p.281

admired! The method of Invention, in divers Arts, is very different from that of Tradition,  
wherein they are delivered. Nor are we to think, that all these Propositions in Euclid and 
Archimedes were in the same way found out, as they are now delivered to us. [Wallis  
1685], 3 
Hilbert held a similar, though not identical, view with regard to the reactionary proposals 
of Kronecker and Brouwer. He did not accuse them of guile (i.e., trying to hide a method 
of discovery) or vanity (i.e., claiming a degree of respect they knew they didn't deserve). 
He did, however, see them as advocating unnecessarily restrictive methods of proof—
methods which made the discovery of proof more difficult. As he put it: 
What Weyl and Brouwer do amounts in essence to following the path formerly trod by 
Kronecker. They seek to found mathematics by throwing everything overboard that makes 
them uncomfortable and erecting a dictatorial prohibitionism (Verbotsdiktatur). This 
means, however, to mutilate (zerstückeln) and mangle (verstümmeln) our science, and if 
we follow such reformers (Reformatoren), we run the risk of losing a great part of our most 
valuable treasures. [Hilbert 1922], 159 



The Axiom of Solvability expressed his determination to overcome such arbitrariness and 
to claim the full measure of his freedom as a mathematician. The freedom of the 
mathematician permits him to solve by creation. This freedom is limited only by the need 
to be consistent and fruitful. For Peacock and other formalists of the early nineteenth 
century, fruitfulness was a matter of preserving computational utility, and preserving 
computational utility was essentially a matter of preserving the basic algebraic laws of 
number. In other words, it was adherence to the Principle of Permanence. Fruitfulness, in 
other words, required consistency with the basic laws of arithmetic. Later formalists, as we 
will soon see, broadened the conception of fruitfulness.

5.6. Complications

I alluded above to possible difficulties in the view that formalism (and, in particular, 
Hilbert's formalism) consists essentially in joint application of the Axiom of Solvability 
and the Principle of Permanence—that the principal freedom claimed by the formalist (in 
arithmetic) is the freedom to solve arithmetic problems in any way compatible with the 
basic laws of the whole numbers. I will now consider some of these difficulties.
One of them centers on the question of what is to count as a solution to a problem. Hilbert 
began his answer to this question by saying: 
 … every definite mathematical problem must necessarily be susceptible of an exact 
settlement, either in the form of an actual answer to the question asked, or 
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by the proof of the impossibility of its solution and therewith the necessary failure of all 
attempts. [Hilbert 1901], 444 
He thus allowed that a proof that no "actual answer to the question asked" ([Hilbert 1901], 
444) is possible be a type of "solution" to that question. However, if a proof that a question 
is unanswerable is allowed to count as an answer to that question, one can only wonder 
how much difference there is between Ignorabimus and kein Ignorabimus (cf. [Hilbert  
1901], 445). The du Bois-Reymonds offered arguments for their limitative theses. Is the 
difference between them and Hilbert that Hilbert called for proof where the du Bois-
Reymonds offered only argument? Perhaps. But, if so, there is room to wonder whether 
this isn't making too much of the possible differences between proof and (mere) argument.
There are also questions concerning how to rate the severity of departures from the 
standard laws of arithmetic. The Principle of Permanence says that the laws of basic 
arithmetic are to be retained to the fullest extent possible. But which departures from 



standard arithmetic law are to be rated as possible (i.e., admissible) and which as 
impossible (i.e., inadmissible)?
It is well known that extension of the number-concept to quantities of dimension greater 
than 2 (the complexes being viewed as quantities of dimension 2 in their representation as 
pairs of reals) require substantial departures from the standard laws of arithmetic. 
Hamilton's quaternions, numbers or quantities of dimension 4, and Graves's and Cayley's 
octonions, numbers or quantities of dimension 8, both involve violations of basic 
arithmetic laws. Specifically, quaternions violate the law of commutativity of 
multiplication, and octonions violate, in addition, the law of associativity of multiplication.
But even the complexes involve violation of conditions that have some right to be regarded 
as standard arithmetic laws. In particular, they violate the law that any number multiplied 
by itself is either 0 or positive. More accurately, they lack the conjunction of the following 
two properties: 

(I). For every x, either x < 0 or x = 0 or x > 0, 

and 

(II). For every x, y, if x, y > 0, then x + y > 0 and xy > 0. 

All the "preceding" number systems satisfy this conjunction.70 What, then, should we say? 
Do the complexes violate the Principle of Permanence or do they not? One is tempted, 
perhaps, to say that they violate the Principle of Permanence 
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but only minimally, or not in a way that matters. But the difficulty then arises of saying 
which exceptions to the standard laws of arithmetic matter, and why.71 
That departures from the standard laws of arithmetic arise with the introduction of the 
complexes is significant. It is significant because it suggests a possible conflict between the 
Principle of Permanence and the Axiom of Solvability. Because the complexes are 
algebraically closed, the Axiom of Solvability does not enjoin extension of the number-
concept beyond them. It does, however, urge extension to the complexes because, with 
such extension, certain previously unsolvable polynomials become solvable. The Principle 
of Permanence, on the other hand, is resistant to extension to the complexes because it 
leads to failure of a standard arithmetic law, namely, the conjunction of (I) and (II) above.
Certain facts concerning the extension of the number-concept to the complexes thus 
suggest a possible conflict between the Axiom of Solvability and the Principle of 
Permanence. The situation, however, is even more complicated. For if we do not extend 
the number-concept to include complexes, then the Fundamental Law of Algebra does not 



hold. Does this imply that failure to extend the number-concept to the complexes would 
violate the Principle of Permanence?
Seemingly not. The Fundamental Law of Algebra does not appear to be a law of the same 
sort or in the same sense as other basic laws of arithmetic (including, I would say, the 
conjunction of (I) and (II) above). Indeed, it isn't a "law" for the systems "preceding" the 
complexes. In particular, it isn't a law for the reals. It does not, therefore, appear to be the 
type of law the preservation of which the Principle of Permanence was intended to cover.
It does, however, indicate a third type of methodological principle in mathematics—one 
distinct from the Axiom of Solvability and the Principle of Permanence. This is a 
preference for simplicity. This preference directs us to extend the number-concept not only 
in such ways as maximize the solution of problems or maximize preservation of the basic 
laws of arithmetic, but in ways that maximize certain types of simplicity—in this case, the 
simplicity borne of algebraic closure.
Let me close this subsection by mentioning one final puzzle—this time, a puzzle 
concerning the Principle of Permanence. I mentioned above that the Axiom of Solvability 
does not compel extension of the number-concept beyond the level of the algebraically 
closed system of the complexes. For various thinkers (e.g., Euler and Hamilton, to mention 
but two), however, the imaginary number , and the complex numbers constructed 
from it, did not constitute genuine solutions to problems. The reason was that they made 
use of the supposed number or quantity , and this, for them, was an absurdity. It 
followed that any number making use of it was likewise an absurdity and, thus, not a 
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genuine solution to a problem. Viewed correctly, then, the Axiom of Solvability did not 
sanction the introduction of the complex numbers.72 
In 1837, Hamilton (cf. [Hamilton 1837], sec. 3)73 produced an analysis of the complex 
numbers that he believed rescued the complexes from the charge of absurdity. On this 
analysis, complex numbers were two-dimensional quantities, each of whose dimensions 
was real-valued. As such, he maintained, they were fully intelligible: 
In the THEORY OF SINGLE NUMBERS, the symbol is absurd, and denotes an 
IMPOSSIBLE EXTRACTION, or a merely IMAGINARY NUMBER; but in the 
THEORY OF COUPLES, the same symbol is significant, and denotes a POSSIBLE 
EXTRACTION, or a REAL COUPLE. … In the latter theory, therefore, though not in the 
former, this sign may properly be employed. … [Hamilton 1837], 417-418 
In Hamilton's view, then, the meaningfulness of and signs for complexes generally 
depended upon how they were conceived. More particularly, it depended upon what we 
might call the dimensionality of their conception. Conceived as one-dimensional quantities, 
they're meaningless and "absurd." Conceived as two-dimensional quantities, they're fully 
intelligible. The same holds for the more extensive class of imaginary units used in 



defining higher-dimension hypercomplexes (e.g., quaternions and octonions). Viewed as 
one-dimensional quantities, they're absurd; viewed as multidimensional quantities, they're 
not. Such, at any rate, was Hamilton's view.
We argued above that the failure of the complexes to preserve (I) and (II) can be seen as a 
violation of the Principle of Permanence. Hamilton suggests that this is valid at most for 
the one-dimensional conception of the complexes. This raises the question of what should 
be counted as the permanent "laws" of multidimensional quantities—the laws to be 
preserved under extension from one dimensionality to another. Alternatively, it raises a 
question as to whether the Principle of Permanence should be taken as a valid 
methodological principle governing the extension of multidimensional concepts of number 
or quantity.
The basic point can be illustrated by considering the law of multiplicative commutativity. 
Hamilton's treatment of two-dimensional hypercomplexes (i.e., the complexes) preserved it 
as a law. His treatment of higher-dimensional hypercomplexes (viz., the quaternions) did 
not. One would like to know what he took 
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the significance of this to be. Hamilton gave us little to go on. He argued for a 
reconception of number based on an intuition of time. Given the inherent directedness of 
time, it would not be surprising for this to lead to an element(s) of order-sensitivity in 
arithmetic and, hence, a limited role for such order-insensitive laws as commutativity. One 
would not, however, expect preservation of such order-insensitive laws as multiplicative 
commutativity more in the case of two-dimensional quantities than in the case of higher-
dimensional quantities.
The multidimensional approach to quantity thus raises questions concerning the application 
(even the applicability) of the Principle of Permanence. There is a clear link between the 
move to the multidimensional analysis of quantity and the violation of the basic laws of 
algebra for one-dimensional quantities. It was Hankel who, in 1867, first succeeded in 
proving a link of this type. Hankel presented his theorem as an answer to a question raised 
by Gauss—namely: "… why the relations between things which represent a multiplicity of 
more than two dimensions cannot provide other sorts of permissible quantities in general 
arithmetic" (cf. [Gauss 1870-1927], vol. II, p. 178). He stated it as follows: 
A higher complex number system, whose formal operations of calculating are fixed by the 
conditions given in §28, and whose products of unity are particular linear functions of the 
original unities, and in which no product can vanish without one of its factors being zero, 
contains within itself a contradiction and cannot exist. [Hankel 1867], 10774 
In more modern terms, Hankel's Theorem, as we'll call it,75 says that the field is, up to 
isomorphism, the only commutative field obtainable by adding roots of polynomials with 
complex coefficients to the field . In still other words, any attempt to develop the (or a) 



number-concept in a way that includes but goes beyond it will inevitably lead to (further) 
violations of the Principle of Permanence. Understood in this way, Hankel's Theorem is a 
kind of completeness result for . It says that is the most complete (or most nearly 
complete) of all the multidimensional elaborations of the number concept in the sense that 
it preserves the greatest portion of the standard laws of number. We noted earlier that since 
the complex numbers form an algebraically closed system, the Axiom of Solvability would 
seem not to compel extension of the number concept beyond the complexes. Hankel's 
Theorem, it seems, promises problems for the Principle of Permanence if the number 
concept is so extended. The complex numbers thus seem to form maxima for both the 
Axiom of Solvability and the Principle of 
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Permanence. The maxima are of different types, however. The complexes are the 
maximum required by the Axiom of Solvability. They are the maximum permitted by the 
Principle of Permanence.

5.7. Hilbert's Formalism

One might think that Hankel's Theorem would have been the end of the Principle of 
Permanence. Such, however, was not the case. It continued to have many proponents, not 
the least of whom was Hilbert.76 
What seems to have changed is the emphasis placed on the qualifying phrase "to the fullest 
extent possible." This is illustrated by Peano's criticism of Hermann Schubert's formulation 
of the principle. Quoting the (corrected) French edition of Schubert's "Grundlagen der 
Arithmetik" (from the Encyclopädie der mathematischen Wissenschaften, vol. I), he wrote: 
"… one must be 'guided by a concern for keeping the formal laws as much as possible.' " 
[Peano 1910], 225 (emphasis added).
Peano argued that this was the strongest plausible form of the principle. His reasoning, 
presented in the form of a criticism of Schubert's misstatement of it, was that a stronger 
form requiring complete preservation of laws would lead to nonsense (e.g., the identity of 
the integers with the rational numbers): 
This principle of permanence reached its apogee with Schubert, who, in the Encyclopädie  
der mathematischen Wissenschaften, affirmed that one must "prove that for numbers in the 
broad sense, the same theorems hold as for numbers in the narrow sense." Now, if all the 
propositions which are valid for the entities of one category are valid also for those of a 
second, then the two categories are identical. Hence—if this could be proved—the 
fractional numbers are integers! [Peano 1910], 22577 



These days, of course, we would insist on a more careful drawing of certain distinctions 
(e.g., between propositions that are true of a set of items versus the laws or theorems that 
can be proved of them). There is also a disconnect between Peano's criticism of Schubert 
and his insistence on the qualified version of the Principle of Permanence. The right idea 
here, it seems, is not to point to the importance of the qualificatory phrase "as much as 
possible," but to highlight the 
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importance of distinguishing between an extension's preserving the laws of its predecessors 
and its having the same laws. The Principle of Permanence does not prohibit an extension 
from adding to the laws of its predecessors. Nor does it make minimization of such 
additions an ideal. The minimization it seeks is minimization of deletions from (or 
contradictions with) the laws of the predecessor theories.
This said, Peano's basic point—that the Principle of Permanence can be seen and 
appreciated as a methodological principle urging maximal possible preservation of the 
basic or original laws of number—is sensible enough. It is also significant because it 
expresses a preference for freedom (i.e., for the Axiom of Solvability, or freedom to create 
a solution to a problem) over preservation of the familiar. A little more accurately, it 
implies, modulo consistency, a preference for the Axiom of Solvability over the Principle 
of Permanence.
Hilbert's position is more complicated. He wrote approvingly of the Principle of 
Permanence as a possible way of working toward completeness in certain theories—
particularly what he referred to as theories of "higher domains" (cf. [Hilbert 1930], 231). 
He did not say what he meant by "higher domains," but it is reasonable to take him as 
including both theories of higher-dimension quantities and such abstract basic theories as 
set theory.78 He maintained that the Principle of Permanence could be used to provide a 
motivation for new axioms.
This, however, was the least important of Hilbert's applications of something like a 
Principle of Permanence. Of much greater significance were the broad applications he 
directed toward the laws of set theory and classical logic.
Concerning the former, he wrote: 
We shall carefully investigate those ways of forming notions and those modes of inference 
that are fruitful; we shall nurse them, support them, and make them usable, wherever there 
is the slightest promise of success. No one shall be able to drive us from the paradise that 
Cantor has created for us. [Hilbert 1926], 375-37679 
His attempt to preserve the classical laws of logic was even more self-consciously 
undertaken on analogy with other, more familiar applications of the Principle of 
Permanence. 
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At all events we observe the following. In the domain of finitary propositions, in which we 
should, after all, remain, the logical relations that prevail are very imperspicuous, and this 
lack of perspicuity mounts unbearably if "all" and "there exists" occur combined or appear 
in nested propositions. In any case, those logical laws that man has always used since he 
began to think, the very ones that Aristotle taught, do not hold. Now one could attempt to 
determine the logical laws that are valid for the domain of finitary propositions; but this 
would not help us, since we just do not want to renounce the use of the simple laws of 
Aristotelian logic, and no one, though he speak with the tongues of angels, will keep 
people from negating arbitrary assertions, forming partial judgments, or using the principle 
of excluded middle. What then shall we do? 
Let us remember that we are mathematicians and as such have already often found 
ourselves in a similar predicament, and let us recall how the method of ideal elements, that 
creation of genius, then allowed us to find an escape. I presented some shining examples of 
the use of this method at the beginning of my lecture. Just as was introduced so 
that the laws of algebra, those, for example, concerning the existence and number of the 
roots of an equation, could be preserved in their simplest form, just as ideal factors were 
introduced so that the simple laws of divisibility could be maintained even for algebraic 
integers (for example, we introduce an ideal common divisor for the numbers 2 and 

, while an actual one does not exist), so we must here adjoin the ideal  
propositions to the finitary ones in order to maintain the formally simple rules of ordinary 
Aristotelian logic.[Hilbert 1926], 379 (emphasis Hilbert's)80 
Hilbert thus saw the relationship between the Axiom of Solvability and the Principle of 
Permanence differently than Peano. He seems to have regarded the Axiom of Solvability as 
a means of securing adherence to the Principle of Permanence (or some principle like it). 
We introduce because it allows us to preserve a law—the law (the Fundamental 
Theorem of Algebra) concerning the existence and number of roots of an equation—in an 
attractively simple form. Even more importantly, we create the ideal propositions in order 
to preserve the 
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simple, psychologically efficient laws of classical logic as the laws governing logical 
inference in mathematics.81 ,82 
Psychological convenience—or avoidance of the type of inconvience represented by the 
"unbearable" awkwardness of finitary logic—thus became for Hilbert a prime objective of 
proper mathematical method. When faced with awkwardness or inconvenience in the realm 
of real mathematics, the mathematician is urged to remember that she is free to create a 
more convenient environment in which to conduct her reasoning.



Hilbert codified this freedom in the form of a methodological principle he termed the 
Creative Principle (das schöpferische Prinzip). 
Having arrived at a certain point in the development of a theory, I may designate 
(bezeichnen) a further proposition as correct (richtig) as soon as it is recognized (erkannt) 
that its introduction results in no contradiction with propositions previously admitted as 
correct. … [This is] the creative principle which, in its freest use, justifies us in introducing 
ever newer concept-formations (Begriffsbildungen), the only restriction being that we 
avoid contradiction. [Hilbert 1905], 135-136 
This was an affirmation of Hilbert's basic belief in the mathematician's freedom—"the 
freedom of concept-formation and of the methods of inference ought not to be limited 
beyond what is necessary" ([Hilbert 1920]). Restrictions on concept-formation and 
inference "must be formulated in such a way that the contradictions are eliminated but 
everything valuable remains" (ibid.). Hilbert asserted this laissez-faire approach to 
mathematics as a method greatly to be 
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preferred to the more restrictive approaches of the intuitionists (viz., Brouwer, Poincaré, 
Weyl, and especially Kronecker).83 
The picture of mathematics and its method that Hilbert constructs is thus reminiscent of 
Peacock's. Like Peacock, Hilbert made a distinction between real and ideal elements in 
mathematics.84 Also like Peacock, he saw this distinction as being at least partially a 
distinction between those parts of mathematics that purport to express an independently 
given reality, and those parts of mathematics that are "creations" whose purpose is to 
preserve mathematical reasoning in a simple and efficient form.85 
Further like Peacock, Hilbert subscribed to an essentially Berkeleyan conception of 
language; a conception according to which the cognitive significance of some parts or uses 
of language lies in their capacity to guide reasoning or inference without essential 
adversion to an interpretation. Finally, like Peacock, Hilbert accepted the existence of two 
basic constraints on the use of symbolical methods in mathematics—namely, that they be 
(1) consistent86 and (2) fruitful.87 
There were thus strong similarities between the formalist viewpoints of Hilbert and 
Peacock. There were also significant differences. Perhaps the most important of these is 
that concerning Hilbert's distinctive view of Begriffsbildung 
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(concept-formation or -construction) in mathematics. Kant had famously maintained that 
 … mathematical knowledge is the knowledge gained by reason from the construction of 
concepts. To construct a concept means to exhibit a priori the intuition which corresponds 



to the concept. For the construction of a concept we therefore need a non-empirical 
intuition. … Thus I construct a triangle by representing the object which corresponds to 
this concept either by imagination alone, in pure intuition, or in accordance therewith also 
on paper, in empirical intuition—in both cases completely a priori, without having 
borrowed the pattern from any experience. [Kant 1781], A713, B741 
For Kant, this meant that the introduction of concepts in mathematics proceeds in an 
essentially different way from the way in which it proceeds elsewhere. Generally speaking, 
that is, outside mathematics, concepts may be introduced without being constructed. 
Indeed, they may be introduced at will, subject only to a condition of consistency: 
 … I can think (denken) whatever I want, provided only that I do not contradict myself, 
that is, provided my concept is a possible thought. This suffices for the possibility of the 
concept, even though I may not be able to answer for there being, in the sum of all 
possibilities, an object corresponding to it. Indeed, something more is required before I can 
ascribe to such a concept objective validity (that is, real possibility; the former possibility 
was merely logical). [Kant 1781], p. xxvi, preface to the second edition88 
Introduction of concepts in mathematics, on the other hand, required "something more" for 
kant than mere consistency. It required construction, that is, a priori exhibition of an 
intuition corresponding to the concept.
Hilbert's view of concept-formation (Begriffsbildung) in mathematics contrasted in clear 
ways with Kant's. He (Hilbert) accepted that some concepts (viz., those belonging to what 
he referred to as real mathematics) were constructed in the Kantian manner (or something 
close to it). He explicitly allowed, however, that other concepts—specifically, the concepts 
belonging to ideal mathematics—may be introduced without assignment of any 
interpretation, much less assignment of an intuitive interpretation reached through a priori 
construction. He saw the formal axiomatic method as a tool for doing this: 
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When we are engaged in investigating the foundations of a science, we must set up a 
system of axioms which contains an exact and complete description of the relations 
subsisting between the elementary ideas of that science. The axioms so set up are at the 
same time the definitions of those elementary ideas; and no statement within the realm of 
the science whose foundation we are testing is held to be correct unless it can be derived 
from those axioms by means of a finite number of logical steps. … if it can be proved that 
the attributes assigned to the concept can never lead to a contradiction by the application of 
a finite number of logical processes, I say that the mathematical existence of the 
concept … is thereby proved. [Hilbert 1901], 447-44889 
In Hilbert's view there was thus, in addition to Kant's construction of concepts, a second 
and radically different way to introduce concepts into mathematics. This was the means 



provided for by the axiomatic method. Hilbert described this method (in the case of the 
theory of the "number-concept") as follows. 
We think (denken) a system of things. We call these things numbers and signify 
(bezeichnen) them by a, b, c, … . We think (denken) these numbers in certain mutual 
relationships whose exact (genaue) and complete (vollständige) description (Beschreibung) 
is accomplished (geschiet) by the … axioms. … [Hilbert 1900], 242 
For Hilbert, then, concept-introduction in mathematics behaved more like Kant's "denken" 
than his "anschauen." Because of this, his view of mathematical reasoning ran contrary to 
the classical view. Like Berkeley, he allowed reasoning to include noncontentual 
manipulation of signs, and he specifically did not require that all reasoning be with items 
having intuitional content.
It is also significant that he described the axioms of a theory as constituting an exact and 
complete description of the things thought about. The completeness spoken of here is of 
particular interest. It does not seem to represent so much a descriptive goal or ideal of 
axiomatic concept-introduction as a prerogative of it. It expresses the idea, that is, that the 
mathematician has a freedom or authority to stipulate that the concepts she introduces have 
exactly the properties that are provided for them by the axioms by which they are 
introduced.
It is difficult to know for sure what Hilbert had in mind. The final aim seems to have been 
categoricity, a property which (see [Hilbert 1900]) Hilbert seems to have thought was 
achievable by postulation.90 This is how he used the term "completeness" in [Hilbert  
1900], at any rate. In particular, he posited his so-called Vollständigkeitsaxiom (i.e., 
Completeness Axiom) to ensure the categoricity of his axiom system. It was fairly 
common practice for early twentieth-century 
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writers to use the term "complete" with this meaning (cf. [Wilson 1907-1908], [Wilson  
1904]).91 The completeness of Hilbert's early writings thus seems to have been (some kind 
of) completeness as a definition.
Hilbert's later writings (e.g., [Hilbert and Ackermann 1928], [Hilbert 1930]) modified this 
somewhat. In [Hilbert 1930a], he noted that categoricity was not a finitary notion and he 
introduced the notion of negation-completeness (not Hilbert's term) as a finitary surrogate 
for it.92 He claimed that the usual systems of arithmetic and analysis were generally 
regarded as being complete in this sense. He also suggested, however, that such 
completeness was not a forgone conclusion for theories of "higher domains" (Hilbert  
1930a, 231). Additional axioms might be needed in order to attain completeness in these 
theories. Choice of such axioms was to be guided by methodological principles such as the 
"principle of the permanence of laws." These remarks raise some difficult questions 
concerning the late Hilbert's understanding of and attitude toward completeness.



These are heightened by the fact that, in his very latest writings, Hilbert suggested a more 
Peacockean conception of axiomatization: 
In formal axiomatization … the basic relations are not taken as having already been 
determined contentually. Rather, they are determined implicitly by the axioms from the 
very start. And in all thinking with an axiomatic theory only those basic relations are used 
that are expressly formulated in the axioms. [Hilbert and Bernays 1934], 7 
The mathematician, on this view, is free to stipulate of a concept she's introducing that it 
have exclusively the properties provided for by the axioms she uses to introduce it. There 
is no content belonging to a concept introduced in this way except that which is provided 
for by the introducing axioms. The axioms used to introduce a concept thus guaranteedly 
take on a kind of completeness—what might be called constitutive completeness because, 
together, they constitute the "content" (i.e., the role in reasoning) of the concept.
Concepts are thus identified with the roles they occupy in mathematical thinking (denken). 
They do not have to have an intuitive content in order to be significant.93 Hilbert believed 
that the inferential roles of concepts are determined not by contents given prior to the 
axioms which introduce them, but by those introducing axioms themselves. Indeed, all 
reasoning concerning a concept 
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is restricted to that which is provided for by its introducing axioms. It follows that 
concepts function as signs or sign-complexes in formal axiomatic systems: 
Herein lies the firm philosophical viewpoint that I take to be necessary for the grounding 
of pure mathematics, and for scientific thinking, understanding and communication 
generally: in the beginning—as we mean it here—is the sign. [Hilbert 1922], 163 
(emphasis Hilbert's)94 ,95 ,96 
[Remark: There are, I realize, other possible readings of Hilbert's "In the beginning is the 
sign." One is that it suggests his finitist outlook—specifically, his belief that the 
justification of a mathematical theory ultimately rests on judgments concerning the shapes 
of signs. I do not reject such a reading. Indeed, it is strongly suggested by various things 
Hilbert said (cf. [Hilbert 1926], 376, where he speaks of a "content" in mathematics 
secured independently of all logic). I see no problem, however, in combining this reading 
with the reading just sketched. Indeed, the combination of the two readings makes it more 
reasonable for Hilbert to sum up his foundational viewpoint in this single phrase.]
The Hilbertian formalist's claim is thus, at bottom, a claim about the nature of 
mathematical reasoning—including, perhaps especially, a view of the nature 
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of concept-formation and/or concept-introduction. It allows signs and sign-complexes to 
play significant roles in mathematical reasoning independently of any interpretation that 
might be given to them. Indeed, when concepts are given exclusively by formal axioms and 
are regarded as having only such contents as those axioms provide, there is no significant 
difference between the roles of those concepts and the roles of signs. They function 
essentially as signs in a formal axiomatic system. One can do with them only that which is 
permitted by the introducing axioms. There is no preaxiomatic grasp or understanding that 
the axioms are intended to capture, and there is no extra-axiomatic model or structure that 
might be consulted in a search for new axioms or to correct current axioms.
The history of mathematics contains examples of concepts that appear to have been 
introduced in this way. The imaginary and complex numbers are, I believe, one such 
example. They were introduced as items obeying certain laws. These laws were not 
selected, however, because they captured a preaxiomatic structure given to intuition or to 
our understanding. Rather, the complexes were assigned laws that maximized their utility 
as computational instruments and that, at the same time, permitted us to preserve the 
Fundamental Theorem of Algebra in a pleasingly simple form. They did not 
simultaneously admit of both a notion of inequality and notions of addition and 
multiplication that were normal. They did, however, admit of a consistent axiomatization 
of enough of the usual laws of arithmetic computation to make them useful as 
computational devices. The fact that they were later given a geometrical interpretation by 
Gauss and others does not alter these facts, which are the basic facts of interest to the 
formalist.
They were, indeed, of exceptional utility as computational instruments. As various 
sixteenth-century mathematicians (e.g., Cardano, Bombelli, and Viète) noticed, this 
included rules—specifically, Cardano's Rule—useful for finding even real roots of 
polynomials.97 Cardano's Rule is given by the formula: 
end p.296

, for the so-called general cubic (i.e., a cubic of the 
form x3 − px + q = 0, where p, q are real). The general cubic is so-called because, by 
making appropriate substitutions, any cubic can be put into this (or a related) form.98 
Being of this mind, it was only natural that Hilbert should urge a noncontentual role for 
signs and/or concepts in mathematical thinking—a role that does not make use of any pre- 
or extra-axiomatic content that might be attached to them: 

To make it a universal requirement that each individual formula … be interpretable by 
itself is by no means reasonable;99 on the contrary, a theory by its very nature is such that 
we do not need to fall back upon intuition or meaning in the midst of some argument. What 
the physicist demands precisely of a theory is that particular propositions be derived from 



laws of nature or hypotheses solely by inferences (allein durch Schlüsse), hence on the 
basis of a pure formula game (Formelspiel), without extraneous considerations being 
adduced. Only 
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certain combinations and consequences of physical laws can be checked by experiment—
just as in my proof theory only the real propositions are directly capable of verification. 
[Hilbert 1928], 475100 

This, in its elements, was Hilbert's Berkeleyan conception of mathematical reasoning. It 
saw mathematical reasoning as allowing interludes of pure symbol-manipulation (what 
we'll generally refer to as "ideal reasoning") within larger, generally contentual reasoning 
environments. Signs were allowed to "come before" their meanings in the sense that 
reasoning was, at least sometimes, a matter of technique. Indeed, in his later work, Hilbert 
seemed to favor the view that, at a deep level, a great deal of reasoning of all types is 
technique (what the Greeks might have termed technē)—a manipulation of signs or 
symbols in accordance with psychologically convenient rules. As he put it. 
In our theoretical sciences we are accustomed to the use of formal thought processes 
(formaler Denkprozesse) and abstract methods … [but] already in everyday life one uses 
methods and concept-formations (Begriffsbildungen) which require a high degree of 
abstraction and which only become intelligible by means of an unconscious (unbewußte) 
application of axiomatic methods. Examples include the general process of negation and, 
especially, the concept of infinity. [Hilbert 1930c], 380 
The mathematician is free to exploit the psychological advantage that this type of 
reasoning offers. Her only restriction is that she not produce a body of reasoning that leads 
to conclusions that contradict the findings of contentual reasoning. Ideal reasoning does 
not, therefore, displace contentual reasoning. Rather, it supplements it by adding signs that 
produce an overall body of reasoning that is psychologically more natural and 
epistemically more productive than contentual reasoning itself.
The question, of course, as Frege repeatedly emphasized, is how purely symbolical 
reasoning can be epistemically productive. To this we answer that symbolical reasoning 
does not, by itself, justify a contentual conclusion to which it leads. Rather, it is 
supplemented by contentual metamathematical judgments to secure contentual 
conclusions.
Hilbert's "metamathematics" or "proof theory" was intended to supply the means for such 
an application. One would show by contentual metamathematical means that symbolical 
(what Hilbert called "ideal") reasoning to contentual conclusions is reliable. This would be 
possible because the rules for the usage of the noncontentual signs, which form the 
technique of our thinking, would be precisely stated in their axiomatic presentation. 



The formula game that Brouwer so deprecates has, besides its mathematical value, an 
important general philosophical significance. For this formula game is carried out 
according to certain definite rules, in which the technique of our thinking is expressed. 
These rules form a closed system that can be discovered 
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and definitively stated. The fundamental idea of my proof theory is none other than to 
describe the activity of our understanding, to make a protocol of the rules according to 
which our thinking actually proceeds. Thinking, it so happens, parallels speaking and 
writing: we form statements and place them one behind another. If any totality of 
observations and phenomena deserves to be made the object of a serious and thorough 
investigation, it is this one. … [Hilbert 1928], 475 
Hilbert's attempt to execute this "serious and thorough investigation" of our mathematical 
technē came to be known as Hilbert's Program. It was barely begun when the 
announcement of Gödel's Incompleteness Theorems called its overall realizability into 
question. We'll discuss this challenge after considering other challenges to formalism, most 
notably those developed by Frege in the late nineteenth and early twentieth centuries.

6. Challenges to Formalism

What seems to have been the most influential variety of formalism of the late nineteenth 
and early twentieth centuries—the neo-Berkeleyan, neo-Peacockean formalism of Hilbert
—was thus essentially a view concerning the nature of mathematical reasoning and, in 
particular, of mathematical concept-formation and/or -introduction. There were, however, 
other variants of formalism, some of which had a certain degree of notoriety among 
foundational thinkers of the late nineteenth and early twentieth centuries.
Chief among these is what I will refer to as empiricist formalism.101 This is a formalism 
that drew its inspiration from empiricist views of existence in mathematics. Its chief idea 
was to reduce the question of the existence of mathematical entities—in particular, the 
existence of numbers—to the question of the existence of perceivable signs. It is this 
variant of formalism that became the focus of Frege's engagement with and well-known 
criticisms of formalist ideas. Because of Frege's great influence on Anglo-American 
analytic philosophy, the formalism he criticized has sometimes been identified with 
formalism per se. This, I believe, is a mistake. There were thinkers who held positions like 
those criticized by Frege. They did not, however, represent the mainstream of formalist 
thinking in mathematics—the tradition coming down from Peacock and various others of 



the Cambridge algebraists to various German foundational thinkers, most particularly 
Hilbert.
Frege described what he took to be the core element of formalism in his 1891 lecture 
"Function and Concept." That was "a tendency not to recognize as an object 
end p.299

anything that cannot be perceived by means of the senses" ([Frege 1984], 138). He 
regarded this tendency as "very widespread" (ibid.), and said that it was "often met with in 
mathematical works, even those of celebrated authors" (ibid.). Among the authors Frege 
had in mind were Helmholtz and Kronecker (cf. [Frege 1984], 139).102 He also named a 
number of lesser but still well-known figures as having held this or related views. These 
included Cantor (cf. [Frege 1893], vol. II, §§68-85), Husserl (cf. [Frege 1984], 208), 
Hankel (cf. [Frege 1884], §§98-99; [Frege 1893], vol. II §§141-42), Heine (cf. [Frege  
1893], vol. II, §§59-60, 86-87, 104-105), Stolz (cf. [Frege 1893], vol. II, §§143-145), 
Thomae (cf. [Frege 1893], vol. II, §§86, 88-103, 106-137), Schubert (cf. "On Mr. 
Schubert's Numbers," in [Frege 1984], 249-272) and Korselt (cf. the 1906 essay "On the 
Foundations of Geometry: Second Series," in [Frege 1984], 293-340).
Heinrich Eduard Heine, a well-known mathematician at the University of Halle,103 stated 
the key idea of empiricist formalism as follows: 
Suppose I am not satisfied to have only positive rational numbers. I do not answer the 
question, What is a number?, by defining number conceptually, say by introducing 
irrationals as limits whose existence is presupposed. I adhere to the definition of the purely 
formal standpoint (rein formalen Standpunkt), in which what I call numbers are certain 
tangible (greifbare) signs (Zeichen) so that the existence of these numbers does not, 
therefore, stand in question. The main emphasis is to be put on the calculating operations, 
and the number-signs (Zahlzeichen) must be selected in such a way or furnished with such 
an apparatus as provides a clue to the definition of the operations. [Heine 1872], 173104 
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Heine seems to have been motivated by epistemological concerns—specifically, a concern 
that our knowledge of mathematical existence be as unproblematic as our knowledge of  
the existence of empirically observable objects. This is the central idea of Heine's 
formalism, and the (or at least a) chief focus of Frege's criticism of it.
Johannes Thomae, Heine's colleague at Halle for five years and Frege's colleague at Jena 
for thirty-five, gave a similar indication of epistemological motivation, though not one so 
clearly empiricist in character:105 
The formal conception of the numbers accepts more modest limits than the logical. It does 
not ask what the numbers are or must be; rather it asks what one requires of the numbers in 



arithmetic. For the formalist conception, arithmetic is a game (Spiel) with signs (Zeichen) 
that are well referred to as empty, by which one means to say that they (in the calculating 
game (Rechenspiel)) have no content (Inhalt) given to them beside that which comes from 
their role in the rules of combination (rules of the game). 
 …  
The formal standpoint allows us to throw off all metaphysical difficulties (metaphysischen  
Schwierigkeiten). That's the gain it offers us. [Thomae 1898], 3 
Frege went on to elaborate the "difficulties" referred to. 
The difficulties spoken of here may well be those with which we became acquainted in our 
reflection on Cantor's theory, namely, the grasping of actual numbers (eigentlichen Zahlen) 
and the proof of their availability (Vorhandensein). In formal arithmetic we don't need to 
ground the game-rules (Spielregeln)—we simply declare them. We don't need to prove that 
numbers have certain properties; we just introduce figures (Figuren) for whose handling 
we give rules. We then regard these rules as properties of the figures and thus are able to 
freely create—seemingly at least—things (Dinge) having the desired properties. In this 
way it is evident that we at least save ourselves intellectual work (geistige Arbeit). [Frege  
1893], §89 
Frege admitted that there were differences in the viewpoints of Heine and Thomae. 
Specifically, he took Thomae to essentially reject the question concerning the nature of 
numbers. Heine, on the other hand, he believed to accept the question. He answered it, 
though, by identifying numbers with signs (cf. [Frege 1893]; 98). In the end, however, 
Frege saw little difference between the two viewpoints because "both agree that arithmetic 
has to occupy itself with signs" (ibid.).
Frege's criticisms of empiricist formalism centered on this alleged occupation with signs. 
Without attempting to survey all the different criticisms he gave, I'll focus on the one I take 
to be of the most fundamental and far-reaching significance—one reaching, in particular, 
to Hilbert's type of formalism.
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This is a criticism that was briefly stated in the 1885 essay on formal theories of arithmetic 
(cf. [Frege 1885], 114ff.) and in the correspondence with Hilbert (cf. [Frege 1980], letter 
of December 27, 1899). It was developed at greater length in [Frege 1903] and in the 
second volume of the Grundgesetze (cf. §91). It received what was perhaps its most mature 
statement in ([Frege 1906]).
The basic argument was essentially this: formalism requires that arithmetic terms be 
treated as not having reference; but if arithmetic terms have no reference, arithmetic 
sentences do not express thoughts (in the Fregean sense); if arithmetic sentences do not 
express thoughts, then there can be no genuine demonstration or proof in and no 
application of arithmetic; if there is no genuine proof in and no application of arithmetic, 



then it can not rightly be considered a science (in the classical sense of the term); to retain 
arithmetic as a genuine science, therefore, one must abandon formalism.
The core element of this argument was Frege's anti-Berkeleyan conception of reasoning 
and proof, a conception according to which (1) genuine inference or reasoning cannot 
consist in a manipulation of signs, and (2) a genuine premise can not be a mere formula. 
Frege expressed these ideas in the following remarks: 
 … an inference does not consist of signs. We can only say that in the transition from one 
group of signs to a new group of signs, it may look now and then as though we are 
presented with an inference. An inference simply does not belong to the realm of signs; 
rather, it is the pronouncement of a judgment made in accordance with logical laws on the 
basis of previously passed judgments. Each of the premises is a determinate thought 
recognized as true; and in the conclusion, too, a determinate thought is recognized as 
true. …  
What is a formal inference? We may say that in a certain sense, every inference is formal 
in that it proceeds according to a general law of inference; in another sense, every 
inference is non-formal in that the premises as well as the conclusions have their thought-
contents which occur in this particular manner of connection only in that inference. [Frege  
1906], 387 
From the fact that the pseudo-axioms do not express thoughts, it … follows that they 
cannot be premises of an inference-chain. … one … cannot call … groups of audible or 
visible signs … premises anyway, but only the thoughts expressed by them. Now in the 
case of the pseudo-axioms, there are no thoughts at all, and consequently no premises. 
Therefore when it appears that Mr. Hilbert nevertheless does use his axioms as the 
premises of inferences and apparently bases proofs on them, these can be inferences and 
proofs in appearance only. [Frege 1906], 390 
Frege's most fundamental challenge to formalism was thus directed at its Berkeleyan 
conception of reasoning. He held that mathematical reasoning and proof are inherently and 
essentially contentual in character. They are processes whose purpose is to produce 
warranted judgments (i.e., affirmations of propositional contents or thoughts) called 
"conclusions." They are to achieve this purpose by 
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exhibiting the thought forming the content of a conclusion as logically implied by the 
contents of a group of antecedently justified judgments called "premises." These premises 
are ultimately comprised of a group of judgments called "axioms"—the contents of which 
are self-evidently true. The axioms thus form the contents of the fundamental judgments of 
the subject being investigated.
Various of Heine's and Thomae's ideas appear to disagree with the idea that the premises of 
proofs are to be axioms in the sense described and with the idea that the purpose of proof is 



to exhibit a thought as a logical consequence ofsuch premises. They may even disagree 
(albeit perhaps unintentionally) with the still more basic idea that the ultimate aim of proof 
is to produce warranted judgment (i.e., a warrantedly believed propositional content).
Hilbert's formalism was different. It did not dispute the idea that the purpose of proof is 
ultimately to produce warranted judgment. Nor did it dispute the idea that to achieve this 
end, a proof must exhibit a logical relationship between contentual premises and a 
contentual conclusion. It took exception only to the idea that the premises of a proof must 
be axioms of the subject being investigated. It allowed as well that the premises of genuine 
proofs should sometimes be metamathematical propositions concerning a formal system 
(and/or various of its items), and not axioms of that system. Since these metamathematical 
propositions could be directed at noncontentual as well as at contentual axioms, it (i.e., 
Hilbert's formalism) allowed that the axioms with which they were concerned should be 
noncontentual in nature.
This means, of course, that such axioms cannot be premises of proofs where "proof" is 
understood in Frege's sense. Hilbert permitted noncontentual formulas to be premises of a 
certain type of "proof" that he called ideal proof. But here we have what is essentially a 
terminological difference concerning the use of the term "proof." Frege insisted that it be 
reserved for what Hilbert generally referred to as contentual proof. Hilbert allowed it to 
refer to noncontentual thinking as well.
Unfortunately, this terminological dispute seems to have dominated much of Frege's side 
of the Frege-Hilbert correspondence and controversy. This is no doubt in part due to the 
fact that their correspondence occurred at a time when Hilbert had not yet arrived at a clear 
understanding of his proof-theoretic conception of consistency. This kept him from 
responding in a clear and satisfying way to Frege's claim that the only way to prove a body 
of formal reasoning consistent was to interpret it—that is, to transform it into a body of 
contentual reasoning through the assignment of an interpretation to the formulas that made 
their truth evident.
In a letter of January 6, 1900, Frege thus remarked to Hilbert: 
What means have we of demonstrating that certain properties, requirements (or whatever 
else one wants to call them) do not contradict one another? The only means I know is this: 
to point to an object that has all those properties, to give a case where all those 
requirements are satisfied. It does not seem possible to demonstrate the lack of 
contradiction in any other way. [Frege 1980], 43 
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He pressed the point again in a letter nine months later: 
I believe I can deduce, from some places in your lectures, that my arguments failed to 
convince you, which makes me all the more anxious to find out your counter-arguments. 



It seems to me that you believe yourself to be in possession of a principle for proving lack 
of contradiction which is essentially different from the one I formulated in my last letter 
and which, if I remember right, is the only one you apply in your Foundations of  
Geometry. If you were right in this, it could be of immense importance, though I do not 
believe in it as yet, but suspect that such a principle can be reduced to the one I formulated 
and that it cannot therefore have a wider scope than mine. It would help to clear up matters 
if in your reply to my last letter—and I am still hoping for a reply—you could formulate 
such a principle precisely and perhaps elucidate its application by an example. [Frege  
1980], 49 
Frege's reference to ([Hilbert 1899], §9) is to Hilbert's proof of the consistency of his 
axiomatization of geometry by provision of an interpretation of it in the real numbers. It 
was indeed, as Frege suggests, the only type of proof of consistency that Hilbert offered at 
that time. It would be another twenty years before he would be able to describe even the 
outlines of a new conception of consistency proofs—namely, that arising from his more 
mature proof-theoretic program. Frege was right to say that this was a development of 
potentially "immense importance."
The "principle" to which Frege referred was a principle for inferring the existence of an 
object having a set of properties from the mere fact that a set of such attributions is not 
contradictory. Frege dealt with it in the above-mentioned letter of January 6, 1900: 
Suppose we knew that the propositions 

(1)  A is an intelligent being 
(2)  A is omnipresent 
(3)  A is omnipotent 

together with all their consequences did not contradict one another; could we infer from 
this that there was an omnipotent, omnipresent, intelligent being? This is not evident to me. 
The principle would read as follows: 

If the propositions 

"A has property Φ" 
"A has property Ψ" 
"A has property X" 

together with all their consequences do not contradict one another in general (whatever A 
may be), then there is an object which has all the properties Φ, Ψ and X. This principle is 
not evident to me, and if it was true it would probably be useless. Is there another means of 
demonstrating lack of contradiction besides 
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pointing out an object that has all the properties? But if we are given such an object, then 
there is no need to demonstrate in a roundabout way that there is such an object by first 
demonstrating lack of contradiction. [Frege 1980], 47 
This passage illustrates the firmness of Frege's belief that the only way to demonstrate 
consistency was to exhibit a witnessing object or interpretation. He believed that any 
potential alternative means of demonstrating noncontradiction would eventually reduce to 
this.106 One might therefore just as well produce the witnessing object directly, without 
detouring through the supposed alternative means, which at some point, if it is to be 
effective, must produce the witnessing object anyway.
It also serves as a powerful illustration of the radical character of Hilbert's later proof-
theoretic conception of consistency. Frege can hardly be blamed for shortsightedness or 
narrow-mindedness in this matter. He failed to see only what almost everyone else failed to 
see as well.
In closing, let me briefly mention two further challenges to formalism—challenges that 
seem for the most part to have escaped the attention of those writing on the subject. The 
first derives from certain remarks of Gödel concerning the basis for certainty in 
mathematics. The certainty of mathematics, he maintained, 
 … is to be secured not by proving certain properties by a projection onto material systems
—namely, the manipulation of physical symbols—but rather by cultivating (deepening) 
knowledge of the abstract concepts themselves which lead to the setting up of these 
mechanical systems, and further by seeking, according to the same procedures, to gain 
insights into the solvability, and the actual methods of solution, of all meaningful 
mathematical problems. [Gödel 1986-1995], vol. III, 383107 
A challenge for formalism arises from this and Gödel's further description of how 
cultivation of a knowledge of abstract concepts is to proceed and what its results may be 
expected to be. He cites as his inspiration Husserl's phenomenological method, which he 
describes as follows: 
 … there exists … the beginning of a science which claims to possess a systematic method 
for … clarification of meaning, and that is the phenomenology founded by Husserl. Here 
clarification of meaning focuses more sharply on the concepts concerned by directing our 
attention in a certain way, namely, onto our own acts in the use of these concepts, onto our 
powers in carrying out our acts, etc. [This] is a procedure or technique that should produce 
in us a new state of consciousness in which we describe in detail the basic concepts we use 
in our thought, or grasp other basic concepts hitherto unknown to us. I believe there is 
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no reason at all to reject such a procedure at the outset as hopeless. … on the contrary one 
can present reasons in its favor. … In fact, one has examples where, even without the 
application of a systematic and conscious procedure … a further development takes 
place … one that transcends "common sense." Namely, it turns out that in the systematic 
establishment of the axioms of mathematics, new axioms, which do not follow by formal 
logic from those previously established, again and again become evident … it is just this 
becoming evident of more and more new axioms on the basis of the meaning of the 
primitive notions that a machine cannot imitate. [Gödel 1986-1995], vol. III, 384-385 
What Gödel suggests is that there is something either in the concepts represented by a set 
of axioms, or in our grasp of these concepts, that is not captured by the axioms themselves. 
To the extent that this is true, Hilbert's (and other creativists') idea that the axiomatic 
method expresses our freedom to stipulate the contents of concepts would seem to be 
either incorrect or of limited interest. An important part of the value of a set of axioms, in 
Gödel's view, resides in what arises from our turning our attention to our own acts in using 
them. Such reflection, says Gödel, cultivates or deepens our understanding of the concepts 
represented by the axioms, and the fruit of this cultivation is the discovery of new axioms 
which were in some sense latent in the original ones without being logically contained in 
them. To the extent that this is typical, it would be wrong or of little interest to claim that 
we have a freedom to create concepts by stipulating exactly what conditions they are to 
satisfy. Such stipulations would be routinely superseded as a result of proper reflection on 
our use of the concepts concerned. In other words, latent in the use of a set of axioms that 
is used to introduce a concept or sign are further axioms the uncovering of which will 
make the original axioms obsolete and cause us not to view them as the stipulations fixing 
the concept we originally took them to fix.
The second challenge is what I will call the Division Problem. This is a problem for those 
varieties of formalism which admit a distinction between parts of mathematics (typically 
referred to as "real") that behave in a contentual, non-algebraico-symbolical way and those 
parts of mathematics that function essentially as algebraico-symbolical instruments ("ideal" 
mathematics, in Hilbert's terminology). It concerns how to determine, in a nonarbitrary and 
descriptively adequate way, where the dividing line between real and ideal mathematics 
ought properly to lie. More specifically, it concerns the problem of whether a real/ideal 
distinction can be designed in such a way as to facilitate a proof of the consistency of the 
ideal side of the division by methods that can be distinguished in a principled way from the 
methods of the ideal side. A genuine proof of consistency must proceed by contentual 
methods. If, however, there is no principled way to distinguish between the methods used 
in the consistency proof and the methods whose consistency it is supposed to establish, 
then a formalist approach to the field in question would make little sense.
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What we are calling the Division Problem raises the question of whether there is a 
plausible, principled way to distinguish between real and ideal methods in mathematics. It 
has been suggested by a number of nineteenth- and twentieth-century mathematicians that 
there is not. The American mathematician James Pierpont raised the problem in an 
interesting way in his widely used 1914 text Functions of a Complex Variable. 
The complex numbers are often called imaginary numbers, and we have in the present 
work followed usage as far as to call … numbers … purely imaginary, the number i the 
imaginary unit, and the axis of ordinates the imaginary axis. For the beginner the term 
imaginary is most unfortunate; and if it had not become so ingrained in elementary algebra, 
much would be gained if it could be dropped and forgotten. 
The use of the term imaginary in connection with the number concept is very old. At first 
only positive integers were regarded as true numbers. To the early Greek mathematician 
the ratio of two integers as was not a number. After rational numbers had been accepted, 
what are now called negative numbers forced themselves on the attention of 
mathematicians. As their usefulness grew apparent they were called fictitious or imaginary 
numbers. To many an algebraist of the early Renaissance it was a great mystery how the 
product of two such numbers as −a, −b could be the real number ab. 
Hardly had the negative numbers become a necessary element to the analyst when the 
complex numbers pressed for admittance into the number concept. These in turn were 
called imaginary, and history repeated itself. How many a boy to-day has been bothered to 
understand how the product of two imaginary numbers ai and bi can be the real number 
−ab. As well ask why in chess the knight can spring over a piece and why the queen 
cannot. …  
The symbols (a, a′) or a + a′i are mere marks until their laws of combination are defined, 
they then become as much a number as 2/3 or 5. The student must realize that all integers,  
fractions, and negative numbers are imaginary. They exist only in our imagination. Five  
horses, three quarters of a dollar, may have an objective existence, but the numbers 5 and  
3/4 are imaginary. Thus all numbers are equally real and equally imaginary. Historically  
we can see how the term imaginary still clings to the complex numbers; pedagogically we  
must deplore using a term which can only create confusion in the mind of the beginner. 
[Pierpont 1914], 10 (emphasis in the last paragraph added) 
In Pierpoint we see an example of a mathematician who questioned the possibility of 
plausibly making a principled distinction between real and ideal (or imaginary) methods in 
mathematics and who moved from that question to the view that basically all mathematical 
objects are ideal.
There were, however, at least as many mathematicians who took the opposite tack—that is, 
they denied the possibility of making a principled distinction between a real and an ideal 
part of mathematics, but moved from there to the view that all of mathematics is real. This 
was essentially Gauss's view. 
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Our general arithmetic, so far surpassing in extent the geometry of the ancients, is entirely 
the creation of modern times. Starting originally from the notion of absolute integers, it has 
gradually enlarged its domain. To integers have been added fractions, to rational quantities 
the irrational, to positive the negative, and to the real the imaginary. This advance, 
however, has always been made at first with timorous and hesitating step. The early 
algebraists called the negative roots of equations false roots, and these are indeed so when 
the problem to which they relate has been stated in such a form that the character of the 
quantity sought allows of no opposite. But just as in general arithmetic no one would 
hesitate to admit fractions, although there are so many countable things where a fraction 
has no meaning, so we ought not to deny to negative numbers the rights accorded to 
positive simply because innumerable things allow no opposite. The reality of negative 
numbers is sufficiently justified since in innumerable other cases they find an adequate 
substratum. This has long been admitted, but the imaginary quantities—formerly and 
occasionally now, though improperly, called impossible—as opposed to real quantities are 
still rather tolerated than fully naturalized, and appear more like an empty play upon 
symbols to which a thinkable substratum is unhesitatingly denied by those who would not 
depreciate the rich contribution which this play upon symbols has made to the treasure of 
the relations of real quantities. 
The author has for many years considered this highly important part of mathematics from a 
different point of view, where just as objective an existence may be assigned to imaginary 
as to negative quantities, but hitherto he has lacked opportunity to publish these views, 
though careful readers may find traces of them in the memoir upon equations which 
appeared in 1799 and again in the prize memoir upon the transformation of surfaces. In the 
present paper the outlines are given briefly. …  
 … in the language of the mathematician … +i is a geometric mean between +1 and −1, or 
corresponds to the sign . … Here, therefore, an intuitive meaning of is 
completely established, and one needs nothing further to admit this quantity into the 
domain of the objects of arithmetic. [Gauss 1831], 175-177 
The Division Problem thus raises a difficult and important challenge to all varieties of 
formalism which admit of a distinction between real and ideal methods: namely, to provide 
a plausible, principled way of forging a real vs. ideal distinction.
Supposing this to be manageable, the Division Problem raises another question as well—
namely, whether within any plausible, principled division of real mathematics from ideal 
mathematics, real methods can possess enough strength to be capable of proving the 
consistency of the ideal methods. This is a pressing problem since if there is a way to make 
a principled distinction between real and ideal methods at all, that distinction will quite 
likely take hold at a relatively basic and elementary place in the hierarchy of number 
systems.



Hilbert, as is well known, identified the border between finitary and nonfinitary methods as 
the border of the real/ideal distinction. He did so in part because he sought a corrective to 
Kronecker's reactionary response to the loss of 
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geometric intuition in analysis that he (Kronecker) would be obliged to credit. What we 
now see is that there may be another, and perhaps even more potent, reason for choosing 
the division between finitary and nonfinitary reasoning as the place at which to divide real 
and ideal methods—namely, that there may be no place other than this at which a 
principled division of real and ideal methods can be made. Indeed, if Gauss and Pierpont 
are right, there may be no place at all for such a distinction. The formalist thus faces a stern 
challenge.
So, too, however, does the nonformalist. For unless a philosophy of mathematics provides 
for a division between real and ideal elements, it is doubtful that it can be adequate to those 
historical "data" by which alone the subject is given.
This brings me to my closing comments, which concern the effects of Gödel's 
Incompleteness Theorems on formalism. Since I have written elsewhere on this topic, and 
since my basic views have not changed, I will be brief here.
The formalist creates instruments and, when he does, he is obliged to establish their 
consistency. Do Gödel's Incompleteness Theorems—in particular, his Second 
Incompleteness Theorem—show this to be impossible? In general, my answer is "no". 
There are many aspects to the argument behind this answer. Some of these are discussed at 
greater length in [Detlefsen 1986] and [Detlefsen 2001]. Here I will focus on matters 
connected to the following two general facts: (1) that the formalist's purpose is to create 
useful instruments, and (2) that his consistency proofs ought therefore in principle be 
restricted to the theorems proved by ideal proofs that are useful (viz., ideal proofs of real 
theorems that are, in some appropriate sense, "easier" than the "easiest" of the non-
instrumental or real proofs of the theorems they prove).
There are, of course, well-known formalisms (e.g., PA, PA2, and ZF) that include a wide 
range of formalist instruments. If we assume that for each such theory T, every formula of 
the language of T that expresses T's consistency is subject to Gödel's Second Theorem, we 
must accept that there is no proof of T's consistency that is provable by real means 
codifiable in T. The question remains, however, whether there is a proper subsystem T U of 
T such that (1) all the instrumentally useful proofs in T of real theorems are contained in T 
U , and (2) the consistency of T U is provable by real means. The answer to this question is 
not, I think, generally known.
One reason why is that it requires general knowledge of the theories T for which there exist 
subsystems of the type of T U , and this seems generally not to be available. A related 
reason is that it requires clarification of the exact form(s) that instrumental usefulness is 



supposed to take. Is it, for example, to reside in proofs that are easier to verify as proofs? 
Or should it rather reside in proofs that are easier to discover and/or easier to understand or 
otherwise grasp? A final reason is that it requires partial solution of the above-mentioned 
Division Problem, and such solution does not currently exist. Gödel's Second Theorem, 
together with other current knowledge, does not, therefore, provide a refutation of 
formalism.
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9. Intuitionism and Philosophy
Carl Posy* 

The Two Phases Of Intuitionism



The word "philosophy" in this chapter's title refers to the philosophical views of L. E. J. 
Brouwer, intuitionism's founder, and also to the views of Brouwer's student Arend Heyting 
and those of Michael Dummett. Intuitionism has a philosophical program—indeed, a 
number of apparently diverse programs, as I shall point out—and it has a philosophical 
history. That is the main point of this chapter. But the title-word "Intuitionism" itself 
signifies technical intuitionistic mathematics itself and modern intuitionistic logic. For the 
philosophy or philosophies of intuitionism are inseparable from their technical core: 
intuitionistic mathematics in Brouwer's case, and intuitionistic logic in the case of Heyting 
and Dummett.1 
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Intuitionism began in Brouwer's doctoral dissertation (Brouwer [1907]). Brouwer, a Dutch 
mathematician of extraordinary scope, vision, and imagination, was a major architect of 
twentieth-century mathematics—his fixed-point theorem, for instance, is a landmark of 
modern topology—but his dissertation contained a trenchant attack on the foundations of 
modern mathematics and the seeds of a radical revision of the entire field. His views held 
then, and hold today, great mathematical and philosophical interest.
Brouwer's foundational work has special mathematical interest, because it clashed with the 
standard mathematics—now misnamed "classical" mathematics—that came to be 
solidified in the late nineteenth and early twentieth centuries. His theory of the continuum 
is central here. For in the course of solving a pressing problem about the continuum, he 
produced a new intuitionistic mathematics that not only refined the classical-set theoretic 
picture but also sometimes actually contradicted classical mathematics. It denies, for 
instance, that there are any fully defined discontinuous functions.
Brouwer's work interests philosophers because his mathematics rests upon a unique 
epistemology, a special ontology, and an underlying picture of intuitive mathematical 
consciousness. Brouwer used this philosophical picture not only to found his positive 
mathematical work but also to ground a sweeping attack on classical mathematics in 
general and the classical use of logic and language in particular. The classical 
mathematician, in Brouwer's view, illicitly appeals to logic and language in order to fill the 
gaps created by too narrow a view of intuitive construction. Brouwer was particularly 
harsh toward Hilbert's formalist program in this context.
Had Brouwer won the day, this is the picture we would see of intuitionism: a new 
mathematics, based on his account of nonlinguistic intuitive construction and largely logic-
free. And had he won, this would be our picture of all mathematics.
But Brouwer did not win the larger mathematical battle. Contemporary mathematics is 
generally nonconstructive,2 and it is routinely formalized. Moreover, neither did he prevail 
unilaterally within the intuitionistic camp. Several of Brouwer's mathematical and 



philosophical doctrines have taken on independent lives and have been developed in ways 
that actually diverge from his own views.
This is a "post-Brouwerian" phase of traditional intuitionism. Its main architects are 
Heyting and Dummett. Here, too, there is a technical core and a 
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philosophical gloss. Technically, phase-II intuitionism centers not on mathematics but 
rather, as I said, upon Heyting's formal system for "intuitionistic" logic and the associated 
metalogic for that system. Heyting's logical system—differing though it did from 
Brouwer's pronouncements—had enormous impact. For it spawned decades of research 
into intuitionistic logic in its own right, and intensive study of connections between 
intuitionistic logic and other branches of classical and nonclassical logic. For many 
logicians, intuitionistic logic and its metalogic are the only part of intuitionism that they 
know.
Philosophically, the second phase deviates even more radically from Brouwer: Heyting 
himself jettisoned any metaphysical foundation for mathematics and even adopted a more 
tolerant attitude to classical mathematics. And, building on Heyting, Dummett justifies 
formal intuitionistic logic via a general "linguistic anti-realism" that replaces the notion of 
"truth" in our fundamental conception of language with the notion of "warranted 
assertability." In so doing, Dummett not only eschews Brouwer's ontological approach to 
intuitionism and its anti-linguistic bias, but he even abandons the special mathematical 
focus of Brouwer's philosophy.

Chapter Outline

Part I will show you some main points of Brouwer's mathematics and the philosophical 
doctrines that anchor it. It will point out that Brouwer's special conception of human 
consciousness spawns his positive ontological and epistemic doctrines as well as his 
negative program. 3 Part II focuses on intuitionistic logic: once again a brief picture of the 
technical field will precede the philosophical analyses—this time those of Heyting and 
Dummett—of formal intuitionistic logic and its role in intuitionism.
That will describe today's intuitionism. Not a terribly flattering description, I must say: 
intuitionism will emerge as technically deviant in both mathematics and logic, 
philosophically divided, and, as we shall see, resting on an irreducible internal tension. Part 
III, however, aims to show that matters aren't (or needn't be) so bleak. It suggests, in 
particular, that putting all this in historical perspective—a look at mathematical precedents 
starting from Aristotle, and logical and philosophical ones from Kant—will show 



intuitionism as technically less quixotic and philosophically more unified than it had 
initially seemed. This historical hindsight will also address the internal tension of which I 
spoke.
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I.  Brouwerian Intuitionism

I.1.  Background: The Problem Of The Continuum

Let us start with the problem about the continuum that set much of Brouwer's 
mathematical agenda. The problem emerged from the roil of new mathematics and 
philosophy that greeted the twentieth century.
This was a period of growing mathematical abstraction: the new functional analysis and its 
generalizations in algebra and topology were testaments to this trend. They took 
mathematics irrevocably away from any dependence on perceptual intuition.
It was a period of unification in mathematics: mathematicians finally closed the ancient 
gap between the notion of number and that of a continuous magnitude like a surface or a 
smooth motion. Weierstrass and Dedekind were chief architects here. They showed how to 
build a continuous manifold out of "real numbers" which were themselves defined from 
sets or sequences of rational (and ultimately, natural) numbers.4 
And, most important, it was a period in which the notion of infinity finally came of age in 
mathematics: Weierstrass's convergent sequences and Dedekind's cuts were infinite sets. 
Indeed, the continuum was thus defined as an infinite collection whose elements are 
themselves infinite sets each of whose elements in turn is an infinite sequence.5 Cantor's set 
theory made these all mathematically rigorous. It made precise, for instance, the heretofore 
elusive difference between the set of rational numbers and the set of real numbers: the 
rationals are countable;6 the reals are not. The reals are closed under convergence; the 
rationals are not.7 And, in setting all of this in order, Cantor developed his beautiful theory 
of transfinite arithmetic and provided tools to study the fine structure and ordering of the 
continuum.
Brouwer actively embraced the move to abstraction. But the set-theoretic construction of 
the continuum and Cantorian infinity gave him pause. The problem 
end p.321



was not so much that set theory embraced infinite sets and infinite sequences.8 The 
problem was, rather, the new set-theoretic penchant toward arbitrary sets and sequences: 
sets that cannot be described and sequences whose elements cannot be calculated.
Some mathematicians—Brouwer calls them "pre-intuitionists"9 —attempted to restrict 
mathematics to finitely describable sets and algorithmically generated sequences. Finite 
description and algorithmic calculation, they thought, provide the means by which our 
human intellects can grasp infinite objects. This attempt, however, failed conceptually and 
mathematically. "Finite description" by itself is a paradoxical notion: think of the smallest 
set that cannot be finitely described. I have just finitely described it. And "algorithmically 
generated sequence"—at least in its ordinary sense— is mathematically too weak to 
provide all the real numbers we need. For the set of all algorithms is a countable set.
And so Brouwer took on the task of providing an epistemologically responsible account of 
the mathematical continuum. It was a philosophical task ("epistemologically responsible" 
needs a philosophical gloss) as well as a mathematical one; and, as I said, his philosophical 
and mathematical solutions went hand-in-hand. On the mathematical side he provided a 
constructive theory of finite mathematics together with a new set theory encompassing 
both discrete and continuous infinities. And philosophically he anchored this with special 
epistemological and ontological doctrines, doctrines that themselves derived from an 
overall phenomenological outlook. I will briefly describe Brouwer's mathematical solution 
and the intuitionistic mathematics that he derives from it. Then will I turn to his philosophy 
of mathematics: his phenomenological theory together with the positive and negative 
philosophical doctrines it spawned.
I.2.  Intuitionistic Mathematics

Brouwer's intuitionistic mathematics naturally divides between discrete—or, as he calls it, 
"separable"10 —mathematics on the one hand, and his theory of the continuum on the other.
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Separable Mathematics

Discrete mathematics begins for Brouwer with the operation of forming ordered pairs of 
distinguished elements, and continues by considering repeated iterations of that activity. 
This produces finite mathematics. For such iterations, says Brouwer, generate each natural 
number; and by abstract manipulations we can derive the standard arithmetic operations, 
the full complement of integers (i.e., negative whole numbers as well) and the rational 
numbers as pairs of integers. Brouwer carries forward this picture of construction in the 
discrete realm in two strong ways.



On the one hand, he entertains increasingly complex and abstract structures. For we can 
form a set (his word is "species") of objects thus produced or producible, and then take that 
as an element of a yet more complex constructive continuation. In his dissertation he 
speaks of constructing sets whose order types—in Cantorian terms—are of the form m 1 ωp 

1
  + m 2 ωp 

2
  +. … In subsequent work he specifies even more elaborate ordinal structures.11 

Yet on the other hand, Brouwer does not countenance the existence of any mathematical 
entity that cannot be produced in this way (i.e., by a predicative sequential process). This 
brings him into conflict with Cantor's theory of higher cardinals. To be sure, Brouwer 
allows the species of all (constructible) infinite sets of natural numbers and accepts 
Cantor's proof that this set cannot stand in one-one correspondence with the natural 
numbers. But he will deny that we have thus created a new cardinal number, greater than 0 

. The species thus constructed are, according to Brouwer, merely "denumerably 
unfinished."12 
I should emphasize that despite this anti-Cantorian bent, Brouwer's basic constructions of 
finite mathematical objects match the ordinary (set-theoretic) picture of the integers and 
rational numbers fairly well. His theory of the continuum, though, diverges radically from 
standard mathematics.

The Continuum

To be sure, Brouwer's mature theory, like classical mathematics, builds the continuum 
from infinite convergent sequences. And like the pre-intuitionists, Brouwer held that a 
legitimate infinite object must be given by a principle or law. But, unlike these 
constructivist predecessors, he did not require the generating laws to be fully deterministic. 
Specifically, a Brouwerian sequence, σ (whose entries are, say, rational numbers), might 
permit a certain amount of free choice to establish the value of σ(n) for some (possibly all) 
n. The continuum for him was built up from these "choice sequences," and he used this 
idea to derive its characteristic properties.
Put formally, a choice sequence, σ, is given by a preset finite initial segment <σ(1), … , 
σ(n)> together with a principle which, given <σ(1), … , σ(k)> determines 
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the range of possible choices for σ(k + 1). This principle might allow but a single possible 
value of σ(k + 1) for each k; in that case we have an ordinary algorithm. But it might very 
well allow a broad collection of possible choices. Thus, for instance, we might start a 
particular sequence α of rational numbers, with the determination α(1) = ½, and then set 



the rule that for each k, α(k + 1) must be a rational number whose distance from α(k) is less 
than or equal to (½)k+1. Here we have an infinite number of possible choices for each α(k).
The definition of a entails that this sequence converges, and thus generates a real number, 
r α . The definition, in fact, already shows that r α is in the interval [0,1] (the interval of real 
numbers between 0 and 1, including the end points).
On the other hand, we cannot tell from this definition whether the real number r α is less 
than, equal to, or greater than the real number ½. Indeed, we might never be able to 
determine that one of these relations holds, for so long as we happen to choose α(k) = ½, 
each one of the possible relations remains an open possibility. This potential for 
indeterminacy lies at the heart of Brouwer's mathematics.
Actually, Brouwer toyed with other techniques for producing real numbers whose 
properties may be thus indeterminate. He sometimes used what he called "fleeing 
properties" to produce such real numbers. Here is an example. Let ß be the following 
sequence of rational numbers: 
ß(n) = (−½)n if by the nth place in the decimal expansion of π, no sequence of the form 
9999999999 has yet occurred. 
ß (n) = (−½)k 
if n ≠ k and the kth place in the decimal expansion of π is the place at which the last 
member of the first sequence of the form 9999999999 in that expansion occurs. 
So long as no sequence of the form 9999999999 turns up, as we calculate the decimal 
expansion of π, ß oscillates left and right of ½, getting ever closer. It will stop and stay at a 
particular rational distance from ½ if and when such a sequence occurs. The stopping point 
will be less than ½ if the k is odd, and greater than ½ if k is even. We can always determine 
the nth element for any n and can always calculate the corresponding real number to any 
desired degree of accuracy. So, once again, we know that we are generating a real number 
that lies in the interval [0,1] . But, just as in the case of r α , we cannot tell what relation the 
number r ß has to the real number ½. Brouwer fully believed that we shall always be able to 
supply fleeing properties in order to generate such indeterminate real numbers.
Interestingly, examples like these provide a special intuitionistic proof that the continuum, 
built as it is from such indeterminate sequences, is indeed uncountable. 
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The proof assumes that a function is defined at a point in its domain only if its value at that 
point is calculable. So a function, f, that is to enumerate, say, [0,1] , must be calculable at 
the argument x = ½, and at each of its other arguments. And f must also be one-to-one. 
(That is if y ≠ x, then f(y) ≠ f(x).) But no such f can meet both of these requirements at the 
argument x = r α or x = r ß , for we cannot determine whether any one of these is equal to ½ 
or not.



Set Theory and Full Mathematics

Brouwer fashioned an intuitionistic set theory to handle sets that include such unruly 
sequences, and from this in turn he built a full intuitionistic mathematics.
Brouwer's set theory has, as we saw, species (collections whose elements share a common 
property),13 but he also defines constructive sets of sequences that are generated in some 
mutually common way. He calls these spreads. A spread is set of rules for admissible finite 
sequences of natural numbers such that each such admissible finite sequence, <n 1 , … , n k 

>, has at least one admissible successor <n 1 , … , n k , n k+1 >. An infinite sequence of 
natural numbers will belong to the spread if each finite subsequence does. We get infinite 
sequences whose elements are more sophisticated objects by assigning such an object to 
each admissible finite subsequence. In this way we can get spreads whose elements are 
convergent sequences of rational numbers,14 spreads whose elements are sequences of real 
numbers, and spreads whose elements are even more abstract.
A spread which admits only finitely many successors to each admissible finite sequence is 
called a fan. Brouwer showed that the real numbers falling within a bounded closed 
interval like [0,1] can all be generated by the sequences in a single fan. Thus the following 
fan generates [0,1] :

Let n be an enumeration of the rational numbers, such that n(0) = 0. 
• 0 is the only admissible one-member sequence. 
• If <n 1 , … , n k > is an admissible k member sequence, then <n 1 , … ,n k+1 > is an 
admissible k + 1 member sequence if and only if there is a natural number p, such that η(n 
k+1 ) is of the form p/2k+1 and | η(n k )- η(n k+1 )| ≠ 1/2k+1. 
• The fan assigns the rational number η(n k ) to the finite sequence <n 1 , … , n k >. 
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This fan admits a maximum of three successors to any admissible finite sequence. The real 
numbers in the interval are given by convergent sequences of rational numbers of the form 
p/2k.
The mathematics that emerged from these ideas was sometimes weaker than classical 
mathematics; sometimes it refined classical mathematics; and sometimes actually it 
contradicted classical theorems.
Here is an example in which intuitionistic mathematics is weaker. In the classical set-
theoretic continuum the "trichotomy" [(r ß < ½) V (r ß  = ½) V (r ß >½)] is true, as is its 
counterpart for r α . Indeed these are special cases of the general classical theorem: (  x)(  
y)[(x< y) V (x = y) V (x>y)]. However, since we cannot determine the relation of the real 



numbers r α and r ß to ½, Brouwer insists that we pristinely refrain from asserting the 
corresponding disjunctions. These particular disjunctions, and indeed the full general 
theorem, are thus classically but not intuitionistically true.
Here is an example of refinement. A rational real number, r, is one for which we can give 
two natural numbers p and q such that r = p/q; thus, by intuitionistic lights the real number 
r ß is not rational. We cannot find natural numbers p and q such that r ß  = p/q. On the other 
hand, r ß cannot be irrational. (For if there is a sequence of the requisite sort in the decimal 
expansion p, then r ß will be rational. If there is no such sequence, then r ß  = ½, and is once 
again rational.) Brouwer calls this a "splitting" of the classical mathematical concept of 
irrational number: there are numbers that are not (so far as we know) rational, and there 
are numbers that cannot be rational. Brouwer points out that this is a case of the failure of 
the classical principle of double negation: it is impossible for it to be impossible that r ß be 
rational, but that is not sufficient to claim that r ß is rational.
And here is the most striking—indeed, notorious—deviation from classical mathematics, 
Brouwer's Continuity Theorem: Fully defined functions of real numbers are always  
continuous.
Brouwer actually proves this theorem in two forms. He has a weaker (negative) version 
saying that a function cannot be both total (i.e., have a value at every point in its domain) 
and discontinuous at some point in its domain.15 And he had a stronger positive version: 
every function that is total on [0,1] is continuous.
Here, by the way, is another splitting of a classical notion: classically, the two versions of 
the theorem are equivalent. And, of course, classically they are false. The simple step 
function defined on [0,1] is as follows: 

•
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is both total and discontinuous at x 0  = ½. But for Brouwer the versions are distinct (in 
particular, the first does not imply the second), and they require separate proofs.16 
To prove the negative version, he defines a convergent choice sequence χ so indeterminate 
that the question of whether its corresponding real number r χ is less than ½ or equal to ½ 
remains eternally undecided. This shows that f is not defined at r χ , and hence is not in fact 
a total function.
Brouwer's proof of the positive version rests on the assumption that if a function, g 
(defined on [0,1] or alternatively on any set of reals which is generated by a fan), is actually 
total—that is, if 

x (e [0,1]) y[g(x) = y] 



holds—then there must be a proof of that fact, a proof that makes use only of definitional 
information about g. Brouwer goes on to analyze the structure of any such proof, and 
shows that indeed any such proof can be turned into a proof that g is continuous.17 In 
particular it will be a proof that if s is a convergent choice sequence whose corresponding 
real number r σ falls in [0,1] , then g(r σ ) must be calculable on the basis of a finite initial 
segment of σ.18 And that will guarantee the continuity of g.19 
This, by the way, provides an even simpler and more straightforward proof of the 
uncountability of [0,1] . For, it turns out that any putative function enumerating 
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[0,1] would have to be discontinuous. In particular, the value of such a function at r χ could 
not be determined by a finite initial segment of χ.
Brouwer and his students went on to apply these methods to the study of geometry, 
algebra, calculus, and abstract topology.20 

The Inconsistency of Classical Mathematics

Finally, a word about Brouwer's technical attack on classical mathematical principles.
In publications starting in [1948] Brouwer used what has come to be called the method of 
the "creating subject" to form indeterminate sequences.21 The creating subject is an 
idealized mathematician who is working on some as yet undecided mathematical 
proposition, Q (say Goldbach's conjecture22 ). In this case let γ be the following sequence: 

γ(n) = (½) if by the nth stage of his research the creating subject has neither proved nor 
refuted Q; 
γ(n) = (½-(½)k) if n = k and at the kth stage in his research the creating subject has 
succeeded in proving Q; 
γ(n) = (½ + (½)k) if n = k and at the kth stage in his research the creating subject has 
succeeded in refuting Q. 

In this case we actually make the strong claim r γ  ≠ ½ for the real number r γ , generated by 
γ. (For (r γ  = ½) would entail Q and Q.23 ) Just as in the case of fleeing properties, 
Brouwer fully believed that we shall always be able to supply undecided propositions in 
order to generate such indeterminate real numbers. Real numbers such as this allowed him 
to claim that some of the principles of the elementary classical arithmetic of real numbers
—principles like x y[x ≠ y → ((x < y) V (x > y))]—are not merely unprovable, but 
actually contradictory.24 
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I.3.  Brouwer's Philosophy: The Phenomenology Of Intuition And Constructivity

Each part of Brouwer's intuitionistic mathematics—finite and infinite separable 
mathematics, the theory of the continuum, and the reductio of classical mathematics—has 
a parallel philosophical foundation. Brouwer proposed epistemic and ontological 
foundations for the discrete and continuous parts of mathematics, and he authored scathing 
philosophical critiques of the use of logic and language in classical mathematics. But all 
these rest upon a pervasive phenomenological base, a picture of a mathematical subject 
constructing objects from intuitive material abstracted from "primordial consciousness."25 

In this section I'll sketch Brouwer's theory of primordial conscious experience, his 
specialized phenomenology of mathematics, and the mathematical epistemology and 
ontology that flow from it. Then I will turn to his philosophical attacks on the classical 
approach to mathematics.

Brouwer's Phenomenology

General Phenomenology. Primordial consciousness, according to Brouwer, is a 
"dreamlike" stew oscillating between sensation and rest; and, he says, conscious life would 
stay that way were it not for "acts of attention" by which the subject focuses on individual 
changes between different sensory contents. He calls such a change the "falling apart of a 
life moment." Objective consciousness begins when one focuses on such an event. 
Through these attentive acts the subject distinguishes individual conscious elements 
together with their contents and discerns an order between them. The subject iterates this 
process and thus forms attenuated mental sequences. These in turn are the building blocks 
of the subject's awareness of ordinary empirical objects.
Brouwer speaks next of what he calls "causal attention." The subject discerns some 
similarity among distinct conscious moments and then fashions sequences with similar 
initial parts and similar subsequent parts ("causal chains"). In this way, says Brouwer, the 
subject produces awareness of the causally ordered world. Reflecting upon this is the root 
of science; manipulating it is technology.
Three things should be stressed. First, the subject's main productive activity is generating 
sequences and correlating them with other sequences. Second, the acts 
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forming the world are willful impositions of structure on the original roil of consciousness. 
To be sure, there may be frustrations, and the formative process includes trial and error; 
but creative will and the imposition of will are central here. Finally, and most important for 
us, Brouwer claims that mathematical activity is parallel in both of these respects: It, too, is 
sequence-centered. It, too, is willful and creative. But, says Brouwer, it is purer, more 
abstract.

The Phenomenology of Mathematics.

Mathematical abstracting takes place at the very beginning, in forming what Brouwer calls 
the basic intuition of mathematics: The first act of intuitionism starts, as in ordinary 
consciousness, with "the falling apart of a life moment into two distinct things, one of 
which gives way to the other, but is retained by memory." But it then "divests all quality" 
from " the two-ity thus born." According to Brouwer, "There remains the empty form of 
the common substratum of all two-ities. It is this common substratum, this empty form, 
which is the basic intuition of mathematics."26 
Empty of sensory content though it may be, this two-ity is the material for all of 
mathematics. Numbers and finite objects come from manipulating and replicating this 
empty sequence. This is the source of the individual integers and rational numbers,27 and it 
is the phenomenological basis of ordinary arithmetical identities.
It is important to note that as a mathematician I do my abstracting when, after that first 
"falling apart," I ignore sensory content and form the abstract, empty "two-ity" of which 
Brouwer speaks. Brouwer does not start his phenomenology of arithmetic with some 
concrete actual counting or combination, and then abstract the mathematical counterpart. 
And in particular he does not suppose that mathematical operations on finite objects are 
schematic skeletons of empirical operations. Mathematics is an independent, empirically 
empty, process of its own.
This independence is even more evident in what he calls the second act of intuitionism an 
act which generates infinite mathematical entities in two ways: 
firstly in the form of infinitely proceeding sequences p 1 , p 2 , … , whose terms are chosen 
more or less freely from mathematical entities previously acquired; in such a way that the 
freedom of choice existing perhaps for the first element p 1 may be subjected to a lasting 
restriction at some following p ν , and again and again to sharper lasting restrictions or even 
abolition at further subsequent p ν 's, while all these restricting interventions, as well as the 
choices of the p ν 's themselves, may be made to depend on possible future mathematical 
experiences of the creating subject …28 
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This is the formation of choice sequences, sometimes yielding determinate sequences (that 
is, "abolition of freedom" mentioned here), and sometimes, indeterminate ones that depend 
upon the creating subject. 
secondly, in the form of mathematical species, i.e., properties supposable for mathematical 
entities previously acquired, and satisfying the conditon that, if they hold for a certain 
mathematical entity, they also hold for all mathematical entities which have been defined 
to be equal to it, relations of equality having to be symmetric, reflexive and transitive; 
mathematical entities previously acquired for which the property holds are called elements 
of the species.29 
And here we have the formation of more abstract objects—species—by means of 
equivalence relations.
The first sort of formation shows how we can grasp infinity: discrete infinity and even the 
infinity needed to produce a continuum. The second opens the gates to ever increasingly 
abstract mathematical constructions. Individual real numbers are species of this sort, as are 
full spaces, and even more abstract products and quotients of spaces. These mathematical 
constructions parallel empirical sequence formation, but it is in fact empirically empty. 
There are no infinite sequences in the empirical world, nor are there empirically abstract 
species.
Thus Brouwer has fashioned a unique phenomenological constructivism. He is not a 
finitist, nor does he follow the empiricist abhorrence of abstraction. To be sure, his 
homespun phenomenology and ontogenesis may well grate upon some ears, and I will say 
something about that a bit later. But if, for now, we grant Brouwer this way of speaking, 
then we can say that the outcomes of all of these acts of creation are straightforward 
mathematical objects. Each one, no matter how abstract or complex, is intuitively grasped, 
and each one exists. From this stylized picture we can derive his specific doctrines about 
epistemology and ontology and his negative critique of classical mathematics. Let me 
describe these philosophical "spin-offs" of Brouwer's special constructivism.

Epistemology and Mathematical Intuition

Mathematical knowledge is for Brouwer, as it was for Kant, synthetic a priori knowledge, 
based on a notion of pure intuition. But Brouwer has his own unique version of 
mathematical intuition and his own special grounds for apriority.

Intuition.



Mathematical intuition for Brouwer is temporal, and it is abstract.

Temporality.

This is fairly straightforward. The elements distinguished in that first "falling apart" have a 
temporal order, and that order, together with the order of subsequent pairings, is preserved 
in the sequences produced by the two acts of intuitionism.
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And Brouwer's mathematics tells us that time, on his view, is tensed. It has a sense of past, 
present and future.30 Indeed, Brouwerian time has a somewhat open future.31 

Abstractness.

Indeed, not only does Brouwerian mathematics have an intuitive content all its own, empty 
of sensory, empirical material, but Brouwer's version of mathematical intuition far 
outstrips any sort of sensory grasp. Brouwer, for instance, will claim that α, ß, γ and χ are 
graspable mathematical objects. And so are the real numbers they generate, as are the 
spread which gives [0,1] , the entire continuum, and more and more abstract spaces and 
points in analysis and topology. There is no limit, Brouwer would say, to the creative ways 
we might generate the new mathematical objects from the old, so long as they conform to 
the two laws of intuitionism. And all of these new objects—however abstract and 
empirically ungraspable they may be—are, in Brouwer's view, given in intuition.

Apriority.

Mathematics is, for Brouwer, a priori in the two Kantian meanings of the expression. It is 
epistemologically independent of sensory empirical experience, and it is a necessary 
underpinning of empirical science. But Brouwer fleshes out this independence and 
necessity in ways that differ from Kant's views.
For Brouwer, mathematics is "independent" of empirical experience not because of its 
abstractness or because of some special notion of mathematical justification. It is 
independent of experience to simply because it proceeds on a special track of its own. We 



do not turn to empirical experience to justify, or even to exemplify, the claims of pure 
mathematics. Au contraire, we achieve empirical applications of mathematics by 
superimposing empirical causal sequences on our independently formed mathematical 
structures.32 That, indeed, is also the sense in which mathematics underlies empirical 
science.
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Ontology

Unlike Husserl, Brouwer does not separate the question of conscious construction from the 
issue of objective existence in the world or in mathematics.33 Each object is given by a 
particular generating act, and what you build is what there is. This tells us the Brouwerian 
attitude toward construction and objects, identity and existence.

Construction and Objects.

The real numbers r α , r ß , r γ and r χ are perfectly respectable—that is, constructible—real 
numbers. But their generating constructions do not determine the relation of any one of 
these to the real number ½, and do not specify their exact location within the interval [0,1] . 
Nor do they provide any guarantee that such determinations can ever be made. We have 
here concrete instances demonstrating that in Brouwer's constructive ontology legitimate 
objects need not be fully determinate with respect to all of their potential properties.
Brouwer sometimes toyed with the possibility of "second-order" controls on this sort of 
indeterminacy. Thus, while each of the numbers r a , r ß, and even r γ might become 
determinate at some stage of development; the number r χ , in his proof of the negative 
version of the continuity theorem is specifically designed so that its relation to ½ will 
remain forever undetermined.

Identity.

And what goes for general properties and relations clearly goes for identity as well. The 
numbers r a , r ß, and r γ are each formed by distinct generative acts, so they are perhaps 
intensionally distinguishable. And each one is certainly less determinate than the real 
number ½. But from a strictly arithmetic point of view, we cannot say that any one of them 



differs from any one of the others, nor from ½. We have here individual entities without a 
determination of identity. In Brouwer's constructive ontology, legitimate objects need not 
be distinguishable one from the other.

Existence.

Brouwer, as we have seen, ties existence to constructibility. Putative mathematical entities 
that aren't constructed in the way that Brouwer describes simply don't exist. His foes here 
are the well-known indirect existence proofs based on the principle of excluded middle. To 
be sure, Brouwer has no problem with reductio ad absurdum arguments per se.34 And so 
Brouwer, as I mentioned, 
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happily accepts Cantor's diagonal argument as a proof that the real unit interval is 
uncountable. But, as we saw, he does not conclude from that that there exists an 
uncountable cardinal number. For there is no construction here.

Negative Doctrines

From these considerations about intuitive content and intuitive construction Brouwer draws 
negative conclusions about classical mathematics, about logic and about language.

Intolerance Toward Classical Mathematics.

Mathematics for Brouwer has content; it is about something. It is about the objects and 
structures produced according to his constructive guidelines. Thus, classical mathematics 
must perforce be talking about that same subject matter. And insofar as it differs from 
intuitionistic mathematics—for instance, in claims about trichotomy or the existence of 
discontinuous functions—in these matters it is simply wrong.
Moreover, since mathematics is an a priori science—its truths are necessary truths—to 
contradict one of these truths is to assert not merely the false but the impossible. That is 
why Brouwer actually speaks of the "inconsistency" harbored by one or another classical 
mathematical theory.



To be sure, Brouwer is not claiming that classical mathematics lacks meaning or reference. 
It refers to mathematical reality, the same mathematical reality to which the intuitionist 
refers. And it is fully meaningful. It is simply and necessarily false.

Logic.

A frequent mistake of classical mathematics is to assert the existence of things that in fact 
don't exist. Brouwer actually provides an etiology for this classical mistake. He posits an 
early mathematics concerned only with finite objects and systems, and tells us that at this 
stage, excluded middle was indeed a valid principle. (Presumably because at this stage, 
mathematical objects were effectively complete.) Early mathematicians, reflecting on their 
intuitive constructions, formulated general logical principles—the laws of 
noncontradiction, syllogism, and excluded middle—and allowed themselves to construct 
mathematical proofs based on these. However, these rules were simply general properties 
of constructions, and the derivations were no more than shorthand for possible 
constructions.
Mathematics evolved. Its objects became infinite, constructably infinite to be sure, but 
infinite nonetheless, and therefore incomplete. The other logical laws maintained their 
validity; excluded middle did not. But mathematicians continued to apply the old logic as 
if nothing had changed. They took logical deduction to be a justification in its own right—
the heart of the axiomatic method—but could 
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no longer cash it out in actual constructions. That, says Brouwer, is the heart, and the 
weakness, of classical mathematics.
In a nutshell: For Brouwer, logic per se follows ontology—classical logic is appropriate for 
finite but not for infinite domains—but it can never lead.

Language.

The classical mathematician, says Brouwer, looks to language as a replacement for the 
now missing intuitive content of mathematics. Language is supposed to be intuitive 
because it is quasi-perceptual. But for Brouwer language is an illegitimate surrogate, and it 
has no special intuitive value. It is not especially intuitive because, for him, mathematical 



intuition is not perceptual. And it is illegitimate because, on Brouwer's phenomenological 
view, no symbolic notation can ever accurately report the content of a conscious moment.
Brouwer's polemics against formalism in general and Hilbert's program in particular 
combine all of these criticisms. Hilbert wanted to secure mathematics against paradox and 
inconsistency by formalizing each part and then using elementary intuitive methods to 
prove the formal systems consistent. Intuition, for him, was indeed tied to perception: 
formal languages and formal systems had intuitive content; abstract, infinitary mathematics 
did not. Given some part of mathematics, Hilbert proposed axiomatizing it informally, 
transforming the axiomatic theory into a formal system, showing the formal system to be 
faithful ("sound and complete" in modern terminology), and then proving that formal 
system to be consistent. Since in his view the formal system is, as I said, intuitively 
grounded, intuitive ("finitary," ultimately arithmetic) methods would suffice to prove its 
consistency.35 
Gödel's theorems challenged the formal viability of Hilbert's program, but well before they 
appeared, Brouwer objected to this program at every turn. Abstract mathematics, if 
practiced constructively, is fully intuitive. Translation to a formal language—to any 
language—is at best questionably accurate. (This, for phenomenological rather than 
Gödelean reasons.) Formal systems are legitimate mathematical objects, but not 
necessarily more intuitive than the mathematics they are formalizing. And worst of all, the 
original axiomatization—and its indiscriminate use of excluded middle—simply 
perpetuates the original mistakes of classical mathematicians. Indeed, says Brouwer, 
Hilbert's oft-repeated slogan that every mathematical problem is ultimately solvable is 
equivalent to the principle of excluded middle and, as such, amounts to an outmoded, 
ungrounded belief. In the end, for Brouwer, Hilbert's notion of intuition does not exhaust 
mathematical intuition, and his notion of construction is not constructive.
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II.  Intuitionistic Logic and its Philosophy:

II.1.  Intuitionistic Logic and Meta-logic

This, then, is Brouwer's intuitionism: a revised mathematics resting on a phenomenological 
philosophy and accompanied by a trenchant critique of logic and language. Thus, one 
would scarcely expect intuitionists to formalize an intuitionistic logic or to produce formal 
systems for branches of intuitionistic mathematics built upon that logic. But this is exactly 
what happened. In the 1930's Arend Heyting published a series of papers presenting 
formalized intuitionistic logic and formal intuitionistic number theory. These gained 



immediate attention, for Heyting provided full-dress formal systems for propositional and 
predicate logic and for intuitionistic number theory.36 Metamathematical studies of 
Heyting's systems and extensions of them soon followed. They revealed eye-opening 
syntactic, algebraic, and topological properties of the system and its refinements. 
Ultimately they led to the model-theory of intuitionistic logic, initiated by Evert Beth and 
perfected by Saul Kripke.
All of this acutely raised the question of how such systems and studies fit into the 
intuitionistic program. After displaying the system and briefly mentioning some of its main 
metalogical properties, I'll turn to Heyting's own assessment of the philosophical 
significance of intuitionistic logic, and then to Michael Dummett's treatment of the subject.

The Formal System

Here is an axiomatization of intuitionistic logic (IL) adapted from Kleene [1952] and van 
Dalen [1986]. The language is the full language of first-order logic, without any 
abbreviations:37 

Axiom Schemata: 

1.  A → (B → A) 
2.  (A → B) → ((A → (B → C)) → (A → C)

) 
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3.  A → (B → (A&B)) 
4a.  (A & B) → A 
4b.  (A & B) → B 
5a.  A → (A V B) 
5b.  B → (A V B) 
6.  (A → C) → ((B → C) → ((A V B) → C)) 
7.  (A → B) → ((A → B) → A) 
8.  A(t) → ( x)A(x) 
9.  ( x) A(x) → A(t) (where t is free for x in A and x is not free in 

A) 
10.  A → ( A → B) 



The inference rules are: 

1.  
2.  
3.  

. 

This version of the system is formulated so that if Axiom Schema (10) is replaced by 
10′. A → A, 
the result will be a system of standard classical logic. (10) is derivable from (10′), so this 
shows that syntactically intuitionistic logic is a proper subsystem of classical logic. (That 
is, IL φ ⟹ > CL φ but not, of course, vice versa.)
Add the standard axioms for identity and for number theory, and you get a formal system 
for intuitionistic number theory, called HA (for "Heyting Arithmetic"). HA is, of course, a 
proper subsystem of the classical formal system of number theory (called PA, for "Peano 
Arithmetic"). The 1960s and 1970s saw the further development of intuitionistic formal 
systems, including formal systems for the theory of choice sequences, and even for the 
theory of the creating subject.38 
Modern metamathematical studies of IL followed in quick succession after Heyting's 
formalizations, and these studies have not abated. Here are some standard syntactic and 
semantic results:

Syntactic Properties.

Intuitionistic logic (and certain extensions) have the "explicit disjunction property" (if L 

(φVψ), then IL φ or L ψ) and the "explicit definition property" (if IL φ(x), then for some 
closed singular term "t," IL φ(t)), 
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results that might well be expected in a system representing constructive mathematical 
thought.
Gödel showed a connection between IL and the formal system S4 of modal logic39 and 
provided a translation * between formulae such that CL φ holds if and only if IL φ*. A 
similar property relates HA and formal classical number theory. It can even be shown that 
for any formula, φ, HA φ if and only if PA φ.
That means, in particular, that if a contradiction is derivable in one of these systems, a 
related contradiction will be derivable in the other. Thus, although, as I said, HA is, strictly 



speaking, a proper subsystem of PA, it is not "easier" to prove the consistency of HA than 
it is of PA.40 

Semantic Properties.

There are mappings between the theorems of IL and the elements of various abstract 
mathematical structures. To give just two examples, the system displays the properties of a 
particular kind of algebraic "lattice,"41 and the class of provable formulae has be shown to 
be parallel to certain properties of the open sets in a topological space.42 
Philosophically, however, the most interesting semantic treatment of intuitionistic logic is 
the model-theoretic approach, which interprets quantifiers over domains of objects and 
connects formulae with truth-values. Indeed, it provided a full, precise semantic notion of 
truth and of logical validity.43 
And so—or so the story goes—we get corresponding approaches to "intuitionistic truth" 
and "intuitionistic validity." Evert Beth published a model-theoretic interpretation of IL in 
[1947], and Saul Kripke produced one in [1965]. The two approaches differ in details—
Kripke's is formally simpler—but their underlying idea is the same: instead of a single 
model, one has a partially ordered collection of nodes (generally with a base node), each of 
which is something like a model in its own right. The partial order among nodes is called 
the "accessibility" relation. Predication at each node can be defined in the standard fashion, 
but the recursion clauses for the truth of compound statements may well depend upon the 
truth-values of its component simpler parts at accessible nodes.
Thus, for instance, in Kripke's version 
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• 
 

A will be true at a node w only if A is not true at any node w′ that is accessible to w, 

• 
 
(A V B) will be true at w only if either A is true there or B is, 

• 
 
(  x)A(x) will be true at w only if A(t) is for some t in the domain of w,44 

• 
 
(  x)A(x) will be true at w only if for each w′ accessible to w, A(t) is true at w′ for each t 
in the domain of w′. 



"Truth" for the model structure as a whole can be defined as truth at the base node, and 
logical validity will be truth in every model. Both the Beth and the Kripke semantics are 
demonstrably faithful to IL.45 
Here, using Kripke-models, is a pair of counterexamples to classical logical truths. The 
first model structure contains three nodes:w 1 , w 2 , w 3. where w 2 and w 3 are accessible to 
w 1 but not to one another. If A is true at w 2 but not at w 3, then (A V A) will not be true at 
w 1 , thus providing a counterexample to the principle of excluded middle.
The second model structure contains an infinite collection of nodes {w n } n which is 
ordered linearly. w j is accessible to w k if and only if j is greater than or equal to k. Now 
suppose that the domain at a node, w n , is the set of numbers {1, … , n} and that F(t, s) 
holds at any given node, w n , if and only if both t and s are in the domain and t < s. In this 
case ( y)F(1, y) is not true at w 1 . (since there is no element of the domain at w 1 that is 
greater than 1) So clearly (  x)(  y) F(x, y) is not true at w 1 .46 However (  y)  F(1, y) is 
clearly not true at w 1 , and so neither is (  x)(  y)  F(x, y). This thus shows why [(  x)(  
y) ≠  F(x, y) V (  x)(  y) y ≠ x F(x, y)] is not intuitionistically valid.

II.2.  Heyting's Interpretation

Turning to the question of the intuitionistic import of all this, I must say right off that a 
formal system itself is a perfectly respectable—indeed, a rather tame—intuitionistic object, 
and that most metamathematical mappings would be legitimate constructions if they were 
to be carried out within Brouwerian guidelines. The real question before us is the 
philosophical import of this system and its attendant metalogical studies.
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We might try to adapt Brouwer's own mode of thought here: logic follows ontology, and so 
intuitionistic logic might be a formal statement of the special intuitionistic ontology. But in 
fact, Heyting explicitly abjures this way of thinking. He did this not (merely) on the ground 
that logic is ontologically neutral, but mainly because he held that intuitionistic 
mathematics is itself ontologically neutral. Classical mathematics, says Heyting, is 
metaphysically weighted, and that is its downfall. Intuitionism, he insists, is 
metaphysically neutral.
Intuitionistic logic, he tells us, reflects something else altogether: the special intuitionistic 
meaning of the logical particles. In particular, for Heyting, intuitionism's central 
philosophical claim is that mathematics has no unknowable truths. In mathematics, to be 
true is to be provable; and IL is the result of applying this tenet to the semantics of the 
connectives and quantifiers. The main idea goes as follows. We set out the conditions 



under which evidence in an epistemic situation will suffice to count as a proof of a 
proposition A in that situation. Thus, in particular, 

• 
 
A = (B&C) is proved in a situation if and only if the situation proves B and C; 

• 
 
A = (B V C) is proved in a situation if and only if the situation contains evidence 
indicating that either B or C will eventually be proved; 

• 
 
A = (B → C) is proved in a situation if and only if the situation contains a method for 
converting any proof of B into a proof of C; 

• 
 
A = B is proved in a situation if and only if the situation contains evidence that B can 
never be proved (i.e., evidence that shows that a proof of B could be turned into a proof 
of a contradiction); 

• 
 
A = (  x)B(x) is proved in a situation if and only if the situation contains evidence 
indicating that B(t) eventually be proved for some t; 

• 
 
A = (  x)B(x) is proved in a situation if and only if the situation contains a method for 
converting any proof that a given object t is in the domain of discourse into a proof of 
B(t). 

When we replace the standard notion of "truth" in a model with this notion of "proof" in an 
epistemic situation—or "assertability," as Heyting put it in [1966]47 —we have a 
philosophical grounding for intuitionistic logic. Certainly, in particular, excluded middle 
will fail, for there are propositions right now for which we have no evidence that they will 
ever be decided. And the rest of intuitionistic logic will follow suit, so that logic is the 
expression of this proof interpretation of the logical particles.
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Four things need to be noted. First, Brouwer's work contains ample evidence that he 
embraced this conception of mathematical truth. His proof of the positive version of the 
continuity theorem rests precisely on the assumption that truth (in that case, truth of the 
claim that the function f is a total function) presupposes provability. His use of creating-
subject sequences also quite openly involves an assertabilist assumption.48 And perhaps 
most telling is his repeated equation of Hilbert's mathematical optimism (Hilbert's belief 
that every mathematical problem is ultimately solvable) with the principle of excluded 
middle. This equation presupposes assertabilism. If we assume optimism, then for any 
given proposition B we have a guarantee that either B or B will eventually be proved. The 
condition for the assertability of disjunctions will then validate (B V B).
Second, if we take this proof interpretation of the logical particles as the central message of 
intuitionism, then some of the metalogical studies of IL do take on philosophical 
significance. Thus, in particular, Gödel's mapping between IL and the modal S4 was 



actually expressed in terms of mathematical provability. Gödel used the symbol "B" (for 
Beweissbarkeit, "provability") rather than the "□" or " "of modern modal logic. His idea 
was that the notion of mathematical provability satisfies the axioms of S4, and that is why 
S4 is an appropriate mapping for intuitionistic logic. Similarly, Kripke heuristically 
describes the nodes in an intuitionistic Kripke-model as "epistemic situations," and takes 
the ordering of these nodes as a model of the monotonic growth of knowledge.
The third point is that Brouwer's insistence on construction is preserved in all this. Or at 
least it is according to Heyting. For when we speak of "proof" in these clauses, we must in 
fact keep in mind that, for an intuitionist, construction is the basic proof activity.
And last, though he may keep the emphasis on construction, Heyting jettisons Brouwer's 
metaphysical ground for intuitionistic logic—indeed, for intuitionistic mathematics 
altogether. For the proof interpretation is—or should be—ontologically neutral.
I say "should be" because, since proof or evidence is now the criterion of truth, it is easy to 
slip into the belief that propositions, understood assertabilistically, are about proofs. But 
that is a mistake. The proof interpretation of the logical particles says nothing per se about 
the objects of mathematics. Indeed, the assumption that a theory of truth must be 
referential—that it must involve a theory of objects—is precisely the assumption that 
Heyting attributes to the classical mathematician. Having made this assumption, the 
classical mathematician is 
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then forced to posit a (Platonistic) world of objects with undecidable properties in order to 
"correspond" to the demands of his classical logic. This indeed may well be the best way to 
express Heyting's "anti-metaphysical" philosophy of intuitionism. Though he finds 
classical mathematics unpalatable, he himself is tolerant of it. For, in Heyting's view, this 
mathematics has its own subject matter and thus does not conflict with intuitionism.

II.3.  Dummett

Since the 1960's, Michael Dummett has been promoting the assertabilist interpretation of 
the logical particles in a series of very influential papers and books. But Dummett 
generalizes Heyting's position in a significant way: assertabilist semantics, according to 
Dummett, applies to all of language in general, with the language of mathematics as a 
single, special case.49 Shifting to so general a scope for assertabilist semantics means that 
the game has changed in a fundamental way. There is a new enemy, there are new 
arguments, and indeed a new playing field altogether.



The Enemy

Because assertabilism now applies in principle to language as a whole, the assertabilist's 
opponent will be anyone who claims that truth in general is somehow not determined by us 
humans and our actions. Traditional advocates of an overall correspondence theory of 
truth, for instance, fit into this category. And there are also more focused foes, 
philosophers who target their "nonhuman" semantic theories in one specific area of 
discourse or another. The Platonist posited by Heyting is a good example here.

The Arguments

Dummett has provided quite general linguistic arguments designed to support his broadly 
conceived assertabilism. He has an argument from language acquisition: since, in first 
acquiring language at all, a child could only be learning the assertability conditions of 
simple and then complex sentences, these must be the conditions that ultimately define 
anyone's grasp of the language. And he has a general pragmatic argument: only an 
assertabilist meaning theory allows a speaker actively to demonstrate that he or she 
understands the language spoken. According 
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to Dummett, advocates of nonassertabilist conceptions of meaning cannot provide speakers 
with ways of demonstrating their grasp of simple and complex sentences which are 
humanly undecidable.

The New Playing Field

This is Heyting's anti-metaphysical bent, writ large. Much of Dummett's philosophical 
labor aims to show that traditional metaphysical debates about reality and objects can are 
best translated into modern semantic disputes. Old-fashioned realisms—about empirical 
objects, about personality, about past times, for instance—are each best replaced by a 
semantic realism that advocates human-independent truth. And the corresponding 
idealisms are now to be understood as a semantic "anti-realism," which bases truth upon 
human knowledge.50 



In all this one must keep in mind that intuitionistic logic is the natural upshot of a human-
based assertabilism. So if one follows Dummett here, intuitionistic and not classical logic 
will be the logic appropriate not just for mathematics, but for all discourse in which there 
are undecidable propositions.51 
And, most important for us, this is how Dummett understands the conflict between 
classical and intuitionistic approaches to mathematics. Rather than advocating some sort of 
Platonism or metaphysical realism about mathematical objects, the classical 
mathematician, on Dummett's picture, is simply an advocate of a nonhuman semantic 
theory applied to mathematics.52 This is a basis for mathematical intuitionism that may be 
more palatable to those who were uncomfortable with Brouwer's elaborate phenomenology 
and ontogenesis.

III.  Looking Backward

III.1.  Taking Stock

Here, then, is intuitionism today. Technically, we have Brouwer inventing new analytic 
and set-theoretic tools in order to solve a particular problem about the continuum. And we 
have Heyting and those who followed him doing just the 
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opposite: using the full force of traditional existing metamathematical tools to explore and 
expand intuitionistic logic. Philosophically, we have Brouwer's phenomenology and his 
attendant metaphysics. And up against this we have Heyting's anti-metaphysical proof 
interpretation and Dummett's more general assertability semantics.

Credits

Looking at all this positively, we find rich and fine-grained technical studies together with 
a mature constructivism that paints the human aspect of mathematics in a way that avoids 
both obsessive finitism and the general empiricist disdain of abstract ideas. Indeed, we 
have here a school of thought spanning the gamut of modern mathematics (the new 
analysis, set theory, formal logic, metamathematics) and contemporary philosophy 
(phenomenology, the latest epistemology, and modern anti-realist semantics).



Debits

I must, however, mention three problems with all this. First, on the technical side, 
intuitionistic mathematics, however bold its deviation from its classical counterparts, and 
the logic of intuitionism, however subtle it may be over against simple classical systems, 
are just those things: deviations that stand against the modern norm. Practicing 
mathematicians assume discontinuous functions without a second thought, and 
intuitionistic logical niceties are viewed as hair-splitting complications in contemporary 
mathematical logic. Indeed, even the more philosophical sides of logic and semantics often 
view IL as a messy distraction.53 The technical side of intuitionism seems a quixotic 
curiosity.
Second, I must sadly add that the very scope and span of intuitionistic philosophy seems in 
fact a large liability. For Brouwer's metaphysical grounding—indeed, any metaphysical 
grounding of logic—is viewed as a very poor bedfellow for the Heyting-Dummett 
assertabilism. Nowadays we see assertabilist semantics as a replacement—both in content 
and in style—for an outmoded ontology of objects and their properties, and even for a 
referential semantics that may base truth on correspondence to objects. When it comes to 
the justification of its own special logic (or even of its rejection of classical logic), 
intuitionism is a house divided. And if, like Heyting, we find in Brouwer's work a ground 
for the assertabilist semantics, then Brouwer himself is internally dissonant.
The third worry stems from a small conundrum in the assertabilist semantics, but in fact 
betokens an even more profound tension. Suppose, for a minute, that 
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we were to accept Hilbert's optimistic view and hold that every mathematical problem is 
ultimately solvable, or that every proposition is ultimately decidable. We needn't suppose 
that each proposition is already decided by some omniscient knower; it suffices to suppose 
that each one is in principle decidable. In either case, the assertability clause for disjunction 
automatically validates the law of excluded middle; there would be no formal difference 
between the resultant logic and standard classical logic.54 Brouwer knew this. He 
repeatedly equated Hilbert's optimism with the validity of the law of excluded middle, and 
with it, classical logic. But can the intuitionist assert that there are—or even may be—
propositions that are fully, eternally undecidable? We can't specify even one of these in 
mathematics. For were we to do so, then the assertability clause for negation would make 
us hold this proposition to be false, and thus in effect decide it for us. And so we certainly 
can't "construct" one.55 The intuitionist thus finds himself in the unenviable position of 



depending upon the existence of something—an undecidable proposition—that he cannot 
in fact construct, and whose possible existence he thus may not assert!
So that is where we are in intuitionism: a house internally divided, bent upon an eccentric 
technical mission, and based on a fundamental assumption which goes against its own 
internal standards. In the next section I want to show you, however, that intuitionistic 
mathematics and logic are far from eccentric curiosities: Brouwer's mathematics, I will 
suggest, stands in a tradition that goes back at least to Aristotle, and intuitionistic logic 
makes precise a mode of thought that stems from Kant. I will then go on to show that this 
same Kantian perspective can serve to reconcile the opposing intuitionistic streams, and 
can ever provide a way to confront that disturbing internal tension.

III.2.  Technical Precedents

Aristotle and the Intuitionistic Continuum

Let me briefly address the problem of mathematical deviance by first compounding it. 
Here is a straightforward consequence of Brouwer's continuity theorem: the 
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interval [0,1] (indeed, the entire continuum) cannot be split. That is, there do not exist two 
disjoint, nonempty sets A and B such that A  B =  [0,1] . To see that this is true, consider an 
apparently natural splitting of [0,1] , say A = {x| x < ½} and B = {x| x ≥ ½}. If, in fact, A  
B =  [0,1] for this A and B, then the "characteristic function" f, defined by 

•

will have to be a total function defined on A  B =  [0,1] , and thus, by the continuity 
theorem, will have to be continuous. But this function is clearly discontinuous. It is just the 
step function of section I.2; and, as we saw there, it is in fact not total. This little argument 
works for any A and B that purport to split or separate the interval [0,1] .
Here, by the way, is the origin of Brouwer's term "separable mathematics" for the study of 
countable collections such as the natural numbers and even the rational numbers: 
collections such as these are immune from this theorem. They can be split or separated into 
disjoint proper subsets.
Now, this "unsplitability" 
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that characterizes the intuitionistic continuum is a strong topological property.56 But I want 
to point out now that in fact this modern Brouwerian concept makes precise a notion that 
goes back at least to Aristotle.
Aristotle was an architect of the dichotomy between number and magnitude of which I 
spoke earlier and that characterized mathematics up to the nineteenth century. He thought 
it the best way to avoid Zeno's paradoxes and the Pythagorean problems of 
incommensurables. Along with this mathematical split Aristotle offered a conceptual 
analysis of the notion of continuous magnitude: its parts must share borders.57 And he 
initiated an image of fluid motion that remained the hallmark of all continuous magnitudes 
for millennia. We find the image not only in Aristotle58 but also in Kant in the eighteenth 
century,59 as late as Borel in [1898], and even in Brouwer's dissertation [1907].60 
As I said, Aristotle's conceptual analysis and his accompanying image of viscosity—you 
can't cut a continuous medium without some of it clinging to the knife—gain precision in 
the topological notion of "unsplitability." It is a property that characterizes the intuitionistic 
continuum but that is lost in the classical version of the continuum.61 
So we see, as I claimed above, that far from deviating from the norm, Brouwer's 
topological view of the continuum, and the mathematics he developed to support that view, 
actually continue a venerable mathematical tradition.62 
But here is another twist. From Aristotle onward, mathematicians and philosophers alike 
have always believed that this viscosity—this topological unsplitability—is inconsistent 
with the view that a continuum is composed of independent points (atoms). That is to say, 
they believed that the property of viscosity is inconsistent with the set-theoretic 
composition of the continuum. This alleged inconsistency is a central theme of Aristotle's 
physics and metaphysics.63 Kant endorses the allegation as well,64 and so does Brouwer, 
once again, in his early work.65 To be sure, Cantor, Dedekind, and others succeeded in 
fashioning a continuum as a collection of independently existing points. But they did so 
only at the expense of abandoning viscosity. Brouwer has now pushed this all to the side. 
For, having introduced choice sequences as autonomously existing mathematical entities, 
and having shown how to construct the continuum as a set derived from such entities in an 
"epistemologically responsible way," Brouwer has shown us that we can have a viscous 
continuum and make it out of points as well. This is no windmill-tilting; this is a profound 
mathematical insight.

Kant and Intuitionistic Logic



As for the forerunners to intuitionistic logic, here I turn to Kant. Though Kant inspired talk 
of "construction in intuition," it is not his philosophy of mathematics to which I want to 
turn here. Indeed, on questions of mathematics, Kant's differences from the intuitionists are 
striking: Brouwer rejects Kant's claims about the apriority of space;66 Kant—quite unlike 
Brouwer—suggests that mathematical 
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objects have no independent existence;67 and he will have no truck mathematically or 
generally with predicatively incomplete objects or undetermined identity.68 Indeed, I will 
point out below that for Kant the appropriate logic for mathematics will be classical logic.
No, the place to find origins of intuitionistic logic is rather in Kant's general metaphysics. 
It is his "transcendental idealism" to which I want to turn, and in particular to the 
confrontation between transcendental idealism and its rival "transcendental realism," and to 
the "Antinomy" chapter of the Critique of Pure Reason, where Kant brings that 
confrontation to a head.
In that chapter he claims that the transcendental realist is confronted with the following 
logical dilemma: on the one hand, the realist accepts—as a logical truth—the claim that the 
occupied physical world must be either spatially finite or infinite. That is, the realist claims 
that the following disjunction is a logical truth: 

•

(where x and y range over occupied spatial regions, "E(x, y)" means that x and y are 
equidistant from some fixed central point, and F(x, y) means that x is a farther from that 
point than y).69 But on the other hand, Kant provides arguments refuting each side of that 
disjunction.
The transcendental idealist, Kant tells us, escapes this logical dilemma because, for the 
idealist, this disjunction is not a logical truth in the first place.70 Here is where intuitionistic 
logic comes in. For, though the disjunction above is a logical truth under classical logic, it 
is not intuitionistically valid. Indeed, section II.1 displayed a simple Kripke model that 
serves as intuitionistic counterexample to this disjunction.
Of course Kant did not express his reasoning here using the formal machinery of 
intuitionistic logic. But once again we can use intuitionism precisely to express ideas that 
were less precisely adumbrated in an older philosophical school: Kant's transcendental 
idealist, we may say, advocates an intuitionistic logic for empirical discourse, while the 
rival transcendental realist goes for classical logic in the empirical arena.
This is no mere formal analogy. For Kant's logical moves here—and similar moves 
regarding the world's temporal ordering, causality, and the divisibility of matter—are best 
explained by an assertabilist view of the meanings of the and quantifier combinations. 



Indeed, the model in Section II.1 graphically captures Kant's claim that under 
transcendental idealism, finding an occupied region that is 
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more distant from a central point than a given region is set as a task, but one cannot assert 
the existence of that more distant region unless one has actual sensory contact with it.71 

This is paradigmatic assertabilism applied to empirical cosmology. Moreover, Kant's 
arguments that the world cannot be either spatially infinite or spatially finite are arguments 
ad ignorantum, arguments from the unknowability of an assertion to its actual falsity. 
Space cannot be infinite because we humans cannot perceive an infinite expanse, and it 
cannot be finite because we could never verify that we have come to an outer edge.72 

Leaving aside their modern soundness, these are clearly arguments only an assertabilist 
could accept as valid.
Kant even goes on to espouse the epistemological pessimism that links assertability to 
intuitionistic logic. In natural science, he says, "there are endless conjectures in regard to 
which certainty can never be expected."73 
His reason, interestingly, is that empirical science depends on evidence received passively. 
(Empirical intuition is "receptive" in Kant's words.) And so if there is an empirical 
question that is as yet unanswered, then we must simply wait until the appropriate evidence 
comes in one way or the other; and we have no assurance as to whether or when such 
evidence will emerge. This is interesting because, mathematics, for Kant, suffers from no 
such similar passivity. And thus he holds that in mathematics there will be no 
unanswerable questions. He sides, that is, with Hilbert on this issue of mathematical 
optimism!74 That is why I said above that, in mathematics, Kant should favor a classical 
logic.75 

III.3.  Assertability and Ontology

Thus Kant's transcendental idealism is, as I said, an empirical assertabilism; and he derives 
its intuitionistic logic in that way. Here is a true forerunner to IL— one, to be sure, that 
appears closer to Dummettian intuitionism than to Brouwer's ontological version. But, in 
fact, Kant also—indeed, regularly—describes transcendental idealism and its rival 
transcendental realism as straightforward ontological positions.
The heart of Kant's "Copernican Revolution" is a new theory about the nature of objects: 
the objects must correspond to our intuitive knowledge and not vice versa.76 

Transcendental idealism, he tells us over and over again, holds that empirical objects are 
"appearances" and not mind-independent "things in 
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themselves"; and transcendental realism holds that these same objects are in fact things-in-
themselves. Indeed, Kant quite explicitly defines truth, the gateway to logic, as 
"correspondence of cognition with its object."77 This indeed, is the source of his empirical 
epistemic pessimism: "for natural appearances are objects that are given to us 
independently of our concepts," and for that reason there are times in which "no secure 
information [about them] can be found."78 
So is it objects, ontology, and reference, or is it evidence and assertability that underlie 
Kant's idealism and his intuitionistic logic? It is both. This is quite the same mix that we 
find in intuitionism in general and in Brouwer in particular.
But in fact all of this holds together for Kant. There is no uneasiness to this union, for there 
is no gap between the ultimate empirical nature of an object and the sum of what we can 
intuitively (perceptually) know about that object. Once the object is perceived, then all of 
its properties can be intuitively known. So, similarly, there is no gap between saying, on 
the one hand, that our judgments are true because of the ontological properties of their 
objects and claiming, on the other hand, that those judgments are true by virtue of our 
eventual knowledge.79 That is the heart of his transcendental idealism.
The same equation characterizes Kant's view of transcendental realism. Transcendental 
realism, as we saw, applies classical logic in empirical discourse precisely because the 
realist does not let our receptive and finite epistemic limits influence the conditions of 
empirical truth. That is the effective content of Kant's claim that "reason" rather than 
"intuition" underlies the realist's conception of truth. And that, in turn, is the heart of his 
ontological claim that for the realist, empirical objects are "things-in-themselves."
So for Kant, ontology and assertabilism go hand-in-hand. And we find in Kant a worked-
out philosophical position advocating and explaining the very philosophical mix that 
seemed a problem for the intuitionists.

III.4.  The Unknowable

Let's turn then to our final worry, the tension between intuitionism's need to assume the 
possible existence of unanswerable questions and its inability to do so. 
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Here again I want to take a cue from Kant to help understand—though not resolve—this 
tension. For this it is wise to look at Kant's attitude toward that epistemically unruly faculty 
of "reason."
Transcendental realism's mistake, Kant says, is to allow reason to govern the semantics of 
empirical discourse. This, we saw, leads the realist to apply classical logic in empirical 
contexts, and that, says Kant, is untenable. It generates the antinomy sketched above and 
others like it. But he does not dismiss this realism as incomprehensible or incoherent. 
Indeed, Kant insists that realism—or, more precisely, the faculty of reason—actually exerts 
a positive influence upon empirical discourse.
For one thing, reason makes us think about some sort of "intelligible," unperceivable 
source for our passively received perceptions. For without presuming such a 
"transcendental object" as source, receptivity itself would make no sense.80 This is a 
tension similar to the one we uncovered in intuitionism: the need to assume the existence 
of an object that cannot be constructed by epistemologically respectable methods.
Kant sets his tension in epistemological terms quite like the ones that pose the intuitionistic 
tension. Thus he says that in cosmology reason leads us to consider the world-whole and 
ponder its borders in the first place. And though those limits are unknowable, Kant insists 
that this sort of thought is empirically essential. For it is this way of thinking that "sets the 
task" of expanding our empirical knowledge about the extent of the universe.81 Ultimately 
it is this "regulative" force of reason that guides scientific research and goads it to extend 
its range of discoveries. Indeed, it is just this force of reason that aims us at ever more 
comprehensive scientific theories, even though we know that we will never form an 
epistemically complete theory.82 
And, even more closely, the very first line of the Critique of Pure Reason expresses our 
epistemic state: "Human reason has this peculiar fate that in one species of its knowledge it 
is burdened by questions, which, as prescribed by the very nature of reason itself, it is not 
able to ignore, but which, as transcending all its powers, it is also not able to answer."83 
Here, then, is a historical precedent from which we can learn. It doesn't reconcile the 
intuitionistic tension, but if we follow the Kantian line, it tells us that we shouldn't try to do 
so. The tension itself defines our human condition.
end p.351
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10. Intuitionism in Mathematics
D. C. McCarty 

Introduction

First, contemporary intuitionism is not a philosophy of mathematics but the mathematics 
inspired by L.E.J. Brouwer's (1881-1966) ingenious discoveries in topology, analysis, and 
set theory. In that, contemporary intuitionism is unlike those other "isms"—platonism, 
nominalism, formalism, structuralism, and anti-realism—with which it is sometimes 
associated. Intuitionists as such cannot join the ranks of philosophers of mathematics who 



insist that words in mathematics refer exclusively to sets, categories, structures, or airy 
nothing. Nor do intuitionists require that mathematical or logical terms be assigned 
meanings different from those they already possess. They cannot pretend, as do some 
exponents of the "isms" just mentioned, to take the results of conventional mathematics as 
true and beyond question. Intuitionists respectfully disagree with their conventional 
brethern first over mathematical fact, and over meaning or philosophy later, if at all. Often, 
introductions to intuitionism lead the reader astray in maintaining that intuitionists spurn 
certain principles of conventional logic and mathematics because of some philosophy or 
other, an epistemology, ontology, or semantics peculiar to intuitionism. Nothing could be 
further from the truth. Of course, forays into philosophy may return some profit, but they 
should not distract us from the central point: ultimately, the intuitionist erects a 
mathematical edifice, and thereby rejects conventional mathematics, on mathematical 
foundations and on 
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mathematical foundations alone. A presentation of today's intuitionistic mathematics sets 
out from meaningful mathematics and, following a clear, bright road of mathematical 
reasons, arrives at a firm vantage from which conventional mathematics is seen to be 
generally false and set theory, analysis, arithmetic, algebra—all the fields of modern 
mathematics—reappear, scoured clean of fallacy and error.
The following is a brief tour of contemporary intuitionism. One convenient point of entry 
into intuitionistic territory is afforded by logical domains and their attendant mathematics
—in particular, the properties of two sets playing prominent roles in intuitionistic 
reasoning: P(∕), the power set of the natural numbers, and Prop, the power set of {0}. While 
clearing intuitionistic customs, one sees posted some prohibitions, among them, that the 
law of the excluded third is illegal. Do not let first impressions mislead you. Not all the 
souvenirs from our excursion will be equally negative; intuitionism is a set of 
accomplishments in pure mathematics and not a doctrine of denial. For, from our point of 
entry, we climb quickly through a more abstract landscape up to the peak that is Brouwer's 
Theorem in intuitionistic analysis, a positive result from which a large terrain of 
mathematical domains becomes surveyable. Once on the far side of that peak, we follow a 
stream that cuts straight through a broad and fertile expanse, tracing the idea that 
intuitionistic mathematics serves as internal mathematics for topological and computability 
interpretations. This grants intuitionism powers strictly prohibited to conventional 
mathematics. Finally, in taking leave of the subject, we pause to assess the prospects for 
anti-realism, a philosophical development on the edge of intuitionism proper, and we 
attempt to exorcise an old ghost that still haunts the region: the idea that intuitionistic 
mathematics is weaker than its conventional counterpart.



I.  Logical Domains

1.  The Uniformity Principle

The extent to which practicing mathematicians of a conventional tendency are already 
intuitionists is reassuring. Today's mathematicians treat mathematical claims much as 
Brouwer once did: as independently meaningful efforts to record mathematical facts which 
are, when true, demonstrable from proofs rooted in basic assumptions or principles. Until 
they are proven, those assumptions rest upon intuitions: illuminating, at times fallible, 
insights into the dynamical behaviors of numbers, sets, functions, and operations on them. 
Much as a conventional set theorist argues for the truth of the foundation axiom by 
appealing to images of well-founded sets generated from the empty set ø, an intuitionist 
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introduces such starting-points as the Uniformity Principle by appealing to intuitions into 
the natures of numbers and sets.
The Uniformity Principle (UP), which got its first explicit formulation in Troelstra [1973], 
is the anticonventional claim that every set of natural numbers can be labeled with a 
number only if some number labels every set. When made available by intuition, UP 
entails several theorems characteristic of intuitionistic mathematics, among them the 
invalidity of the tertium non datur (TND), or law of the excluded third. 

Principle 1 (Uniformity). Whenever an extensional binary relation R links every set of 
natural numbers X to some natural number n, there is some n that gets related by R to all 
such sets X. In symbols, X n R(X, n) → n X R(X, n). 
To see how such a principle might be made plausible, let R be any extensional, binary 
relation between sets of natural numbers X and natural numbers n such that, for every X, 
there is an n for which R(X, n). For this liaison between sets and numbers to subsist, there 
should be a discernible association in virtue of which R links sets to numbers. That 
association is expressible as a list of instructions α for determining, from sets X, suitable n 
for which R(X, n). In contrast to the natural numbers and integers, the collection of all sets 
of natural numbers is not the trace of some recursive generation process. The relation R 
and the sets themselves are all extensional. Hence, the action of α should not depend upon 
the fine points of a set's possible specification in language. Further, since α is a rule with 
which one can act on all sets X of numbers, the action of α should not depend upon the 
membership conditions for any particular X. Those conditions might well be so 



complicated as to elude capture in anything one would rightly call a "rule." The application 
of α to sets should therefore be uniform: what α does to one set, it does to all. The identity 
badge of intuitionism as a branch of constructive mathematics is the insistence that every 
rule underwriting an existential statement about numbers n P(n) must provide, if 
implicitly, an appropriate numerical term t and the knowledge that P(t) holds. Therefore, 
since α is constructive and labels each set X uniformly with some number, α must yield a 
designation for some particular natural number m uniformly in terms of the Xs. Obviously, 
for this association to be uniform, m must be the same for every set of numbers X. Hence, 
there is a number related by R to every set, and UP is seen to hold.

2.  Consequences of Uniformity: Tertium non Datur, Cantor's Theorem, Indecomposability

UP has a number of easy corollaries, some characteristically intuitionistic and others 
recognizably conventional. Brouwer proved the first, the invalidity of TND, 
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in his early article "On the Unreliability of the Logical Principles" (Brouwer [1908]). The 
second was the work of (nonintuitionistic) set theorist Georg Cantor (1845-1918). Cantor's 
proof differed markedly from the one below, relying upon an impredicative construction 
that drew critical fire from his contemporaries. No such construction features here. With 
the letter p a variable ranging over mathematical propositions, the validity of TND can be 
expressed as 

•

Mathematically, this is no law at all, but a false generality. 

Corollary 1 (TND is invalid). ¬ p (p v ¬ p). 

Proof: Assume that TND obtains and reason by reductio. If TND holds for all 
mathematical propositions p, it holds a fortiori for any propositions concerning set 
membership . Hence, it would be true that for any set X of numbers, either 0 X or 0 X. 
Define a binary relation R between sets X of natural numbers and individual natural 
numbers as follows. R(X, n) is to obtain just in case either 

•



By assumption, either 0 X or not. It follows that, given any X, there is an n (either 1 or 2, 
to be specific) for which R(X, n). UP now guarantees that there is an m such that, for any X, 
R(X, m). However, this is impossible, because no m can be correlated by R with both the 
empty set ø and {0}. Consequently, the original assumption, that TND is valid, must be 
mistaken. ▪ 
Let ∕ be the set of natural numbers and P(∕) be the power set of ∕, the set containing all and 
only subsets of ∕. A set is countable when it can be enumerated by a mathematical function 
taking only natural numbers as inputs. 

Corollary 2 (Cantor's Theorem). P(∕) is uncountable. 

Proof. Recall that legitimate mathematical functions are unambiguous: for any single 
input, only a single output can be given. Were a function f capable of enumerating P(∕) 
exhaustively, one could find, for each set X, an n such that f(n) = X. In other words, X 
would appear as item n in the enumeration by f. Now, apply UP to the relation R such that 
R(X, n) if and only if f(n) = X, which is the relation inverse to function f. Uniformity 
requires that there be at least one m such that, for any X, f(m) = X. 
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Since mathematical functions are by definition unambiguous, there is no number m such 
that f(m) = ø and, at the same time, f(m) = ∕. Therefore, no function enumerates P(∕) 
exhaustively. ▪ 
To claim that P(∕) is indecomposable is to claim that P(∕) cannot be carved up 
mathematically into two nontrivial, disjoint portions. To express the idea succinctly, 
intuitionists say that a subset Y of a set X is decidable on X when the appropriate instance 
of TND holds, that is, when every element of X is either a member of Y or not a member of 
Y: 

•

If X is indecomposable, then every decidable subset of X has to be trivial, either ø or X 
itself. 

Corollary 3 (Indecomposability of P(∕)). The powerset of ∕ is indecomposable. 

Proof: Very much the same argument as that employed in Corollary 1. ▪ 
Because P(∕) is indecomposable, it has only two decidable subsets: ø and P(∕).

3.  Quantifiers and Testabililty



Once all agree that no proposition is both true and false, it is readily seen that although the 
scheme v ¬  is invalid, its close cousin ¬ ¬(  v ¬ ) retains validity. Try assuming that p v 
¬p is false for some p. From this assumption, it follows that p must be false, for were p 
true, p v ¬p would also be true. Similarly, ¬p must be false as well. The reason is the same: 
were ¬p true, p v ¬p would be true. But p and ¬p cannot both be false! Therefore, ¬ ¬(  v ¬ 
) is valid and 

•

obtains. Consequently, the familiar rule for dropping double negations ¬ ¬ is not valid, 
since it would lead at once from ¬ ¬(  v ¬ ) to TND. In general, a proposition p and its 
double negation ¬ ¬p are distinct.
The failure of TND and the validity of its double negation have an immediate effect on the 
rules for quantifiers. Let QNE (quantifier negation exchange) be the injunction to 
interchange universal quantifiers with negations in this way: 

•
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Corollary 4 (QNE is invalid) x ¬ does not follow logically from ¬ x . 

Proof: Because TND is invalid, we know that ¬ p (p v ¬ p). If QNE were valid, then p ¬ 
(p v ¬ p) would hold. However, as shown above, ¬ ¬(p v ¬ p) is true, since ¬ ¬(  v ¬ ) is 
valid. Therefore, QNE is invalid. ▪ 
The intuitionist is naturally prompted to consider a weaker version of TND, the principle  
of testability or TEST: 

•

UP also suffices to how that TEST is invalid. 

Corollary 5 (TEST is invalid). ¬ p (¬p v ¬ ¬p) 

Proof: We proceed much as in the proof of Corollary 1, but starting from the assumption 
that TEST holds rather than TND. Construct a relation R between sets X of numbers and 
individual numbers n so that R(X, n) obtains just in case 



•

As before, it follows that for every set X, there is an n such that R(X, n). By UP, there is an 
m such that, for all X, R(X, m). Once again, this is impossible, since R cannot relate both ø 
and ∕ to one and the same number. ▪ 

4.  Mathematical Propositions and Prop

In our justification for UP, the assumption that sets X were sets of natural numbers 
specifically played no special role. One suspects that some manner of uniformity should 
therefore obtain for other nontrivial power sets, other sets of all subsets taken from a given 
set. To take one example, the set Prop of all truth-values is identified, as in conventional 
mathematics, with P({0}), the set of all subsets of the singleton set {0}. This identification 
makes sense, since the propositions or truth-values stand in exhaustive one-to-one 
correspondence with the subsets of {0}: just pair proposition p with the set 

•
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As we shall learn, Prop exerts an intuitionistic fascination much greater than its 
conventional counterpart. 

Corollary 6 (Uniformity for Prop). If each truth-value in Prop is associated by an 
extensional relation R to some natural number n, there is at least one number related by R 
to all elements of Prop. In symbols, p n R(p, n) → n p R(p, n).
 
Proof. It suffices to note that Prop is the result of intersecting all subsets of ∕ with the set 
{0}. Every proposition p (as a subset of {0}) can be obtained by intersecting the set {n : p} 
with {0}. Therefore, if each member p of Prop is related by R to some number n, then 
every subset X of ∕ can be related to a number: first intersect X with {0}, obtain a member 
p of Prop, and then relate p with some n via R. By UP, there is a number m associated in 
this fashion with every subset of ∕. A fortiori every proposition p, as a subset of {0}, is 
related by R with m. ▪ 

Corollary 7 Prop is both uncountable and indecomposable. 



Proof. Employ Uniformity for Prop and the proof ideas from Corollaries 2 and 3. ▪ 
But exactly how large is Prop? In conventional mathematics, Prop is finite. It has precisely 
two elements: ø and {0}. Intuitionistically, Prop contains at least these two members. But, 
as we shall now see, Prop is in reality neither finite nor infinite. For intuitionists as for 
conventional mathematicians, a set X is finite when X is enumerable using the numbers less 
than some particular natural number. X is infinite when the set ∕ can be embedded, via a 
one-to-one function, into X. Even in conventional mathematics, the notions finite and 
infinite so defined are logical contraries, not contradictories: it is possible that sets exist 
that are neither finite nor infinite. We call such sets Dedekind sets. 

Corollary 8 Prop is a Dedekind set. 

Proof. First, since the set of natural numbers less than any given nonzero number is 
countable, Prop cannot be finite, as the preceding Corollary shows. Second, assume that 
Prop contains a member p distinct from both {0} and ø. It follows that p ≠ {0}. Therefore, 
0 p. This means that p = ø. But that contradicts the original assumption that p is distinct 
from both {0} and ø. Hence, Prop contains at least two truth values but cannot have three. 
A fortiori Prop is not infinite. ▪ 
The phenomenon represented by Dedekind sets is nowise uncommon in intuitionistic 
mathematics. There can be uncountably many Dedekind subsets of ∕. Some of these are 
strong contenders for the title "potentially infinite": each has no greatest number but none 
contains all the numbers.
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II.  Mathematical Domains

1.  Natural, Rational, and Real Numbers

Our logical introduction to intuitionism completed, we move into more familiar 
mathematical territory, the domains of the natural, rational, and real numbers. The facts 
codified in the axioms of Dedekind and Peano characterize ∕. Zero is a natural number and 
not the successor S(x) of any other. The successor function is one-to-one: m = n if 
S(m) = S(n). Full induction holds; any mathematical property had by 0 and preserved by S 
is a property of every natural number. For example, it is easy to show by induction that no 
number is the same as its successor. The primitive recursive functions—including addition, 



multiplication, exponentiation, and compositions of them—exist with their standard 
definitions and retain their basic characteristics. A mathematical property or relation R is 
decidable on a set X when, for x, y X, either R(x, y) or ¬ R(x, y); in other words, R satisfies 
TND relativized to X. The equality and less-than relations on ∕ are both decidable, as deft 
use of induction will verify. Incidentally, it is easy to prove, as a consequence of UP, that 
equality cannot be decidable on either P(∕) or Prop.
To say that a set X is nonempty is to deny that it is empty: ¬ x. x X. This is not to say that 
it is inhabited (i.e., that X actually has a member): x. x X. Since QNE fails to be valid, the 
latter is generally stronger than the former. Although mathematical induction holds of ∕, it 
is not well-ordered in the downward sense under ≤. It is false that every inhabited subset of 
∕ has a least member. This least number principle will hold, however, for decidable, 
inhabited sets, as a proof by induction can demonstrate. 

Theorem 1. (∕ is not well ordered). It is false that every inhabited subset of ∕ has a least 
member. 

Proof. Let p be any mathematical proposition and let X be this set of numbers: 

•

X is inhabited since 1 is a member of it. However, if X had a least member m, then m must 
be either 0 or 1. If m = 0, then 0 X and p holds. On the other hand, if m = 1, then 1 is the 
least member of X and 0 X. In that case, ¬ p holds. Therefore, if X had a least member, p v 
¬ p would obtain for every p. Hence, were the least member principle to be true of 
inhabited sets generally, TND would be valid. ▪ 
Intuitionistic theories of the integers Z and the rational numbers Q work out much as one 
would expect. Both = and ≠ are decidable relations on Z and Q; they 
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inherit decidability from the corresponding relations on ∕. As in conventional mathematics, 
there are a number of ways to define the set of real numbers, the numbers of the calculus. 
For instance, they are definable à la Dedekind as Dedekind cuts or à la Cantor as Cauchy 
sequences. Roughly speaking, Dedekind cuts are proper, inhabited subsets of Q that have 
no greatest member and are not bounded below in the usual order on Q. Cauchy sequences 
are infinite strings of members of Q whose terms draw nearer as one goes further out in the 
sequence. In this writing, we think of real numbers as given by Cauchy sequences.

2.  Principles of Choice



With the Axiom of Countable Choice (CC), one can prove that every real number 
determined by a Dedekind cut is also determined by a Cauchy sequence and conversely. 
CC is the statement that when an extensional relation R associates, with every natural 
number n, an x X so that R(n, x), there is a function f, a choice function, with the property 
that f chooses for each n a suitable f(n) X such that R(n, f(n)). In symbols, 

•

To give evidence in support of CC, one calls upon an intuition akin to that earlier 
described. When each n is related by such R to some x in X, there should be a discernible 
principle α by which members of ∕ get associated with elements of X via R. Unlike a set of 
natural numbers, which may well be infinite, individual natural numbers can be completely 
represented within α. Thus, α is conceivable as a rule tagging each n with a definite 
member x n of X and, because R is extensional, it should be true that if n≠m, x n  = x m . 
Therefore, α can be construed as yielding a choice function f taking each number n to an 
allied x n X so that R(n, x n ).
The reader is here cautioned. It is absolutely incorrect to suppose that a choice principle 
similar to CC will hold whenever there are sets X and Y and a relation R such that, for 
every x X, there is a y Y for which R(x, y). No principle of this kind is licensed by the 
quantifier combination in all its occurrences. Contrary to an impression that pages 52 and 
53 of Dummett [1977] might create, the general Axiom of Choice (AC), well known to 
conventional set theorists, is false. In his [1975], R. Diaconescu showed that AC, even for 
small sets, implies TND. 

Theorem 2 (AC is false). It is not the case that x X y Y. R(x, y) ⟹ f x X. R(x, f(x)). 

Proof. Let p be a proposition and X be a set whose sole members are a = {0} {n : n = 1 
and p} and b = {1} {n : n = 0 and p}. Each element of 
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X itself has a member. By AC, there is a function f that chooses a member from each of a 
and b. Given that the members of a and b are natural numbers and equality is decidable on 
∕, there are only two possibilities for the values of f(a) and f(b): either f(a) = f(b) or f(a) ≠ 
f(b). In the former case, p has to hold. In the latter, a must itself be different from b, so ¬ p 
holds. Therefore, TND follows from AC. ▪ 

3.  Real Numbers and Brouwer's Theorem



Familiar basic properties of addition and multiplication on the rational numbers of Q often 
extend to . For example, addition is commutative for real numbers and multiplication 
distributes over addition. But not all the conventional properties of the rationals carry over. 
For example, we prove, as Corollary 11 below, that equality between real numbers is 
undecidable. In addition, as was first noted in Brouwer [1921], not every real number is 
represented by a decimal expansion. Even so, failures in conventional reasoning about 
hardly prevent the development of intuitionistic real analysis. Brouwer showed how to 
exploit the sorts of intuitions earlier encountered—applied to sequences, rather than to sets
—to enrich immeasurably the constructive mathematical theory of .
As we said, real numbers are given by infinite Cauchy sequences. It would then be natural 
to think that some principles governing real numbers should be derivable from principles 
governing infinite sequences. Let Seq be the set of all infinite sequences of natural 
numbers and let R(s, n) relate members s of Seq to numbers n ∕ in strictly extensional 
fashion. Assume that for every s there is an n such that R(s, n). As above, there should be a 
rule α attaching numbers to sequences in accord with R. Sequences from Seq are infinite 
strings that are represented to α. As with P(∕), Seq can be obtained neither from recursive 
generation nor from linguistic specifications of sequences. Furthermore, since R is strictly 
extensional, α should not depend essentially upon the details of linguistic specifications for 
sequences. Hence, the members s of Seq can be represented in α only through the 
numerical values of the terms that comprise their extensions, in the case of s: 
s 1 , s 2 , s 3 , … , s n , … . 
Because rules are finite and not infinite bearers of information, α can contain and operate 
on only the information presented by some finite number of those terms, perhaps the finite 
initial segment of s ending with s m : 
s 1 , s 2 , s 3 , … s m . 
end p.365

It should be on the sole basis of such an initial segment that α attaches an n to s so that R(s, 
n). Moreover, since α can take only finite initial segments of input sequences into 
consideration, if t is another sequence sharing with s exactly this initial segment—that is, 

•

α should attach to t the very same n that it attaches to s. This intuitive reasoning is 
enshrined in the following Neighborhood Theorem (NT). 

Theorem 3 (Neighborhood Theorem). Assume that each sequence in Seq is related by 
extensional R to some natural number. Then, for every sequence s Seq, there is a finite 



initial segment u of s and a number n related to s by R such that any sequence sharing u is 
also related by R to n. ▪ 

Brouwer [1918] contained the intuition behind this justification of NT; Heyting [1930c] 
gave the theorem a fully explicit formulation. NT is as anti-conventional as UP in that, as 
one can easily check, ¬TND follows from it. The word "neighborhood" is a term from 
topology: a topological neighborhood is a collection of members of a set, perhaps numbers 
or sequences, that can be considered approximately the same. Hence, two sequences of Seq 
are approximately the same or "in the same neighborhood," if they share an initial segment. 
NT tells us that infinite sequences of natural numbers can be related to individual numbers 
only by relating them in "clumps" or neighborhoods, so that all sequences which are 
approximately the same get assigned the same number.
In giving a justification for NT, Brouwer treated members of Seq as choice sequences. 
These are sequences of numbers whose successive terms are conceived as chosen by a 
mathematician, one by one, over time in a way that may be relatively unregulated by rules 
or other constraints. In general, all that a mathematician may know of a choice sequence s 
at a time t is the initial segment comprised of those terms of s chosen up to t. Hence, 
because a mathematician can apply a rule to an infinite sequence only at some particular 
time, and in so doing he or she can take cognizance only of the terms of the sequence that 
have been chosen before that time, mathematical rules act on choice sequences by acting 
on finite initial segments. This concept of a sequence whose terms are so chosen that there 
is limited information available about the future behavior of the sequence was first featured 
in Paul du Bois-Reymond's intriguing book Die allgemeine Functionentheorie [1882].
Let X be a set with a topology: an appropriate association, with each element x X, of 
neighborhoods of x. A function f with inputs from X and outputs in ∕ is 
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continuous when, for each n ∕, f(x) = n implies that there is neighborhood of x such that 
f(y) = n for any y in that same neighborhood. It is plain that NT entails that every function 
with inputs from Seq (when initial segments determine neighborhoods) and outputs in ∕ is 
continuous. 
Corollary 9. Every function from Seq to ∕ is continuous. ▪ 
Our interest in Seq is motivated by the close relation between Seq and , between 
sequences and real numbers. In the usual topology on the set of real numbers , the 
neighborhoods of a particular real number r are the finite open intervals containing r—that 
is, sets of the form {q : a < q < b}, where a and b are fixed rational numbers. 

Theorem 4 (Continuity Theorem). Every function from into ∕ is continuous. 



Proof. Let f be a function from into ∕. One can turn sequences of Seq into Cauchy 
sequences in such a uniform fashion β that f will be continuous as a function on , 
provided that the function that takes any infinite sequence s of Seq into f(β (s)) is 
continuous on Seq. But, as we have seen, every function from Seq into ∕ is continuous. 
Hence, the function f(β (s)) is continuous. It follows that f is continuous. ▪ 
This means that, as with Seq, functions from into ∕ have to be given by neighborhoods: if 
a real number r maps, under f, into n, there is an entire neighborhood of r that f also maps 
to the same n.
In a topology, a set is open when it is a union of neighborhoods. Under its usual topology, 
is connected. That is, cannot be the union of any collection of disjoint, inhabited, open 

sets. It follows that every function f from into ∕ is constant: for all real numbers r and s, 
f(r) = f(s). 

Corollary 10 (Constancy). Every function from into ∕ is constant. 

Proof. As we have seen, the values of a function f from into ∕ are determined by 
neighborhoods. Therefore, were f to take on different values in ∕, would have to be the 
union of the disjoint, inhabited that determined those distinct values. Because is 
connected, this is impossible. ▪ 
From the statement that every function from into ∕ is constant, it follows that equality on 
is undecidable and is indecomposable. 

Corollary 11 (Equality is undecidable on ). It is false that for all r and s , either r = s or 
r ≠ s. 
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Proof. Assume that equality is decidable. Then, for any real number r, either r = 0 or r ≠ 0. 
Therefore, there is a function f from into ∕ such that 

•

However, this function cannot be continuous. Although f(0) = 0, there is no open interval 
around 0 such that for every real number s in that interval, f(s) = 0 as well. ▪
With equal ease, one can show that cannot be divided neatly into rational numbers and 
irrational numbers or into any nontrivial pair of exclusive, exhaustive subsets. 
Corollary 12 (  is indecomposable). Every decidable subset of either is empty or includes 
all of . 



Proof. Similar to Corollary 1. ▪ 

In his [1999a], Dirk van Dalen reported on significant and surprising extensions of this 
indecomposability theorem for , among them, that the set of irrational numbers is also 
indecomposable.
Brouwer, in his [1924], claimed that every function mapping the closed unit interval {r : 
0 ≠ r ≠ 1} into is uniformly continuous, a result often called Brouwer's Theorem. A 
function f from to is uniformly continuous when its continuity is registered by a rule that 
calculates uniformly from an open interval i around f(r), an interval j around r that f maps 
into i. From the truth of Brouwer's Theorem, one can infer that every function from to is 
continuous. Intuitionists and other constructivists have established suitable generalizations 
of Brouwer's Theorem for metric spaces other than . A set X with a topology is a metric  
space when the neighborhoods of its elements are determined by the values of a binary 
function or metric specifying an abstract distance between elements x and y of X. 
Naturally, with its interval topology is a metric space when the distance between real 
numbers r and s is the absolute value of the difference r−s. For X a metric space, it is true 
that every function from into X is continuous. For details, the reader is advised to consult 
Bridges and Richman [1987].
Thanks to Brouwer's Theorem, connections between well-structured mathematical domains 
are forged by functions preserving structure—in this case, continuous functions. 
Connections between mathematical domains and logical ones like Prop are also of great 
significance. Clearly, a function f taking X into Prop is a propositional function: f maps 
each x X into a truth-value f(x) in Prop. For example, the function g assigning, to each real 
number r, the proposition "r is 
end p.368

rational" is a propositional function that, one might say, attaches to each real number the 
"extent" to which it is rational. These propositional functions are the characteristic 
functions of subsets; g is the characteristic function for the set of rational numbers from . 
However, looking in the other direction—from logical domains to mathematical ones—
uniformity trims functional connections severely. From the failure of the principle of 
testability TEST, A.S. Troelstra deduced a general result, described in Troelstra [1980], 
from which it follows that every function from Prop or P(∕) into any metric space has to be 
constant.

III.  Formal Logic and Internal Mathematics



1.  Elementary Formal Logic

Here is a cartoon recipe for "creating mathematics" that captures a common 
misconception: to produce mathematics, turn on the mixer of logic, take the needed 
assumptions as axioms, feed them into the mixer, press the button marked "derive," and—
voilà—the proofs of mathematics will pour from the nether end. The idea is that one starts 
with logic, a fixed set of rules for deductive reasoning that establish clear norms for 
thinking rightly about any domain whatsoever. Then, axioms specific to a mathematical 
domain are added to the rules as premises. (How they get "added" and whether this very 
process of "addition" might itself prove a legitimate subject for mathematical study are 
questions not permitted here.) Finally, mathematics is the result of applying the 
derivational principles of logic, first on those premises and, in turn, on their deductive 
consequences. According to this parody of creative thought, the vast array of proofs in any 
particular realm of serious mathematical study arises without muss or fuss as the closure of 
special axioms under the deductive relations specified by a general logic.
Intuitionism will have none of this, but not merely because intuitionistic logic is 
incomplete or because intuitionistic mathematics begins with intuitions rather than axioms. 
In intuitionism there is no logic as caricatured in the cartoon recipe. There is no set of 
normatively binding principles for right thinking that (1) hold sway over all scientific 
domains, including mathematical ones, and (2) can be set up once and for all, before we 
start to pursue mathematics. As for (1), the doctrines of intuitionistic logic are one and all 
statements of mathematics, largely of an unexciting sort. Ultimately, they owe their 
correctness to vivid intuition rather 
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than to pale generality. As we have already seen, the claim that TND fails of validity is, as 
with all other logical results, a theorem of mathematics admitting of mathematical 
demonstration. As for point (2), one learns of logical principles only after the fact, from 
truths and proofs in mathematics. Intuitionists intuit, construct, and reason first, and 
legislate for these activities later.
On the whole, intuitionists do cleave, when they expound or reconstruct proofs, to regular 
forms of mathematical communication and persuasion, to certain repeated patterns in 
thinking. The first researcher to do an acceptably comprehensive job of extracting and 
assembling principles governing that thinking was the intuitionist A. Heyting (1898-1980). 
His [1930a], [1930b], and [1930c] contain formalisms for intuitionistic propositional and 
predicate logic, plus arithmetic and set theory. In honor of this achievement, logicians have 
named the standard formal systems for intuitionistic arithmetic after him: HA for first-
order Heyting arithmetic and HAS for its second-order extension. The beginner can most 



easily discern the main ideas of Heyting's propositional logic in a natural deduction 
presentation like that given by G. Gentzen in his [1935], on which derivability is defined in 
terms of introduction and elimination rules for each connective.
Assume that we have an ordinary propositional language, based on a collection of atomic 
formulas or atoms, and the usual connective signs , v, and → in addition to the connective 
or absurdum. Formulas are recursively defined, as is familiar. The inference rules are 

familiar as well. A conjunction can be introduced by immediate inference from its two 
conjuncts. It can be eliminated by inverting the process and inferring either conjunct from 
it. The rules are as follows, with the introduction rule on the left and elimination rules on 
the right. 

•

The introduction rule for → is that of conditional proof; it allows one to construct 
derivations from assumptions made only for the sake of argument. These assumptions are 
discharged, in the course of the derivation, by employing conditionalization. The 
elimination rule for → is modus ponens. Disjunctions are introduced by inference from 
either disjunct. The elimination rule for disjunction is argument by cases, which also 
allows assumptions to be introduced for the sake of argument and to be discharged later. 
The sign is a formalized stand-in for mathematical absurdity, so there are no introduction 
rules for it. As one would suspect, its elimination rule is as liberal as its introduction rule is 
restrictive; it captures the old notion ex falso quodlibet: 

•
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On this presentation, one thinks of negation ¬ as a defined sign: ¬  is shorthand for the 
conditional → . Logical rules for negation (the ones that are valid, that is) show up as 
derived rules. They include the positive form of reductio ad absurdum: when is derived 
from the assumption , conclude ¬ . That this rule is valid is proven via an easy application 
of ⟹ introduction. The injunction "when is derived from assumption ¬ , conclude " is 
reductio ad absurdum in its negative form. It is not licensed here and cannot be derived, as 
we shall prove in a moment. Intuitionistic predicate logic results from the addition to these 
rules of standard introduction and elimination rules for the quantifiers: generalization and 
instantiation for , plus generalization and instantiation for .
Derivations in the system are finite trees generated by applying introduction and 
elimination rules recursively to assumed formulas. At the trees' leaves stand active and 
discharged assumptions, and at their roots, conclusions from those assumptions. As usual, 



we say that for a set of formulas Γ and a formula , Γ derives (in symbols, Γ ) just in 
case there is a derivation at whose root is and whose undischarged assumptions are 
members of Γ.
Derivation in intuitionistic logic has the pleasant property that any formula derivable from 
ø can be derived "directly," without use of lemmas or subproofs requiring derivations of 
formulas of greater complexity than itself. Indeed, the deductive system has the 
subformula property: when is derivable from Γ, there is a derivation for in which every 
formula that appears is a subformula either of or of some member of Γ. Using the 
subformula property, one can show that the propositional logic is decidable: for every 
formula , either is a theorem or it is not.
Among the most significant and far-reaching results on intuitionistic formal logic is the 
negative translation theorem that K. Gödel reported in his [1933a] and that Gentzen 
discovered independently (Gentzen [1974]). The theorem reveals the existence of an 
inferentially accurate picture, under translation, of conventional formal logic within 
intuitionistic logic. Here, "g( )" stands for the translation of a formula and g(Γ) for the set 
of translations of formulas from Γ.

Translation: If A is an atom but not , g(A) is ¬ ¬A. g( ) is . And g commutes with , ⟹, 
and : 

•

The g-translations of v and are negative, since they call upon the negative connectives ¬ 
and : 

•
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Let c stand for derivability in conventional predicate logic. 

Theorem 5 (Negative translation). Γ c if and only if g(Γ) g( ). 

Proof. Because intuitionistic formal logic is a fragment of its conventional counterpart, it 
follows from g(Γ) g( ) that Γ c . Induction on the structure of derivations for Γ c 
proves the converse. ▪ 



Suitable negative translations, with correlative results linking conventional to intuitionistic 
derivability, have been devised for higher-order logic, formal arithmetic, type theory, and 
versions of set theory formalizable within intuitionistic predicate logic.
As far as elementary semantics for intuitionistic propositional logic is concerned, 
interpretational structures can be defined precisely as in conventional metalogic. A 
structure for a propositional language with Δ as its set of atoms is simple: a function 
taking inputs from Δ and yielding outputs in the set of propositions Prop such that is 
assigned the contradictory proposition. is uniquely extendible to a function * mapping all 
formulas into Prop by taking to mean "and," v to mean "or," and so on. Then, we say that 
satisfies (  ) when * takes into a true proposition. For a collection of formulas Γ, 

satisfies Γ (  Γ) just in case * maps every formula in Γ into a truth. Last, we say that Γ 
entails (Γ ) when every structure that satisfies Γ also satisfies . Here, as elsewhere, the 
formal logic is sound just in case derivability is certified by entailment: Γ always implies 
that Γ . It is complete when derivability tracks entailment, that is, when the converse of 
soundness holds for every Γ and . By induction on derivations, one can easily show that 
intuitionistic propositional logic is sound. Therefore, since TND is invalid, its formal 
version A v ¬A is underivable. Furthermore, we learn that reductio ad absurdum in its 
negative form cannot be a derived rule. Were one allowed to infer from the supposition 
that ¬  leads to , one could derive A v ¬A from a correct derivation of from ¬ (A v ¬A). 
An informal analogue to the latter derivation was our earlier proof that ¬ ¬ (  v ¬ ) is 
valid.
Only under quite special conditions, conditions independent of the vast bulk of 
intuitionistic mathematics, is it provable that propositional logic is complete for single 
formulas or finite sets of them. It is obviously incomplete when it comes to other sets of 
formulas: 

Theorem 6 (Incompleteness). Intuitionistic propositional logic is incomplete for arbitrary 
sets of formulas. 

Proof. For a mathematical proposition p, let A p be a propositional atom so associated with 
it that distinct propositions are associated with distinct atoms. For each such p, consider the 
set of formulas Γ p  = {A p : p} {¬A p : ¬p} {A p v ¬A p } and take Γ to be the union of all 
the individual Γ p 's, so that Γ = {Γ p : p is a mathematical proposition}. The negative 
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translation theorem shows that Γ is consistent because Γ cannot derive . Because Γ 
contains, for each p, the formula A p v ¬A p as a member, the assumption that structure 
satisfies Γ immediately leads to the conclusion that the principle of testability TEST holds. 
Therefore, Γ  , because clearly has no structures that satisfy it. ▪ 



Unless one demands fundamental changes in the interpretations of the connective symbols, 
as in Veldman [1976], intuitionistic formal logic remains incomplete. For this, intuitionists 
are generally thankful: the incompleteness of formal logic is further confirmation of their 
insistence, as in point (2) above, that logic must be ancillary to mathematics.
In his [1932], Gödel proved that intuitionistic propositional logic cannot be finite-valued. 
No truth-table procedure based on calculations from a finite number of truth-values can 
provide an adequate semantics for it. 

Theorem 7. Intuitionistic propositional logic is not finite-valued. 

Proof. Assume that the logic is sound and complete with respect to truth-tables with a 
finite number k of values. Pick out k + 1 distinct atoms: A 1 , A 2 , … A k + 1 , none of which 
are , and take the formula to be a disjunction of all possible biconditionals constructed 
from them of the forms 

•

where i and j are different and less than k + 2. If propositional logic is complete with 
respect to truth-tables with k truth-values, is a derivable formula, since at least two of the 
atoms A i would have to be assigned the same truth-value in any structure. However, by 
constructing Kripke models (see the next section) and using the relevant soundness 
theorem, one can show that is underivable. ▪ 

2.  Models and Modality

Conventional mathematical means can prove the completeness of intuitionistic 
propositional and predicate logic with respect to Kripke models, interpretational structures 
defined over partially ordered sets. Let P be a set partially ordered by ≤, and let α and β be 
elements or nodes of P. A Kripke model K (after [Kripke 1965]) over P is given by 
specifying a relation α (read 'α forces ') between elements of P and formulas. Attached 
to each node α of K is an inhabited domain D α in such a way that when α ≠ β, D α D β . 
For present purposes, we assume that 
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suitable names a for the elements of the domains D α have been adjoined to the original 
language; the forcing relation is defined for sentences in this extended language. For atoms 
A which are not , α A is defined in any way you like, provided only that when α A and 



α ≠ β, β A. One says that, for atoms, forcing is required to be persistent. Understandably 
enough, is never forced at a node—at least on the standard approach to Kripke models. 
For more complicated formulas, we say that 

α ψ just in case α and α ψ 
α v ψ just in case either α or α ψ 
α → ψ just in case, for any β ≥ α in P, if β , then β ψ 
α x just in case there exists a D α such that α (x/a) and 
α x just in case, for any β ≥ α and a D β , β (x/a). 
Last, ¬  is defined as ⟹ , so we deduce that 
α ¬  just in case, for any β ≥ α, β fails to force . 

We say that α Γ if α forces every member of Γ. Γ K-entails (in symbols, Γ K ) whenever, 
for any Kripke model K and node α in K, if α Γ, then α . A proof by induction on 
formulas shows that forcing is persistent for all formulas : if α and α ≠ β, then β 
When explaining Kripke models, logicians often employ a metaphor of states of 
mathematical information. Imagine yourself trying to solve a particular mathematical 
problem. The mathematically possible states of information you can enter while searching 
for a solution can be conceived as the nodes of a set P partially ordered by a relation ≠ of 
"at least as much information" determined by the problem under consideration. When 
nodes α and β stand in the relation α ≠ β, then β is thought of as a possible state of 
information relative to α: you might, in investigating your problem further, gain 
information sufficient to take you from state α to state β. The atoms (other than ) that get 
forced at α are those simplest propositions that are verified from the information available 
at α. Forcing is persistent because, once you have gained some information, that 
information is never lost to you. The clauses in the definition of forcing are reminders that 
you can, with information α, verify a conjunction ψ when you can verify both its 
conjuncts. The only way to verify a disjunction in α is to learn, in α, that one or the other of 
its disjuncts is verified there. The verification of a conditional ⟹ ψ in general requires 
more information: that no matter when one gains added information β sufficient to verify , 
that extra information should also verify ψ, or β ψ. This is required if the information that 
⟹ ψ, once gained, is to persist.
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Familiar methods from conventional mathematics yield the result that intuitionistic logic is 
sound and complete with respect to Kripke models. 

Theorem 8 (Kripke Soundness and Completeness). Γ if and only if Γ K . 



Proof. Soundness is proved using induction on derivations. Completeness can be proved 
conventionally by adapting Henkin's proof to Kripke models. This and related 
completeness results are available from Troelstra and van Dalen [1988]. ▪ 
Strictly intuitionistic means suffice to prove that intuitionistic propositional logic has the 
finite model property: if is underivable, there is a finite Kripke model and a node in it that 
fails to force —in order words, there exists a finite countermodel to . 

Theorem 9 (Finite Model Property). When is not derivable in intuitionistic propositional 
logic, then has a finite Kripke countermodel. 

Proof. The interested reader can find a proof in Troelstra and van Dalen [1988]. ▪
Research into partially ordered models for intuitionistic logic was suggested by another 
translation proposed by Gödel. This time, propositional logic proves to be the exact replica 
of a special fragment of Lewis's modal system S4, a system which features the logical sign 
□ for alethic modality and requires that □  always be equivalent to □□ . Gödel's 
translation, here denoted 'm,' accepts formulas in the language of propositional logic and 
outputs formulas in the language of the Lewis calculus. The translation m is so defined 
that, for any atom A, m(A) is □A. Then, m commutes with and v, and m(  ⟹ ψ) is the 
modal formula □(m( ) ⟹ m(ψ)). In effect, the intercalation of the modal operator □ into a 
translated formula enforces the persistence property required by Kripke forcing. 

Theorem 10 (Modal Translation). Γ if and only if m( ) is derivable from m(Γ) in S4. 

Proof. The "only if" direction yields to proof by induction on derivations. Van Dalen 
[1994] contains a proof of the "if" direction that uses semantical ideas acceptable to 
intuitionists. ▪ 

Gödel [1933b] presented a modal translation alternative to that defined above and asserted 
the "only if" direction of the theorem. Gödel there conjectured the other direction of the 
theorem as well. It was first proved, in McKinsey and Tarski [1948], by algebraic means. 
The articles in Shapiro [1985] explore extensions to formalized intuitionistic arithmetic 
and set theory of the modal translation for propositional logic.
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3.  Internal Mathematics: Realizability and Computability



In justifying UP and NT, we insisted that rules for computation accompany certain 
mathematical operations. This may suggest that concerns of intuitionistic mathematics 
stand in proximity to concerns of computability theory. Realizability interpretations of 
formalized intuitionistic logic and mathematics provide partial confirmation for the 
suggestion. Logician S. Kleene was the first to devise such an interpretation; the original 
publication was his [1945]. In discovering realizability, Kleene was not inspired so much 
by the markedly computational air of Brouwer's intuitionism as by D. Hilbert's idea that 
quantified statements be treated finitistically as expressing "incomplete communications."
As with Kripke models, Kleene's realizability can be glossed using a concept of 
information: effective information encoded as a natural number and conveyed by a 
mathematical claim. For an atomic formula (which, in formal arithmetic, will be 
decidable) a number n represents the information conveys or realizes just in case is true. 
For conjunctions, n realizes ψ if n is of the form 2m × 3p, where m realizes and p realizes 
ψ. A conditional ⟹ ψ is realized by n just in case n encodes a Turing machine that, if m 
realizes , takes m as input, processes for a time, and outputs a number realizing ψ. In other 
words, a realizing number for a conditional denotes a Turing-computable function 
converting realizers for its antecedent into realizers for its consequent. Reflecting the 
constructive character of intuitionistic arithmetic, n is said to realize x (x) if and only if n 
is 2m × 3p and m realizes (x/ p), where p is the formal numeral denoting p. Therefore, a 
realizing number for an existential sentence literally contains, as a coded component, a 
realized instance of that sentence. A number n realizes x (x) if and only if n encodes a 
Turing machine computing a total recursive function such that, for any m, the output of the 
function on m realizes (x/ m).
In this way, Kleene explained how to associate with each formula of Heyting arithmetic a 
set of numbers, perhaps empty, that realize . He then proved that realizability gives a 
sound interpretation of that formal system: is derivable in the formal arithmetic HA only 
if there is a natural number realizing . Since 1945, a panoply of realizability 
interpretations have been devised not only for elementary arithmetic but also for higher-
order arithmetic, type theory, set theory, and higher-order logic. Beeson [1985] contains 
many of the technical details. In Hyland [1982], Kleene's original conception, extended to 
a higher-order type theory, received an attractive formulation in category-theoretic terms.
Formal versions of many, but not all, results characteristic of Brouwerian intuitionism are 
validated on Kleene's interpretation. When the original realizability interpretation is 
applied to higher-order systems, UP, CC, and NT, together with their consequences, are 
seen to be realized. This yields a consistency 
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proof for them. But there is more: intuitionistic logic provides an internal logic, and the 
mathematics that gets realized provides an internal mathematics for the realizability 



interpretation. This means that the logic and mathematics are sound under the 
interpretation, and can capture expressively and treat deductively metatheoretic or 
'external' properties of the interpretational scheme in surprisingly simple and salient ways. 
In short, facts of pure intuitionistic mathematics become, under realizability, facts of 
applied computability theory. For example, the falsity of TND under realizability registers 
the fact that the halting problem is unsolvable, that no Turing machine can decide for every 
e which of these holds: 

machine e eventually halts when e is input 

or
 
machine e never halts when e is input. 

Interpreted using realizability, the Neighborhood Theorem NT becomes a close relative of 
the theorem on recursive functionals proved in Kreisel et al. [1959].
Yet there are features of Kleene's realizability that are not intuitionistic. These are captured 
by formal statements that hold under realizability but are not expressions of intuitionistic 
reasoning. Principal among these are Church's Thesis (to be distinguished from the 
familiar Church-Turing Thesis) and Markov's Principle. The former is the claim that every 
function from ∕ into ∕ is total recursive. The latter asserts that if two real numbers are 
unequal, then they are at least a positive rational distance apart. The former is inconsistent 
with NT, since a Turing machine for generating a sequence cannot be constructed reliably 
from a finite initial segment of the sequence alone. Although nonintuitionistic, these 
elements of realizability mathematics possess some attractive features. For example, 
Church's Thesis and Markov's Principle together suffice to show that there are no 
nonstandard models of arithmetic in the realizability interpretation: up to isomorphism, 
there is at most one set-theoretic structure satisfying the axioms of the first-order theory 
HA [McCarty 1988].
Once taken, it is not a large step from thinking of numbers encoding abstract programs and 
realizing formal expressions to thinking of actual computer programs performing a similar 
function. A realizing number is replaced by a text for a program in a suitable programming 
language; the formal expression that is realized then becomes a specification; and the 
program; a routine that demonstrably meets the specification. An ordinary metatheoretic 
proof that every theorem of an intuitionistic formal system is realized now becomes a proof 
that every theorem of the system is a specification for some program and that, from a 
formal proof that the specification can be met, a program can be extracted. Such an idea—
that computer programs can be extracted automatically by "compiling" intuitionistic proofs
—has stimulated a vigorous research program at the interface between 
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mathematical logic and theoretical computer science, a prominent representative of which 
has been the series of the computer systems designed by R. Constable and coworkers 
[1986].

4.  Internal Mathematics: Topologies and Toposes

A Boolean algebra is an inhabited set with operations that obey the laws of conventional 
propositional logic; its operations, called "meet," "join," and "complement" act in perfect 
accord with the tautologies governing the logical words "and," "or," and "not," 
respectively. Boolean algebras, therefore, make up a class of interpretations for theories in 
conventional propositional logic, as explained in Rasiowa and Sikorski [1963]. In 
analogous fashion, a Heyting algebra is an inhabited set with operations of meet, join, 
complement, and implication that obey the principles that intuitionistic propositional logic 
lays down for the logical words "and," "or," "not" and "if … then," respectively. In 
conventional mathematics, every power set P(X) is a Boolean algebra under the operations 
of intersection, union, and complement. In intuitionistic mathematics, every power set is a 
Heyting algebra but not a Boolean algebra. On either approach, the collection of open sets 
of a topology comprise a Heyting algebra. Therefore, as reported in M. Stone [1937] and, 
independently, in A. Tarski [1938], topological spaces afford natural interpretations for 
intuitionistic propositional logic. Using conventional mathematics as a metatheory, J. 
McKinsey and Tarski proved in their [1948] that the logic is sound and complete with 
respect to interpretations over the usual topology on .
In these structures, the invalidity of TND registers internally the fact that the real numbers 
form a connected set. D. Scott, beginning with his [1968], showed how to construct sound 
topological interpretations for formal systems of intuitionistic analysis and described an 
interpretational structure validating Brouwer's Theorem. One can view Kripke models as 
topological interpretations by taking a neighborhood of a node α to be a set of nodes X 
containing α that is upward closed: if β X and β ≠ γ, then γ X. Since every Boolean 
algebra is a Heyting algebra, not all topological interpretations have intuitionistic 
mathematics as their internal mathematics; some yield Boolean-valued models of 
conventional mathematics.
A topos is a category, a mathematical structure composed of objects and maps between 
objects, that satisfies axioms sufficient to guarantee, among other things, that every topos 
contains objects exhibiting the intuitionistic logical behavior of power sets P(X). Hence, in 
a topos, the power objects P(X) give rise to topos-internal Heyting algebras, thus affording 



interpretations of intuitionistic logic and mathematics in strictly categorical terms, as 
explained in Bell [1988] and MacLane 
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and Moredijk [1992]. W. Lawvere may have been the first to think of categories with extra 
structure as representations of intuitionism; see his [1976], for example. It turns out that 
higher-order intuitionistic logic is generally the internal logic of toposes. Researchers have 
also discovered that topological, Kripke, and realizability interpretations of intuitionistic 
systems can be incorporated in a natural fashion within the topos-theoretic viewpoint. 
Nowadays, this subject receives a goodly amount of well-deserved attention from category 
theorists, logicians, and computer scientists concerned with consistency and independence 
results, and topos theory often sheds great light on intuitionistic concepts and their formal 
representations.

IV.  Concluding Remarks

1.  Intuitionism and Anti-realism

In its bearing upon intuitionism and logic, philosophical anti-realism is supposition or 
conjecture rather than established fact. It is the supposition that a particular kind of 
scientifically and philosophically respectable semantical framework can be constructed for 
proving intuitionistic logic correct and conventional logic incorrect. Anti-realism requires 
the existence of a semantics S sufficient at least for interpreting standard formal languages 
and manifesting several properties to which M. Dummett has repeatedly directed the 
attention of philosophers (see Dummett [1977], [1978] and [1991]). These properties are 
such that if S possesses them, conventional mathematicians have always been wrong to 
think that conventional logic, including TND, is cogent and that mathematical statements 
generally carry the meanings they think them to have. Here are the properties. First, S 
should support a rigorous proof, acceptable to intuitionists as well as conventional 
mathematicians, that Heyting's intuitionistic predicate logic is sound and complete relative 
to S. (As is plain from the foregoing, this implies that S cannot be any simple variant on 
Kripke models.) Second, to guarantee the desired completeness, it is necessary to show that 
S invalidates TND. For that purpose, truth according to S is assumed to obey a recognition 
condition: any semantically competent speaker must be able in principle, when a sentence 
obtains in S, to recognize that thus obtains. When expresses a statement of pure 

mathematics, recognition that is true is to consist in the provision of a proof of . Third, 



the interpretations that S attaches to sentences are to express their actual meanings, and 
sentences are to be valid according to S just in case they are rightly seen as valid. This 
assumption imposes the further restriction that if 
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one can prove that TND is invalid according to S, then TND is invalid simpliciter. It would 
seem, then, that truth in S should exhibit many of the features one would ordinarily expect 
of a proper notion of truth. For example, truth in S should commute with disjunction: v ψ 
is true according to S just in case either is true according to S or ψ is.
It is sometimes imagined that the conjectured anti-realistic argument for the invalidity of 
TND will proceed along roughly the following lines. Let RH stand for Riemann's 
Hypothesis, that the real parts of all nonreal zeros of the zeta function have value 1/2. 
Today, RH is an open mathematical problem: no one is in a position either to prove RH or 
to prove its negation. Now, assume that TND is valid. The third property of S listed above 
implies that TND is valid according to S. RH makes a meaningful mathematical claim; 
thus RH v ¬RH is true according to S. Since truth in S commutes with disjunction, either 
RH is true in S or ¬RH is. However, because S satisfies the recognition condition 
mentioned in the second property, if RH is true in S, then competent speakers should be 
able to prove that fact. Hence, RH must be proven. On the other hand, if ¬RH obtains, then 
competent speakers will be able to prove that. Hence, RH should have been disproven. 
Since RH is neither proven nor disproven, TND is invalid.
The steps in this argument trace one part of the philosophical distance that an anti-realist, a 
proponent for an imagined semantics like S, has yet to travel. He or she must maintain 
simultaneously the recognition condition and that truth à la S commutes with disjunction. 
So, if a competent speaker is able to recognize in principle that v ψ is true, then v ψ will 
have to be true in S; and since truth in S commutes with disjunction, either the competent 
speaker can recognize that is true or she can recognize that ψ is true with respect to S. 
And this seems false intuitively. Disjunction, when employed, for example, to make 
indicative statements in the past tense, would likely lose a great deal of its power were 
speakers obliged to verify, even in principle, one or the other of the disjuncts of every 
disjunction they assert about the past.
Some investigators have supposed that the clauses of a mathematical definition that first 
appeared in Heyting [1934] would form a nucleus for anti-realistic semantics S. Here, let e 
and f stand for pieces of mathematical evidence: proofs, constructions, calculations, or 
numbers. Heyting's definition can be understood as setting down conditions on which 
pieces of evidence, or abstract representations of them, witness or confirm mathematical 
sentences. It is presumed that evidence can be analyzed or decomposed into subsidiary 
pieces of evidence: that any evidence e contains component pieces of evidence e 0 and e 1 , 
obtainable effectively from e. One also takes the natural number 0 to be a piece of 



evidence comparable with other evidence so that e = 0 is a decidable predicate of e. Last, 
pieces of evidence e are supposed capable of accepting evidence f as input and outputting 
evidence e(f), the result of applying e to f.
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Under those assumptions, the clauses that follow express the relevant portions of Heyting's 
definition. Evidence e is said to witness a disjunction v ψ whenever e 0  = 0 and e 1 

witnesses , or e 0 ≠0 and e 1 witnesses ψ. This guarantees that if a disjunction is witnessed, 
one can tell, via simple operations on the evidence, which of its disjuncts is also witnessed. 
Next, e witnesses ¬  when, if f is evidence witnessing , e(f) would be evidence that 
witnesses . If one insists, as seems perfectly reasonable, that there be no evidence for , 
then e witnesses ¬  just in case there is no witness for . Finally, e is evidence witnessing 
⟹ ψ if and only if, when f witnesses , e(f) witnesses ψ: evidence for a conditional converts 
evidence for its antecedent into evidence for its consequent.
Difficulties crowd in upon the suggestion that, in the desired S, a sentence be true if there 
exists evidence witnessing in the manner just described. For example, it seems legitimate 
to ask that the evidence be encoded as natural numbers; that e 0 and e 1 be represented by 
the usual primitive recursive projection functions applied to e; and that e(f), for e and f 
natural numbers, be the result, if any, of running the Turing machine with index e on input 
number f. Barring extra specifications, these requirements can be seen to yield a perfectly 
reasonable interpretation of Heyting's definition; indeed, it is the Kleene realizability 
interpretation given above, restricted to propositional logic. However, with conventional 
logic, one can prove that, for in the formalism of propositional logic, e witnesses under 
this interpretation if and only if is true conventionally. In particular, one can show that 
every propositional instance of TND is thus witnessed. Therefore, if S is to feature the 
clauses of Heyting's definition as the centerpiece of its theory of truth, some further 
mathematical rider has to be added, a rider that would block the above interpretation. 
Given that intuitionistic set theory, together with UP and Brouwer's Theorem, are 
consistent with the truth of every instance of TND in the language of set theory [McCarty 
1984], it would seem that this rider would need to be of considerable mathematical 
strength.
However, one need not suppose that the internal workings of S are built on Heyting's 
design to come up with a compelling argument to the conclusion that an anti-realist's desire 
for the semantics S will remain unfulfilled if S has the properties listed at the start of this 
section. Here is a sketch of such an argument. To begin with, one can insist that for each 
sentence , there are mathematical claims Γ and a stable assertion γ such that v ¬  obtains 
just in case γ is derivable from Γ using predicate logic, that is, Γ γ. Here, "stable" means 
that Γ γ just in case Γ ¬¬γ This insistence can be made intuitively plausible. Should the 
formal deductive apparatus of predicate logic not itself be powerful enough to discover the 



relevant circumstances under which v ¬ is recognized to be true, there should certainly 
be information Γ such that, were we to supply that information, the apparatus plus the 
information Γ would be able to discover those circumstances.
end p.381

Now, as a matter of logic, ¬ ¬(  v ¬ ) is valid. It follows that there cannot fail to exist 
circumstances under which v ¬  is recognizably true. Therefore, predicate logic plus 
information Γ cannot fail to detect this fact, that is, ¬¬ (Γ γ). The soundness theorem for 
Heyting's predicate logic with respect to S now implies that the formal argument with 
premises Γ and conclusion γ cannot fail to be valid in S. Since validity in S is to be 
coextensive with simple validity, the argument with premises Γ and conclusion ¬¬γ will be 
valid. Further, given that the S-completeness theorem for Heyting's predicate logic is 
provable, Γ ¬¬γ. Because γ is stable, as described above, γ will itself be derivable from Γ, 
or Γ γ. But γ being derivable from Γ marks the obtaining of circumstances under which v 
¬ is recognizably true. Therefore, v ¬  holds and, since was arbitrary, TND is valid. 
Therefore, the anti-realist's suppositions—that semantics S be sound and complete, that 
truth in S always be recognizable, and that TND fail—seem jointly inconsistent.

2.  What Weakness?

Our tour is at an end. It is sad that so much is left unexplored: intuitionistic algebra, 
measure and integration, projective geometry, large cardinals in set theory. Intuitionistic-
type theory and its categorial interpretations offer great benefit to computation theory and 
theoretical computer science. Higher-order intuitionistic logic reigns supreme as the 
internal logic of toposes. No area of modern mathematics has proven resistant to 
intuitionistic incursion; despite initial skepticism, as expressed in G. Hellman [1993], even 
the foundations of quantum mechanics begin to yield to constructivistic treatment, as F. 
Richman and D. Bridges have shown in their [1999]. There are also those structures open 
to intuitionistic investigation but closed to conventional study. For example, in the Kleene 
realizability structure for set theory, there exist natural models of Church's λ calculus: 
nontrivial sets X standing in one-to-one correspondence with the collection of all functions 
taking X into X. This is conventionally impossible, thanks to the conventional form of 
Cantor's Theorem, but intuitionistically, it affords a lively mathematical prospect.
The efficacy of the negative translation for set theory, even set theory with large cardinals, 
suggests that any evidence of a first-order sort for conventional set theory would transfer, 
under negative translation, to intuitionistic set theory. In these respects, intuitionistic 
mathematics shows itself not as a system of complete renunciation, but as standing on a 



scientific par with its conventional cousin. These features of intuitionism also draw the 
teeth of the old objection that intuitionism is somehow scientifically unsatisfactory because 
its mathematics is disastrously weak. Hilbert lodged the most famous such objection in his 
[1927], 
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where he wrote, "Taking the principle of excluded middle from the mathematician would 
be the same, say, as proscribing the telescope to the astronomer or to the boxer the use of 
his fists" (p. 476). Surely this cannot be a complaint about the fact that TND is underivable 
in the intuitionistic logic. For TND is provably invalid. One could not reasonably maintain 
that conventional logic is weak because it fails to derive, for example, the invalid principle 
v ψ. Therefore, depriving the intuitionist of TND is not like depriving the astronomer of a 

telescope, but like depriving the aviator of a diving bell.
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11. Intuitionism Reconsidered
Roy Cook 



1.  Why Reconsider?

The debate between intuitionists and classical logicians is fought on two fronts. First, there 
is the battle over subject matter—the disputants disagree regarding which mathematical 
structures are legitimate domains of inquiry. Second, there is the battle over logic—they 
disagree over which algebraic structure correctly codifies logical consequence. In this 
chapter the emphasis is on the latter issue—I shall focus on what the correct (formal) 
account of correct inference might look like, and, given such an account, how we should 
understand disagreements regarding the extension of the logical consequence relation.
Intuitionism comes in two or three major forms: L. E. J. Brouwer's Kantian metaphysics 
(e.g., [1948]), Arend Heyting's semantic elucidation (or perhaps corruption) of Brouwer's 
view (e.g., [1931]), and Michael Dummett's verificationist stance (e.g., [1975]). Although 
each rightly deserves the title "intuitionism," it is important to note that there is more than 
one view on the table. This noted, however, it is useful to isolate what they have in 
common (i.e., those aspects of the various views that justify the common nomenclature). 
The reader interested in the nuts and bolts of particular variants of intuitionism is 
encouraged to read Carl Posy's "Intuitionism and Philosophy" and David McCarty's 
"Contemporary Intuitionism," chapters 9 and 10 of this volume. The most striking 
characteristic that unites these views and distinguishes them from classical rivals is their 
failure to accept certain formulas (or schemata), such as the law of excluded middle, as 
logical truths.
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On the face of it, then, the debate seems simple: intuitionists are proposing as correct a 
logic that is distinct from the more widely accepted classical formalism, and we need only 
determine which account is correct. Once we scratch the surface a bit, however, we will 
see that determining where the battle lines of this conflict should be drawn, and even 
whether there is a conflict at all, is more complicated than it at first appears.
In the next two sections of the chapter, two typical sorts of arguments for intuitionistic 
logic will be examined. We will then examine exactly what is at stake when one provides a 
logic as an account of logical consequence. Two ways of understanding the debate, both of 
which imply that intuitionists and classical logicians are not engaged in the same project, 
will be rejected. This will provide a set of default assumptions that must be adopted if the 
intuitionist and the classical logician are giving accounts of the same phenomenon. In the 
final two sections I will suggest taking a pluralist stance with regard to the debate between 
intuitionists and classical logicians.1 Instead of being caught in a dilemma, whereby we are 
forced to choose between two rival logics, we are instead presented with two equally 
legitimate codifications of logical consequence. As a result, intuitionistic logic is not in 



opposition to classical logic, but instead is an alternative (yet, in a sense, still incompatible) 
formalism that stands alongside it.

2.  The Epistemic Argument for Intuitionistic Logic

The first type of argument for intuitionistic logic that we will consider comes in three parts. 
First, the intuitionist proposes certain epistemic principles that constrain truth. In doing so, 
the intuitionist of the Brouwer/Heyting school will usually refer to the essentially mental 
character of the subject matter of mathematics: 
Even if they should be independent of individual acts of thought, mathematical objects are 
by their very nature dependent on human thought. Their existence is guaranteed only 
insofar as they can be determined by thought. They have properties only insofar as these 
can be determined by thought. But this possibility of knowledge is revealed to us only by 
the act of knowing itself. (Heyting [1931]: 53) 
An intuitionist of the more recent Dummettian variety will be concerned with issues of 
meaning. Dummett argues that the realist position of the classical logician 
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… violates the principle that use exhaustively determines meaning; or, at least, if it does 
not, a strong case can be put up that it does, and it is this case which constitutes the first 
type of ground which appears to exist for repudiating classical in favour of intuitionistic 
logic for mathematics. For, if the knowledge that constitutes a grasp of the meaning of a 
sentence has to be capable of being manifested in actual linguistic practice, it is quite 
obscure in what the knowledge of the condition under which a sentence is true can consist, 
when that condition is not one which is always capable of being recognised as obtaining. 
(Dummett [1975], p. 106) 
Nevertheless, both lines of thought lead to an equation of the truth of a proposition with the 
existence of a proof.2 
The intuitionist then argues that certain classical laws, such as excluded middle, and certain 
rules, such as classical reductio, are dubious because they are, from an intuitionistic 
perspective, equivalent to overly optimistic claims about our epistemic powers. Heyting 
writes: 
Does the law of excluded middle hold …? When we assert it, this means that for any 
proposition A we can either prove A or derive a contradiction from a supposed proof of A. 
Obviously we are not able to do this for every proposition A, so the law of excluded middle 
cannot be proved. If we do not know whether A is true or not, we better make no assertion 
about it. ([1974]: p. 87) 



Heyting is not asserting the existence of some explicit counterexample to excluded middle 
(nor would any other intuitionist), since in intuitionistic propositional logic the negation of 
any classical logical truth leads to absurdity.3 Rather, he is claiming that, from the 
epistemic stance of the intuitionist, the inference in question makes an unjustified (and 
possibly unjustifiable) claim about the existence of certain sorts of construction (i.e., the 
law of excluded middle, for the intuitionist, entails global decidability). Along similar lines, 
Michael Dummett writes: 
Brouwer's reform of mathematics thus led to a revision of the most fundamental part of 
logic itself, sentential logic. "Or" was to be explained by saying that a proof of "A or B" 
must be a proof either of "A" or of "B," and "if" by saying that a proof of "If A, then B" is a 
construction which we can recognise as transforming every proof of "A" into a proof of 
"B." These formulations, together with an axiomatic formalisation of intuitionistic logic, 
were attained by Heyting on the basis of Brouwer's practice. … It is evident that many 
laws of classical logic, such as the law of excluded middle and its 
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generalisation "A or (if A then B)"4 fail on the intuitionistic interpretation of the logical 
constants. (Dummett [1980], p. 612) 
Finally, once the distinctly classical inferences have been disposed of, these same 
epistemic principles are used to justify the standard rules of intuitionistic logic.5 
In the discussion below, our target will be intuitionistic logic motivated by this sort of 
epistemic worry. There is another much discussed argument for intuitionism, however, so a 
brief look at it, and at why we will discard it, is in order.

3.  The Proof-theoretic Argument for Intuitionistic Logic

The second argument for intuitionistic logic is motivated by an inferentialist view of 
meaning—the idea that the meaning of various bits of language is to be explained in terms 
of the rules governing reasoning with those bits of language. Arthur Prior [1960] famously 
objected to (a naive version of) inferentialism by formulating the tonk operator: 

•

If we assume that the consequence relation is transitive, then it is easy to demonstrate that 
these rules allow us to derive any formula.



In response, inferentialists, and especially intuitionists, have proposed various constraints 
on the form that such meaning-constitutive rules can take. Michael Dummett calls one such 
constraint "harmony," and writes: 
The best hope for a more precise characterisation of the notion of harmony lies in the 
adaptation of the logicians' concept of conservative extension. Given a formal theory, we 
may strengthen it by expanding the formal language, adding new primitive predicates, 
terms, or functors, and introducing new axioms or rules of inference to govern expressions 
formed by means of the new vocabulary. 
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In the new theory, we can prove much that we could not even express in the old one; 
but … we can prove in it no statement expressed in the original restricted vocabulary that 
we could not already prove in the original theory. ([1991], p. 251) 
As a result, Dummett requires that the rules for each logical operator be conservative with 
respect to the other logical operators (and their rules). In the standard natural deduction 
presentation of classical logic, however, the rules for negation: 

•

fail to be conservative. For example, they allow us to prove (Φ→Ψ) V (Ψ→Φ), which is 
not provable from the standard rules for disjunction and implication alone. On the other 
hand, the intuitionistic rules, obtained by jettisoning classical reductio (CR) while 
retaining negation introduction (¬I) and elimination (¬E), are conservative.
The idea of harmonious introduction and elimination rules providing the meanings of 
connectives traces back to Gerhard Gentzen's proof-theoretic work, where he notes: 
The introductions represent, as it were, "definitions" of the symbols concerned, and the 
eliminations are no more, in the final analysis, than the consequences of these definitions. 
This fact may be expressed as follows: In eliminating a symbol, the formula, whose 
terminal symbol we are dealing with, may be used only "in the sense afforded by the 
introduction of that symbol." ([1964], p. 295) 
Interestingly, Gentzen is referring not to intuitionistic logic here, but to the rules for both 
intuitionistic and classical logic.
In Gentzen's development of the sequent calculus, the rules for both classical and 
intuitionistic negation take the form 

•

[Δ, Γ sequences of formulas, A a formula].6 



The difference between intuitionistic logic and classical logic is that in the former (but not 
the latter) we are restricted in having at most one formula to the right of the inference 
arrow  in each sequent. Gentzen's rules for negation in either 
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system are conservative over the (rules for the) other connectives. As a result, the sequent 
calculus rules, with multiple formulas allowed to the right of the inference arrow, provide a 
harmonious codification of classical logic.7 The requirement that logical rules be 
harmonious and/or conservative does not, therefore, weigh more in favor of intuitionistic 
logic as opposed to its classical rival.8 As a result we will constrain our attention in the 
remainder of this chapter to the epistemic argument. (For a much more in-depth 
examination of these issues, see Dag Prawitz's "Logical Consequence from a Constructive 
Point of View," chapter 22 in this volume.)

4.  Logics and Logical Consequence

Before examining which of two distinct logics is correct, or whether in some sense both 
can be legitimate, a bit more needs to be said about what makes a logic "legitimate" and 
what a logic is meant to provide. Logics are algebraic structures meant to codify the notion 
of logical consequence. Thus, it is natural to start with a description of logical 
consequence, and Alfred Tarski provides one: 
Consider any class Δ of sentences and a sentence Φ which follows from the sentences of 
this class. From an intuitive standpoint it can never happen that both the class Δ consists 
only of true sentences and the sentence Φ is false. Moreover, since we are concerned here 
with the concept of logical, i.e. formal, consequence, and thus with a relation which is to 
be uniquely determined by the form of the sentences between which it holds, … the 
consequence relation cannot be affected by replacing the designations of the objects 
referred to in these sentences by the designations of any other objects. ([1936], pp. 414-
415) 
There are two ideas at work in this gloss. First, if Φ follows from Δ, then the truth of (all 
members of) Δ (in some sense) guarantees the truth of Φ. Second, the logical consequence 
relation is independent of the particular nonformal content of the 
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premises and conclusion—in other words, varying the reference or meaning of nonlogical 
terms, predicates, and such cannot affect whether the conclusion is a logical consequence 
of the premise. Thus:

LC: A sentence Φ is a logical consequence of a set of sentences Δ iff the truth of every 
member of Δ guarantees the truth of Φ, and this guarantee is in virtue of the logical form of 
Φ and the members of Δ. 

Intuitionistic and classical logicians have the same goal in mind: to provide a mathematical 
structure (a logic) that codifies this notion of "logical consequence." One provides a logic 
for a natural language discourse D by following something like this recipe: 

1. 
 
 We construct a formal language L out of strings of mathematical symbols. 

2. 
 
 We distinguish some subset LV of L, the logical vocabulary of L. 

3. 
 
 We construct a translation function T: LV→D mapping the logical vocabulary of L to 
appropriate bits of D.9 

4. 
 
 We define a relation ⟹ whose first argument is a subset of L and whose second 
argument is a member of L.10 

A logic L, ⟹  (with LV and T) is judged by how well it matches up to logical consequence 
in the natural language in question. Someone who believes that there is a single logic 
codifying logical consequence in D will be searching for an L, ⟹  (and T) such that the 
correctness principle 

CP : For any function I: L→D such that I agrees with T on LV: 
For all Φ L Δ L: 
I(Φ) is a logical consequence of I(Δ)11 iff Δ⟹Φ. 
holds.

Precise definitions of logical monism and logical pluralism are now straightforward: 
LM: There is exactly one L, ⟹  such that CP holds. 
LP: There is more than one L, ⟹  such that CP holds. 
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There are many ways to obtain an uninteresting pluralism, for example, by varying the 
formal language L.12 This sort of trivial pluralism is not my interest here, so I assume that 
the language is fixed. In particular, I shall assume that the formal language in question is 



the standard propositional one. This constraint provides a ready means for dealing with the 
idea that logical consequence should hold in virtue of logical form. Since both parties in 
the intuitionistic/classical dispute agree that the propositional letters are the only 
nonlogical vocabulary, any logic L, ⟹  must obey the following substitutivity 
requirement:

SUB: Given any Δ L, Φ L, Ψ L, and P i a propositional letter, 
if Δ⟹Φ, then Δ[P i /Ψ]  Φ[P i /Ψ].13 

In what follows, the honorific "logic" is reserved for an algebraic structure L, ⟹  that 
obeys SUB.

5.  A Disagreement About Meaning?

It has often been claimed that intuitionists and classical logicians attribute different 
meanings to the connectives. Proponents of this view will argue that the classical negation 
of a formula Φ means "Φ is false," while the intuitionistic negation of Φ means something 
like "Φ is refutable" (where "Φ is false" and "Φ is refutable" are not synonymous). Such a 
view is strongly suggested by the clauses for the propositional connectives in Heyting 
semantics for intuitionistic propositional logic (see Dummett [1977], ch. 1): 

 There is a proof of "¬Φ" iff there is a procedure for transforming any proof of "Φ" into a 
proof of " ." 
 There is a proof of "Φ Ψ" iff there is a proof of "Φ" and there is a proof of "Ψ." 
 There is a proof of "ΦVΨ" iff either there is a proof of "Φ" or there is a proof of "Ψ." 
 There is a proof of "Φ → Ψ" iff there is a procedure for transforming any proof of "Φ" 
into a proof of "Ψ." 
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Note that even if we accept the verificationist equation between truth and the existence of a 
proof, the clauses for negation and the conditional remain distinct from the standard 
semantic clauses for the corresponding classical connectives.14 
Viewing the debate as a disagreement about the content ascribed to the various connectives 
(whether such a view is coherent or not) causes the disagreement no longer to be one about 
the correct logic. Of course, the disputants will disagree regarding which algebraic 
structure codifies logical consequence. This surface disagreement stems from a deeper one 
regarding meaning, however, as Dummett points out: 



Thus the answer to the question how it is possible to call a basic logical law in doubt is 
that, underlying the disagreement about logic, there is a yet more fundamental 
disagreement about the correct model of meaning, that is, about what we should regard as 
constituting an understanding of the statement. (Dummett [1991], p. 17) 
If intuitionists and classical logicians map the logical connectives onto different natural 
language locutions, then it is unsurprising that they go on to conclude that different 
algebraic structures codify the behavior of these different parts of language. Nevertheless, 
such a situation is not necessarily one where the disputants are disagreeing about truth-
conditions or inference relations within natural language. Instead, the disagreement stems 
from their failure to find common ground with regard to what parts of natural language are 
logical—the disputants are disagreeing about what is to be codified.
Nevertheless, there are problems with attributing different meanings to intuitionistic and 
classical connectives. If the rival logicians mean different things by, for example, negation, 
and these differences are reflected in the different inference rules given for classical and 
intuitionistic negation, then one might reasonably suppose that we could construct a formal 
language containing both connectives, in order to study their interaction. J. H. Harris 
[1982] has demonstrated the impossibility of such a language, however.15 
Assume that we have a formal language L with two negations, ¬ I and ¬ C . ¬ I is governed 
by the standard natural deduction introduction and elimination rules, 
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while ¬ C obeys structurally similar analogues of these rules plus a classical rule such as 
classical reductio. In any such language, the two negation operators will be 
interderivable,16 as illustrated by the following proof schemata: 

•

If logical equivalence entails sameness of meaning (at least in the case of logical 
constants), then we seem forced to the conclusion that intuitionists and classical logicians 
do not mean different things by negation, or at least that if they do mean different things, 
then we cannot find neutral territory within which to compare such a difference in 
meaning.17 Dummett takes the lesson to be that the intuitionist: 
… acknowledges that he attaches meanings to mathematical terms different from those the 
classical mathematician ascribes to them; but he maintains that the 
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classical meanings are incoherent and arise out of a misconception on the part of the 
classical mathematician about how mathematical language functions. ([1991], p. 17; 
emphasis added) 
If the idea of different, but simultaneously legitimate, meanings is incoherent, then we are 
left with the following possibilities:
 
1. 
 
 Intuitionists and classical logicians attribute the same meanings to the connectives 
(whatever this meaning might be). 
  Intuitionists and classical logicians ascribe different meanings to the connectives, but 
one of the following holds: 
2a. 

 
 Intuitionists attribute legitimate meanings to the connectives, while classical 
logicians are talking nonsense. 

2b. 
 
 Classical logicians attribute legitimate meanings to the connectives, while 
intuitionists are talking nonsense. 

2c. 
 
 Both intuitionistic and classical logicians are talking nonsense. 

For the purposes of this chapter, we will take an optimistic stance and ignore option 2c.
Regardless of the fact that Dummett (and other intuitionists) explicitly endorse 2a, both 2a 
and 2b are implausible. First, such an interpretation of the situation fails to do justice to the 
fact that classical logicians can work within intuitionistic systems of mathematics and 
logic, and seem to understand what they are doing when they do so (and vice versa). While 
the logician in question might worry about the truth of the theorems thus proved, he does 
not, as a rule, claim not to understand them, or to be asserting nonsense when proving 
them. In other words, it is just a datum of logical practice that rival logicians (at least in the 
intuitionistic/classical case) understand the utterances of their opponents.
Second, the idea that classical logicians ascribe an incoherent meaning to negation does 
little justice to the (epistemic) argument proposed in favor of intuitionistic logic. The 
intuitionist, after arguing for the connection between truth and knowability, does not claim 
that it would be incoherent to accept excluded middle (or any classical principle) as a 
logical truth. Such a claim would be tantamount to arguing that it is incoherent that the 
correct conception of logic entail global decidability (the intuitionistic "consequence" of 
excluded middle). The idea that global decidability is (a philosophical consequence of) a 
logical truth is indeed somewhat implausible, but there seems little reason to think that it is 
a priori incoherent. Similarly, there seems to be no reason (other than Harris's result itself) 
for the classical logician to ascribe incoherence (instead of just error) to the intuitionistic 
account of logic.
At any rate, it is highly implausible that an intuitionist can sustain the charge of 
incoherence that Dummett suggests he level at his classical opponent. Presumably, by the 
intuitionist's own lights, the claim that the classical interpretation 
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of the connectives is incoherent (that is, not coherent) involves (something like) a 
refutation of the coherence of the (supposed) classical meanings. The possibility of such a 
proof is hard to square with the mathematical fact that the classical laws of propositional 
logic are intuitionistically consistent, and in addition are true (even if not logically true) on 
finite and decidable infinite domains. As a result, we should take it as our default view that 
intuitionistic and classical logicians agree on the meaning of the connectives—in other 
words, they agree on the translation function T mapping the logical vocabulary of the logic 
onto natural language.

6.  A Disagreement About What Is Preserved?

Even if the language L and translation function T are fixed, there is another way that 
intuitionistic and classical logicians might be talking past each other. Intuitionists might be 
codifying a different notion of logical consequence than that sketched above. Dummett 
suggests such an interpretation when he writes: 
We must … replace the notion of truth, as the central notion of the theory of meaning for 
mathematical statements, by the notion of proof. … As soon as we construe the logical 
constants in terms of this conception of meaning, we become aware that certain forms of 
reasoning which are conventionally accepted are devoid of justification. ([1975], p. 107)18 
Perhaps the intuitionist understands logical consequence as something along the lines of 
LC V : A sentence Φ is a logical consequence of a set of sentences Δ iff the provability19 of 
every member of Δ guarantees the provability of Φ, and this guarantee is in virtue of the 
logical form of Φ and the members of Δ. 
On this reading, intuitionist logic would be judged by a different criterion: by whether or 
not (something like) the following verification correctness principle 
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CP V : For any function I: L⟹D such that I agrees with T on LV: 
For all Φ L, Δ L: 

The provability of I(Φ) follows from the provability of I(Δ) iff Δ⟹Φ. 
holds.



The idea that classical logicians should understand intuitionists as codifying the 
preservation of provability, not truth, is suggested by the translations of intuitionistic logic 
into the classical modal logic S4. These mappings associate with each intuitionistic 
formula, a formula of the classical modal logic S4:
 
T : {Φ : Φ is a I-formula}⟹{Φ : Φ is an S4-formula} 
such that 
Ø⟹ I Φ iff Ø⟹ S4 T(Φ) 

The first such mapping was provided by Kurt Gödel [1933], and variations can be found in 
Tarski and McKinsey [1948]. In addition, some (but not all) of the translations satisfy 

Δ  I Φ iff {T(Φ):Φ Δ}⟹ S4 T(Φ). 

Among those satisfying the stronger constraint20 is 

T(A) = KA (A a propositional letter) 
T(Φ Ψ) = K(T(Φ) T(Ψ)) 
T(ΦVΨ) = K(T(Φ)VT(Ψ)) 
T(¬Φ) = K¬(T(Φ)) 

This suggests a strong connection between the designated value of intuitionistic logic (i.e., 
intuitionistic "truth") and classical provability.
While few will dispute that there are interesting connections between intuitionistic logic 
and classical provability, interpreting intuitionistic logic in terms of the preservation of 
(classical) provability is unsatisfactory. Consider double negation elimination. The 
intuitionist denies that 

•
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is a valid rule of inference. If the interpretation just suggested is correct, the right response 
would be to claim that the intuitionist is really objecting to 

•

On the classical understanding of the connectives, however, the provability of the double 
negation of P does suffice for the provability of P. In other words, this is an admissible 
rule of S4.



The problem is that even if the classical logician interprets intuitionistic logic as codifying 
provability, he must understand it as codifying provability in a language that differs in 
meaning from the meaning he attributes to his own connectives. Returning to the 
translations of intuitionistic logic into S4, the intuitionist, on this reading, is really 
objecting to 

•

This formulation, however, contains not only prefix occurrences of K but also internal 
ones, suggesting that because of the recursive nature of the translation, we are interpreting 
the intuitionistic connectives as having a meaning tied up with provability, a meaning 
different from the one attributed to the connectives by the classical logician. Thus, in order 
to interpret the intuitionist as codifying, not truth but provability, we must also interpret the 
intuitionist as attributing different meanings to the connectives. Such a disagreement about 
meaning, however, was rejected in the previous section.

7.  A Disagreement About Truth!

The issues addressed in the last two sections fall under a general topic often called the 
problem of shared content, or the communication problem. Dummett addressed the 
problem as follows: 
Intuitionists … hold, that certain methods of reasoning actually employed by classical 
mathematicians in proving theorems are invalid: the premisses do not justify the 
conclusion. The immediate effect of a challenge to fundamental accustomed modes of 
reasoning is perplexity: on what basis can we argue the matter, if we are not in agreement 
about what constitutes a valid argument? ([1991], p. 17) 
There are four distinct questions lurking here. The first two can be usefully labeled the  
questions of shared content: 
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Q SC1: Do the disputants in the intuitionism/classical logic debate attach the same content 
to logical operators (i.e., do they mean the same thing by "and," "or," "not," etc.)? 
Q SC 2: Do the disputants in the intuitionism/classical logic debate attach the same content 
to the notion of truth? 
The second we can call the questions of communication: 



Q C1: Do each of the disputants in the debate have the semantic resources to make sense of 
the content the other attaches to the logical operators (i.e., can each understand what the 
other means by "and," "or," "not," etc.)? 
Q C2: Does each of the disputants in the debate have the semantic resources to make sense 
of the content the other attaches to the notion of truth? 
An affirmative answer to Q SC 1 forces an affirmative answer to Q C 1 (and similarly for Q 
SC 2 and Q C 2), but not vice versa. Presumably a negative answer to either Q C 1 or Q C2 
renders debate between the disputants pointless. In section 5 we considered, and rejected, 
an interpretation that can be seen as answering Q SC 1 negatively and Q SC 2 positively, and 
section 6 addressed (and also rejected) the possibility of a positive answer to Q SC 1 and a 
negative one to Q SC 2.21 
We are left with a default view characterized by two claims. First, intuitionists and 
classical theorists are attempting to codify logical consequence, and although they disagree 
regarding how this notion behaves, they are explicating the same notion (a positive answer 
to Q SC 2). Second, they attribute the same meanings to the connectives (a positive answer 
to Q SC 1), and their disagreement about consequence therefore hinges on whether or not 
certain unequivocal inferences, such as excluded middle, are truth-preserving in virtue of 
logical form. Neil Tennant, who characterizes the debate in terms of a synthetic principle 
underlying the strictly classical inferences in question, usefully summarizes what is at 
issue: 
Indeed, the holding true (as a matter of necessity) of every such instance … [of excluded  
middle] … expresses an essentially metaphysical belief. This belief is to the effect that the 
world is determinate in every expressible regard. ([1996], p. 213) 
I assume, in what follows, that, at least in broad outline, Tennant's description of what is at 
issue is correct (i.e., the dispute traces directly to a disagreement about the "behavior" of 
truth). As a result, any pluralistic position must admit the possibility of distinct, 
incompatible, yet equally legitimate accounts of the very 
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same phenomenon—preservation of truth in virtue of logical form. In the next section I 
will sketch (but not defend) such a pluralistic position with regard to logic. In the final 
section of the chapter I shall argue that the intuitionist, at least, has some reason for 
adopting such a position.

8.  Logic as Modeling



There is an assumption running through most approaches to the philosophy of logic—the 
logic-as-description view: a formal logic is an attempt to describe what is really going on 
vis-à-vis the truth-conditions, consequence-relation, and so on of the discourse in question. 
On this view, every aspect of the formalism corresponds to something actually occurring in 
the phenomenon being formalized, and the logic provides an exact description of correct 
reasoning. The view incorporates an optimistic epistemological stance, in that adherents of 
the view implicitly accept that there is such an exact description of logical consequence 
(i.e., a single, "true" logic), and with sufficient intellectual effort we can arrive at such a 
description.
There is another way to view the task being undertaken by logical theorists—logic-as-
modeling.22 On this view, a logic provides a good model of logical consequence. Logics are 
not (necessarily) descriptions of what is really occurring, but are instead fruitful ways to 
represent the phenomenon, that is, formalization is merely one tool among many that can 
further our understanding of the discourse in question.
The core idea that distinguishes this perspective from accounts falling under the logic-as-
description heading is that although there are logics that are better or worse with regard to 
codifying logical consequence, there might fail to be a single correct, or "best," logic. In 
fact, there might be situations in which such "failure" is to be expected. The position agrees 
with other views in that there can be different models of logical consequence depending on 
our goals (i.e., what discourses or "cases" are of interest, what semantic value we wish to 
preserve, etc.) In addition, however, the logic-as-modeling framework allows (perhaps 
even entails) that even when theoretical goals are fixed, there might not be a single, correct 
codification of inference. In other words, natural language might fail to cooperate fully 
with attempts to formalize it, and there might be no logic (L, ⟹) such that the correctness  
principle (CP) (construed in a precise manner) holds.
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If there might be, in principle, no exact fit between natural language and any logic, then we 
are left with the possibility that some logical disputes, such as that between intuitionists 
and classical logicians, can be explained away on pluralist grounds. On this picture, the 
disputants believe that they are disagreeing only because they have accepted the logic-as-
description picture, where one (or both) must be endorsing an incorrect codification of the 
consequence relation. Instead, both are championing equally legitimate accounts (models) 
of logical consequence. The mismatch between the natural language and any precise logic 
instead stems from there being no fact of the matter regarding which of two logics is a 
better model—there need be no more complicated logic that correctly codifies those areas 
where there is a "mismatch." Instead, there is indeterminacy regarding whether or not 
certain aspects of the model correctly codify certain aspects of that being modeled (the 
reader is reminded that in this section I am not yet arguing that such a pluralism is the 



correct account of the dispute, but only describing a possible understanding of the debate 
which is permitted by the logic-as-modeling view).23 
The situation can usefully be described as a case of vagueness. On the one hand, we should 
accept that intuitionistic logic does not contain any inference that is not a clear, definite 
case of logical consequence (although it might fail to contain some valid inferences): 

CP I : For any function I: L → D such that I agrees with T on LV: 

For all Φ L, Δ L 
If Δ⟹ I Φ, then I(Φ) is a logical consequence of I(Δ). 

On the other hand, we can grant that classical logic contains every inference that is a clear, 
definite case of logical consequence (although it might also contain inferences that are not 
valid): 

CP C : For any function I: L→D such that I agrees with T on LV: 

For all Φ L, Δ L: 
If I(Φ) is a logical consequence of I(Δ), then Δ⟹ C Φ. 

There are uncountably many24 logics between the intuitionistic and classical formalisms. 
More formally: 
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Given two logics L, ⟹ α and L, ⟹ β : 

L, ⟹ α L, ⟹ β  = df For all Δ L, Φ L, if Δ⟹ α Φ, then Δ⟹ β Φ.25 
L, → α L, → β  =  df L, → α L, → β and → α ≠→ β . 

Fact: Given a propositional language L with countably many propositional letters: 

{ L, → α : L, → I L, → α L, → C } 

is uncountable. 

As a result, the correctness of intermediate logics might be what Crispin Wright [1976] 
calls "tolerant"—moving to a slightly stronger or weaker logic (where the difference in 
logical strength is sufficiently small) does not affect the correctness of attributions of 



logical consequence.26 We can adopt such a view by accepting one or both of the following 
vagueness principles: 

For any L, ⟹ α such that L, ⟹ I L, ⟹ α L, ⟹ C : 

For any function I: L⟹D such that I agrees with T on LV: 

V 1 : If Δ⟹ α Φ implies that I(Φ) is a logical consequence of I(Δ), 

then there is some L, ⟹ β such that L, ⟹ α L, ⟹ β and 

Δ ⟹ β Φ implies that I(Φ) is a logical consequence of I(Δ). 
V 2 : If I(Φ) is a logical consequence of I(Δ) implies Δ ⟹ α Φ, 

then there is some L, ⟹ β such that L, ⟹ β L, ⟹ α and 
I(Φ) is a logical consequence of I(Δ) implies Δ ⟹ β Φ.27 

These principles, plus the following (rather plausible) pair of bounding principles: 

If, for some set of indices X, every (L, ⟹ α ) such that α X contains only codifications of 
logical consequences, then, if ⟹ β  =  α  X (⟹ α ) , (L, ⟹ β ) contains only codifications of 
logical consequences. 

If, for some set of indices X, every (L, ⟹ α ) such that α X contains all codifications of 
logical consequences, then, if ⟹ β  = ∩ α X (⟹ α ), (L, ⟹ β ) contains all codifications of 
logical consequences. 
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(classically) imply that, for any Φ L, Δ L, Δ⟹ C Φ iff Δ⟹ I Φ.28 In other words, this 
description of classical versus intuitionistic logic provides a novel version of the Sorites  
Paradox.
It does not follow that the situation described above is incoherent, however—any more 
than the existence of a series of pairwise indistinguishable color patches progressing from 
a clear case of red to a clear case of orange implies the incoherence of color talk. Instead, 
whatever account applies to more standard cases of vagueness must also apply to the 
connection between precise formal logics and the consequence relation of natural 
language. As a result, on this picture there is no logic between intuitionistic and classical 
that marks the precise boundary where logical validity stops and invalidity starts.29 



Pluralism was defined as the claim that at least two distinct logics satisfy the correctness 
principle CP. On the vagueness-inspired picture just discussed, we do not have exactly 
this, but we can draw the conclusion that for any logic L, ⟹ α , there are distinct logics 
that are equally good models of logical consequence. Assuming that we judge the quality 
of a model by the extent to which it agrees with logical consequence in natural language, V 
1 implies that there is a logic L, ⟹ β such that L, ⟹ α L, ⟹ β and L, ⟹ β is at least as 
good at modeling logical consequence (similar comments apply to the acceptance of V 2 ). 
As a result of accepting either V 1 or V 2 , either for every logic (no matter how good a 
model) there is another that is a better model of logical consequence, or there are two 
distinct logics that are equally good models of logical consequence and are at least as good 
models as any other logic. Either option seems worthy of the title "pluralism."
At this point we only have a description of pluralism and a defense of its coherence. 
Nothing yet has been said in favor of such as the right way to view the dispute at hand. In 
the final section I present some evidence supporting such a pluralist stance.
9.  Intuitionism Reconsidered

Assume that we are swayed by the verificationist concerns sketched at the beginning of 
this chapter (i.e., for the sake of argument, truth entails knowability). Even granting this, 
the intuitionist has failed to provide an argument that 
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intuitionistic logic is the (only) correct codification of logical consequence. Instead, the 
intuitionist has good reasons for rejecting (or at least abstaining from) such a monistic 
position.
It should be emphasized that such a verificationist perspective on truth is consistent with 
the idea that intuitionists and classical logicians agree on both the semantic value preserved 
by logic and the meaning of the connectives. Indeed, for the intuitionist to view the 
situation as a disagreement about logic, he must interpret things in this way. Thus, the 
intuitionist is claiming that (1) the classical logician does (or should) understand the (non-
intuitionistic) inferences in question in the same way as the intuitionist, and (2) the 
principles in question clearly are not (or plausibly could fail to be) instances of logical 
consequence.30 
Recall that the (epistemic) argument for intuitionistic logic comes in three parts. The 
intuitionist (1) proposes certain epistemic principles that constrain truth; (2) argues that 
these principles imply that certain non-intuitionistic laws such as excluded middle should 
not be accepted; and (3) uses these epistemic principles to justify the standard rules of 
intuitionistic logic.



This attack is not (by itself) an argument for intuitionistic logic as the unique correct 
codification of logical consequence. At best, what the intuitionist has argued for is the 
claim that the correct logic (if there is a unique such thing) is one of the continuum of 
logics between intuitionistic and classical logic (and is not the latter). The reason is that the 
intuitionistic objections to strictly classical principles grow weaker as the classical 
principles in question are weakened. Heyting argued against excluded middle as follows: 
When we assert it, this means that for any proposition A we can either prove A or derive a 
contradiction from a supposed proof of A. Obviously we are not able to do this for every 
proposition A. … If we do not know whether A is true or not, we better make no assertion 
about it. ([1974], p. 87) 
For the sake of argument, we can agree with Heyting regarding the epistemic 
implausibility of excluded middle, but what about weaker classical principles such as 
¬AV¬¬A? According to the intuitionist, accepting this formula (as a logical truth) is 
equivalent to claiming that we can either refute A or refute the claim that 
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Fig. 11.1:

we can refute A. Would Heyting still be willing to claim that "obviously we are not able to 
do this for every proposition A"?
More generally, there exists a countably infinite chain of principles, each strictly classical 
yet intuitionistically weaker than the last (P an arbitrary propositional letter): 

A 0 (P) =  df 

A 1 (P) =  df P 



A 2 (P) =  df ¬P 
(for all n = 1) 
A 2n + 1  =  df A 2n (P)VA 2n − 1 (P) 
A 2n + 2  =  df A 2n (P) → A 2n − 1 (P) 
A i (P) intuitionistically proves A j (P) iff there is a path from i to j in the digraph

(For details see Troelstra and van Dalen [1988], p. 49). For all n > 4, A n (P) is a classical 
tautology, as is A 3 (P). Consider {A i (P): i = 2n + 1 for some n > 0}: 

A 3 (P) = ¬PVP 
A 5 (P) = (¬P⟹P)V(¬PVP) 
A 7 (P) = [(¬P⟹P)⟹(¬PVP)]V[(¬P⟹P)V(¬PVP)] 
A 9 

(P) = ([(¬P⟹P)⟹(¬PVP)]⟹[(¬P⟹P)V(¬PVP)])V([(¬P⟹P)⟹(¬PVP)]V[(¬P⟹P)V(¬PVP)
]) 
etc. 

As we travel further down this list, intuitionistic objections to the formula in question 
become less robust. The relatively strong A 9 (P), even given a more intuitive gloss, does 
not assert the possibility of epistemic achievements that, as Heyting puts it, "obviously we 
are not able to do." Given this, how is the intuitionist to rule out A 999 (P), or A 99999 (P)? 
The intuitionist is faced with seemingly insurmountable difficulties in arguing that his 
preferred logic has exactly captured logical consequence.
Corresponding to this infinitely descending chain of principles is an infinitely descending 
chain of intermediate logics asymptotically approaching L⟹ I : 

For all integers i such that i = 2n + 1 for some n > 0, let 

L, ⟹ i  =  df the logic resulting from adding A i (P) to L, ⟹ I and closing under SUB. 
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Theorem: For integers i and j such that i = 2n + 1 for some n > 0 and j = 2m + 1 for some 
m > n: 
L, ⟹ I L, ⟹ j L, ⟹ i L, ⟹ C . 

Even if the intuitionist has legitimate objections to classical logic, it is implausible that he 
has similarly strong arguments against each (or all) member(s) of this infinite chain of 
sublogics.31 



I am not suggesting that there is some L, ⟹ i that the intuitionist must accept as a correct 
codification of logical consequence. One the contrary, he might have no reason for 
accepting any of them. The point is that as i increases, the intuitionist's epistemic reasons 
for rejecting L, ⟹ i become correspondingly weaker, and as a result, the intuitionist has 
no grounds for accepting the following principle of invalidity recognition: 
IR: For any logic L, ⟹ α such that L, ⟹ I L, ⟹ α L, ⟹ C , there are reasons for 
doubting that we can perform the constructions necessary for the (intuitionistic) truth of the 
axioms of L, ⟹ α . 
This is a universally quantified statement—its truth, for the intuitionist, is tantamount to 
the existence of a construction such that, when applied to any intermediate logic, L, ⟹ α , 
it provides reasons for thinking that at least one axiom of L, ⟹ α makes a questionable 
existence claim about constructions. The points of the last few paragraphs, however, make 
the existence of such a construction unlikely.
In effect, the intuitionist's own arguments have been turned against him. The intuitionist 
argues that excluded middle (a principle whose logical truth is necessary for the classical 
logician) expresses an implausible existence claim about 
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constructions, and thus should not be accepted. Similarly, IR (a principle whose truth is 
necessary for the intuitionist logician's acceptance of logical monism) expresses an 
implausible existence claim about constructions. This is not to say that the intuitionist 
should accept that there is some particular logic L, ⟹ α for which IR fails—the evidence 
marshaled against IR falls short of sufficient for the intuitionistic truth of an existential 
claim. What is more plausible, however, is that the intuitionist has no reason to reject 
There is some L, ⟹ α such that L, ⟹ I L, ⟹ α and 
Δ ⟹ α Φ implies that I(Φ) is a logical consequence of I(Δ). 
This is a particular instance of V 1 above.

The intuitionist's position at this point is rather subtle. The appropriate intuitionist attitude 
toward IR, and thus logical monism, is analogous to the position he recommends with 
regard to excluded middle. The intuitionist, on pain of contradiction, cannot advise the 
classical logician to accept the negation of excluded middle—he can merely suggest that 
his rival abstain from asserting the principle in question. Analogously, the intuitionist need 
not explicitly accept that there is some intermediate logic that is just as legitimate as his 
own favored codification of logical consequence. He merely ought to refuse to assert that 
there is no such logic (i.e., refrain from claiming that his logic is the sole correct one). The 
intuitionist need not explicitly accept LP, but he has good reason for not asserting LM. This 
position, while weaker than the more robust description of pluralism in the previous 
section, is still a far cry from the monism espoused by traditional intuitionists.



Of course, the intuitionist could accept a pluralist view of logic. Whether he does or does 
not, however, his refusal to assert logical monism should not cause him to stop using 
intuitionistic logic. This is the whole point of the pluralism sketched above—even if the 
intuitionist accepts V 1 (and perhaps V 2 ), this only implies that other logics are equally 
good codifications of logical consequence, it in no way implies that there is a better 
codification of this notion. The intuitionist need not abandon intuitionistic logic, but, at 
worst, he merely needs to abandon some of the metaclaims he might previously have made 
regarding the connections between his favored logic and logical consequence in natural 
language. To sum up—intuitionist logicians can retain their use of intuitionistic logic, but 
they cannot retain logical monism.32 
end p.409
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12. Quine and the Web of Belief
Michael D. Resnik 

1.  Introduction



When W. V. Quine began his philosophical career, logical positivism and logicism both 
flourished. The positivists distinguished sharply between truths known empirically through 
sense experience and truths known a priori or independently of sense experience. But they 
resolutely rejected a priori intuition, be it Platonic or Kantian, as a source of mathematical 
knowledge, and they believed that the inadequacy of Mill's empiricist philosophy of 
mathematics shows that sense perception is no source, too.1 Fortunately, logicism's new 
and richer conception of logic and its reduction of mathematics to logic provided the 
positivists with a ready-made basis for mathematical knowledge: they took it to be a priori 
knowledge grounded in our conventions for using logical (and mathematical) symbols. 
And this is just what Quine called into question. Neither their a priori-empirical distinction 
nor their doctrine of truth by convention survived his criticisms unscathed. Even the thesis 
that mathematics is logic came to be seen in a different light as a result of Quine's 
theorizing about logic. In view of this, it is ironic that significant themes from both logical 
positivism and logicism still ran through Quine's own work.
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Although his negative work brought Quine into philosophical prominence by the 1950s, he 
had already developed a positive philosophical vision, which he expanded and refined 
during the next forty years. Both the power of Quine's criticisms and the depth and scope 
of his positive views combined to make Quine an influential—perhaps the most influential
—philosopher of mathematics today. He set the agenda for many current discussions: the 
role of convention in logic and mathematics, the nature of the a priori, criteria of 
ontological commitment, the indispensability of mathematics in science, the reducibility of 
mathematics to logic, the nature of logic, and the value of ontological parsimony.
Here is a very brief overview of Quine's philosophy of mathematics. Its fundamental 
feature is a combination of a staunch empiricism with holism. These are the ideas that the 
ultimate evidence for our beliefs is sensory evidence and that such evidence bears upon our 
entire system of beliefs rather than its individual elements (whence the phrase "the web of 
belief"). This means that our evidence for the existence of objects must be indirect, and 
extracted from the evidence for our system of beliefs. Thus it was essential that Quine 
develop a criterion for determining which objects our system commits us to (a criterion of 
ontological commitment). Seeing science as the fullest and best development of an 
empirically grounded system of beliefs, Quine heralded it as the ultimate arbiter of 
existence and truth. Mathematics appears to be an indispensable part of science, so Quine 
concluded that we must accept as true not only science but also those mathematical claims 
that science requires. According to his criterion of ontological commitment, this also 
requires us to acknowledge the existence of those mathematical objects presupposed by 



those claims. Finally, we usually take ourselves to be talking about a definite system of 
objects. However, there is enough slack in the connection between our talk of objects and 
the evidence for it that one can uniformly reinterpret us as referring to another system of 
objects while holding the evidence for the original system fixed. Thus we have ontological 
relativity: only relative to a fixed interpretation of our beliefs is there a fact as to our 
ontology.
This chapter will focus on Quine's positive views and their bearing on the philosophy of 
mathematics. It will begin with his views concerning the relationship between scientific 
theories and experiential evidence (his holism), and relate these to his views on the 
evidence for the existence of objects (his criterion of ontological commitment, his 
naturalism, and his indispensability arguments). This will set the stage for discussing his 
theories concerning the genesis of our beliefs about objects (his postulationalism) and the 
nature of reference to objects (his ontological relativity). Quine's writings usually 
concerned theories and their objects generally, but they contain a powerful and systematic 
philosophy of mathematics, and the chapter will aim to bring this into focus. Although it 
will occasionally mention the historical context and evolution of Quine's philosophy, it will 
not attempt to present a scholarly, complete examination and evaluation of it.
end p.413

2.  Holism and the Web of Belief

2.1.  Holism: The Basic Idea

When I speak of holism here, I shall intend epistemic or confirmational holism. This is the 
doctrine that no claim of theoretical science can be confirmed or refuted in isolation, but 
only as part of a system of hypotheses. This is different from another view frequently 
attributed to Quine, namely, meaning holism, which is roughly the thesis that an expression 
depends upon the entire language containing it for its meaning.
Quine used a number of metaphors to expound his holism. The following passage from 
"Two Dogmas of Empiricism," which is an early and particularly strong formulation of his 
view, uses the metaphors of a fabric and a field force: 
The totality of our so-called knowledge or beliefs, from the most casual matters of 
geography and history to the profoundest laws of atomic physics or even of pure 
mathematics and logic, is a man-made fabric which impinges on experience only along the 
edges. Or to change the figure, total science is like a field of force whose boundary 
conditions are experience. (Quine 1951, 42) 



In a later book with Joseph Ullian, the operative metaphor was one of a web, reflected in 
the book's title, The Web of Belief (1970).
Whatever the metaphor, holism is based upon an observation about science and a simple 
point of logic. The observation is that the statements of any branch of theoretical science 
rarely imply observational claims when taken by themselves, but do so only in conjunction 
with certain other statements, the "auxiliary" hypotheses. For example, taken in isolation, 
the statement that water and oil do not mix does not imply that when I combine samples of 
each I will soon observe them separate. For the implication to go through, we must assume 
that the container contains no chemical that allows them to homogenize, that it is 
sufficiently transparent for me to observe the fluids, that my eyes are working, and so on. 
Hence—and this is the point of logic that grounds holism—if a hypothesis H implies an 
observational claim O only when conjoined with auxiliary assumptions A, then we cannot 
deductively infer the falsity of H from that of O, but only that of the conjunction of H and 
A, H & A. Furthermore, insofar as observations confirm theories, the truth of O does not 
confirm H but rather H & A. Strictly speaking, it is systems of hypotheses or beliefs rather 
than individual claims to which the usual, deductively characterized notions of empirical 
content, confirmation, and falsification should be applied.
Pierre Duhem expounded these ideas at the beginning of the twentieth century, and 
defended the law of inertia and similar physical hypotheses against the charges that they 
have no empirical content and are unfalsifiable. One way of 
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putting the law of inertia, you will recall, is to say that a body remains in a state of uniform 
motion unless an external force is imposed upon it. Since we can determine whether 
something is moving uniformly only by positing some observable reference system, this 
law, taken by itself, implies no observational claims. Furthermore, by appropriately 
changing reference systems we can guarantee that a body moving uniformly relative to our 
present system is not relative to the new one, and thereby protect the law against falsifying 
instances. All this troubled the law's critics, because they believed that it should have an 
empirical content and be falsifiable. Duhem responded to their worry by observing that the 
law readily produces empirical consequences when conjoined with auxiliary hypotheses 
fixing an inertial system; and that in needing auxiliaries to produce empirical 
consequences, it was no different from many other theoretical principles of science, whose 
empirical content everyone readily acknowledged. Thus the law's critics could not have it 
both ways: to the extent that their critique challenged the empirical status of the law of 
inertia, it also challenged that of most other theoretical hypotheses. (Duhem 1954).
Using logic to extract observational consequences from the law of inertia also depends 
upon including mathematical principles among the auxiliary hypotheses. Duhem drew no 
conclusions from this about mathematics. But Quine subsequently did, as the quote above 



indicates. Using the very strategy Duhem used in defending the law of inertia, he argued 
that even mathematical principles, which by most accounts are just as unfalsifiable and 
devoid of empirical content as the law of inertia, share in the empirical content of systems 
of hypotheses containing them (Quine 1990, 14-16).
In his later writings Quine toned down his holism. In speaking of "the totality of 
our … beliefs," the passage quoted above gives the impression that each of our beliefs and 
observations is connected logically to every other belief and observation. In Word and  
Object, Quine notes this and qualifies his holism: 
… this structure of interconnected sentences is a single connected fabric including all 
sentences, and indeed everything we ever say about the world; for the logical truths at 
least, and no doubt many more commonplace sentences too, are germane to all topics and 
thus provide connections. However, some middle-sized scrap of theory will embody all the 
connections that are likely to affect our adjudication of a given sentence. (Quine 1960, 12-
13) 
(Note also the footnote to the first sentence of this passage: 
This point has been lost sight of, I think, by some who have objected to an excessive 
holism espoused in occasional brief passages of mine. Even so, I think their objections 
largely warranted. (p.13) 
So long as these "middle-sized scraps" of theory contain bits of mathematics, Quine's 
points about its falsifiability and empirical content will continue to hold.
end p.415

2.2.  Important Consequences of Quine's Holism

Let us note some important consequences of Quine's version of holism. First, and 
foremost, it entails rejecting the distinction between empirical and a priori truths, where the 
a priori truths are those that are known independently of experience and immune to 
revision in the light of it. This is because, for Quine, experience bears upon bodies of 
beliefs and, insofar as it may be said to bear upon individual beliefs of a system, it bears 
upon each of them to some extent. Quine rejects other means for distinguishing between 
the a priori and the empirical, such as the use of a priori intuition, self-evidencing truths, or 
sentences true by convention or by virtue of the meanings of their component terms. Thus 
no belief is immune to revision in the face of contrary experience. As Quine famously put 
it in "Two Dogmas": 
… it becomes folly to seek a boundary between synthetic statements, which hold 
contingently upon experience, and analytic statements, which hold come what may. Any 
statement can be held true come what may, if we make drastic enough adjustments 
elsewhere in the system. Even a statement very close to the periphery [of experience] can 



be held true in the face of recalcitrant experience by pleading hallucination or by amending 
certain statements of the kind called logical laws. Conversely, by the same token, no 
statement is immune to revision. (Quine 1951, 43) 
Second, although Quine acknowledged abstract objects and their perceptual 
inaccessability, and even spoke of some of our beliefs as arising from observation and 
others as arising through the exercise of reason, this provided him with no epistemological 
distinction for privileging statements about abstract mathematical objects. The difference 
here is simply one of degree rather than of kind.
Mathematics does not yield a priori knowledge, though it seems to proceed largely through 
the exercise of reason. What, then, of philosophy? Since, for Quine, there is no a priori or 
conceptual knowledge, any knowledge that philosophy can impart about science must be a 
piece of science. This is part of what Quine calls naturalism. Here are two passages 
characterizing it: 
… naturalism: abandonment of the goal of a first philosophy. It sees natural science as an 
inquiry into reality, fallible and corrigible but not answerable to any supra-scientific 
tribunal, and not in need of any justification beyond observation and the hypothetico-
deductive method. (Quine 1981b, 72) 
… naturalism: the recognition that it is within science itself, and not in some prior 
philosophy, that reality is to be identified and described. (Quine 1981a, 21) 
As we will see below, Quine's naturalism is a key component of his argument for 
mathematical realism (see chapters 13 and 14).
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Several interesting questions now arise concerning Quine's own philosophical theory: 
What is its status? Is it to be a contribution to knowledge? And if it is knowledge, what is 
its source? Now philosophers commonly distinguish between normative and descriptive 
epistemology. The former assesses our ways of knowing and systems of beliefs with an 
eye toward improving upon them; the latter merely describes them. Many of Quine's more 
recent pronouncements concerning epistemology indicate quite clearly that he takes 
himself to be pursuing it descriptively. For example, in "Epistemology Naturalized" we 
read: 
Epistemology, or something like it, simply falls into place as a chapter of psychology and 
hence of natural science. It studies a natural phenomenon, viz., a physical human subject. 
The human subject is a accorded a certain experimentally controlled input—certain 
patterns of irradiation in assorted frequencies, for instance—and in the fullness of time the 
subject delivers as output a description of the three dimensional world and its history. The 
relation between the meager input and the torrential output is a relation that we are 
prompted to study for somewhat the same reasons that have always prompted 



epistemology; namely, in order to see how evidence relates to theory, in what ways one's 
theory of nature transcends any available evidence. (Quine 1969b, 82-83) 
Can we interpret Quine's doctrine of holism as a piece of descriptive epistemology? As I 
noted earlier, holism arises in part from observing scientific practice and noting that 
scientists usually make numerous auxiliary assumptions when designing experiments for 
testing their hypotheses. That they do so is a straightforward descriptive claim that in turn 
can be scrutinized scientifically. But this is not enough, since this claim will not yield the 
conclusion that no statement of science is immune to revision.
Curiously, I don't think that Quine intended his claim that no statement is immune to 
revision as a description of what scientists have done or as prediction of what they will do. 
He would be the first to emphasize how radical it would be to revise mathematics in order 
to save a scientific theory. Perhaps he meant the conclusion as remark concerning the 
methodological code to which scientists subscribe. This remark could be counted as 
descriptive epistemology and again be subjected to scientific scrutiny, although, due to its 
imprecision, the results are likely to be inconclusive. However, I am inclined to read Quine 
as claiming that not only do scientists use auxiliary assumptions, they must do so to deduce 
testable conclusions from their hypotheses. If scientists must use auxiliary hypotheses, then 
it would follow that a negative test result would only call into question the conjunction of 
the auxiliaries and the main hypothesis rather than the main hypothesis alone. So, absent 
further specification, revising any component of this conjunction would violate no law of 
logic. Moreover, given that scientists freely draw our auxiliary assumptions from the entire 
body of science, we can arrive at the more general conclusion that circumstances could 
arise in which logic would permit revising any one of our (nonlogical) beliefs.
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On the reading of Quine that I am offering, the claim that none of our beliefs is immune to 
revision amounts to the thesis that from a logical point of view, none of our beliefs is 
immune to revision. Now, in speaking of what logic permits, I have been using normative 
terms. Thus one might wonder whether Quine's holism is a piece of normative 
epistemology after all. I think not. In the case at hand, apparent normative talk of what 
logic permits is only a metaphorical substitute for descriptive speculation about how 
various arguments would fare when subjected to standard logical tests. Nor in applying 
logic do we involve ourselves in the a priori—provided, of course, that with Quine we 
reject the distinction between a priori and empirical knowledge.

2.3.  Holism and Logic



But what of logic itself? Doesn't its role in forging the connections between theory and 
experience give a kind of a priori status, some immunity to empirical falsification? While 
we know that in "Two Dogmas" Quine counted the laws of logic as part of the fabric 
confronting experience, the next passage seems to reflect a change in his view. Here he is 
discussing the options we have when revising a set of sentences S in the face of failed 
prediction (a "fateful implication"): 
Now some one or more of the sentences in S are going to have to be rescinded. We exempt 
some members of S from this threat on determining that the fateful implication still holds 
without their help. Any purely logical truth is thus exempted, since it adds nothing to what 
S would logically imply anyway. … (Quine 1990, 14) 
Quine's point here is that giving up a logical truth to repair S is idle. For let L be a logical 
truth and W any sentence or conjunction thereof. Then the conjunction of W and L implies 
a sentence O only if W alone implies O. To deactivate the fateful implication, we must 
revamp logic at least to the extent of refusing to recognize that S has the implication in 
question.
Now one might wonder how any revision of logic could even be an option for us. For 
without logic a failed prediction would be neither connected to a theory nor contrary to it. 
But this kind of worry can be set aside. Of course, without some logical framework, 
hypothesis testing could not take place, but that does not mean that the framework and the 
hypotheses tested cannot both be provisional. Obviously, revisions in the framework must 
come very gradually, since after changing it, we will need to determine whether previously 
tested hypotheses still pass muster. Thus, instead of denying all instances of, say, the law 
for distributing conjunction over alternation, we might reject certain applications of it to 
quantum phenomena. In this way there would be no danger of lapsing into total 
incoherence. Nor need we abandon the norms surrounding deduction. While we 
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may change, for example, what counts as an implication or a contrary, we need not 
abandon norms that commit us to what our theories imply or that prohibit us from 
simultaneously maintaining two contraries. Logic is revisable, so long as major changes 
result from the accumulation of minor ones.

2.4.  Objections to Holism

Several philosophers have been critical of both the theory of confirmation that seems 
implicit in holism generally and the account of mathematical evidence that seems implicit 
in Quine's version of it. Science takes mathematics and logic as fixed points for 



determining the limits of what we can entertain as serious possibilities (to borrow a phrase 
from Isaac Levi (1980)). In allowing for experientially motivated revisions of mathematics 
and logic, Quine appears to be riding roughshod over this feature of scientific practice. 
Charles Parsons, who has voiced objections of this sort, also points out that Quine seems to 
provide no place for specific kinds of mathematical evidence, such the intuitive 
obviousness of elementary arithmetic (Parsons 1979-1980, 1986). In a different vein, 
Charles Chihara (1990) has observed that in deciding whether to add a new axiom to set 
theory, no set theorist is going to investigate its benefits for the rest of science. Yet on 
Quine's approach the ultimate justification of the axiom will rest upon the acceptability of 
the total system of science to which it belongs. One might add that in developing his own 
axiomatic set theories, even Quine narrowed his focus to their ability to smoothly 
reproduce the standard set-theoretic foundations for mathematics while skirting 
contradictions.
In addition to this, some philosophers continue to hold, contrary to both Quine and Duhem, 
that observational evidence can be seen to bear upon specific hypotheses instead of whole 
systems. Elliott Sober, for example, claims that scientific testing consists in deriving 
incompatible predictions from competing hypotheses. Because these tests share the same 
auxiliary assumptions, they put specific hypotheses at risk and, consequently, the data they 
produce reflect upon just these hypotheses and not upon the broader systems to which they 
belong. Sober also notes that scientific tests never, or hardly ever, put mathematical claims 
at the risk of being falsified. Because of this, he argues, mathematics cannot share in the 
confirmation afforded to those hypotheses that do pass such tests. In particular, the 
mathematical theory of sets, in contrast to, say, the atomic hypothesis, cannot claim 
empirical support (Sober 1993, 2000).
Now Chihara, Parsons, and Sober are certainly right when it comes to scientific and 
mathematical practice. Mathematicians tend to keep their focus narrowly mathematical, 
and their notion of mathematical evidence has much more room for citing obviousness and 
self-evidence than it does for citing experimental 
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data. But does this refute Quine? Let us take a closer look at these objections. As I see it, 
they reduce to two points. The first is that Quine is wrong about the revisability of 
mathematics and logic, and they are a priori, or at least Quine has not shown that they are 
not. The second is that holism cannot be correct, since it excludes important forms of 
reasoning used in science and mathematics. Thus Quine's argument, based as it is upon 
holism, fails to show that mathematics and logic are not a priori.
Sober seems to be urging the first point when he points out that there are very few 
mathematical statements that we know how to test empirically in any reasonable sense of 
empirical testing.2 Now this would tend to favor the apriority of mathematics if we knew 



how to test empirically almost all statements of theoretical science. But in fact we don't 
know how to apply the sorts of specific tests that Sober has in mind to the framework 
principles of the various branches of science. They function as the background principles 
that we hold fixed when testing lower-level hypotheses. For example, we don't know how 
to test the hypothesis that space-time is a continuous manifold, and, given quantum 
mechanics, this may be untestable in principle. (To put my point in Kuhnian terms, the 
framework principles are part of the paradigms held fixed while we do the testing that is 
part of ordinary science.) If we take Sober's idea to heart, we will count much more as a 
priori than fans of the a priori want. Furthermore, we might find ways of testing many 
more mathematical statements if we tried. At best we have a notion of the a priori that is 
relative to our current ability to design empirical tests.
On the other hand, one might argue against Quine that as a matter of fact, we have never 
revised an established branch of mathematics in the face of empirical findings, and thus 
have little grounds for thinking that it is revisable.3 Of course, never revised does not entail 
not revisable, and even Sober admits that when an observation falsifies a prediction, there 
is a choice of revising the main hypothesis or the auxiliary assumptions. (Sober 2000, 267). 
The problem with this response is that no well-formulated methodology recommends 
taking the choice of revising the mathematics contained in the auxiliary assumptions. 
Quine's own suggestions (e.g., that we revise so as to obtain the simplest overall theory and 
try to save as much of our current theory as we can) are too vague, and fail to lead to a 
unique outcome. Furthermore, we have no reason to believe that revising mathematics or 
logic will ever lead us to a theory that would even count as optimal in comparison 
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with its competitors.4 But, perhaps it is enough that revising logic or mathematics could 
lead us to a theory that is at least acceptable, if not optimal. Ruling this out would appear 
to beg the question by assuming that any theory arising from revising mathematics or logic 
is unacceptable. We may have arrived at a standoff here. Quine and his fans see revising 
mathematics and logic as a live option to be used only when we must take extreme 
measures. His opponents fail to see how it could ever be appropriate to exercise this 
option.
We still have to consider the second point: that holism cannot be correct, since it excludes 
important forms of reasoning used in science and mathematics. The strategy I will use here 
is to try to show that even within the framework of empiricist holism, one can make sense 
of the scientific and mathematical practice to which Sober, Chihara, and Parsons have 
called our attention.
Duhem noted that scientists often leave their auxiliary assumptions unquestioned in the 
course of testing hypotheses, and thereby take the evidence they obtain as bearing upon the 
main hypotheses. Duhem said that ordinarily this was just using "good sense," but he 



added, "These reasons of good sense [for favoring certain hypotheses] do not impose 
themselves with same implacable rigor that the prescriptions of logic do" (Duhem 1954, 
217-218). Holists may readily admit that it is rational for scientists to fix certain 
hypotheses (as auxiliaries) while testing others, and thus also rational (in the practical 
sense) for them to act as if the evidence they obtain bears upon the specific hypotheses 
being tested. Holists can thereby accommodate the type of hypothesis testing that Sober 
applauds. They will simply deny that, independently of our holding the "auxiliaries" fixed, 
a logical (or a priori) evidential relationship obtains between the hypotheses tested and the 
evidence.
Let's develop this point further. In practice the various branches of science take large 
blocks of theory for granted. Molecular biology, for example, is developed within a 
framework that draws upon principles of more general theories, such as chemistry, physics, 
and mathematics. We also find a division of labor in the sciences: mathematicians 
normally do not meddle in physics nor physicists in mathematics, and biologists and 
chemists are normally not competent to suggest changes in mathematics or physics even 
when they might want to see it changed. As a result, when something goes awry in a 
relatively local science (say, biology), it is not likely that practitioners of more global 
sciences (say, physics or mathematics) will hear of it, much less be moved to seek a 
solution through modifying their own more global theories. Nor is it likely that the 
specialists in a local theory will tinker with global background theories to resolve local 
anomalies.
This is not just a matter of sociology; it is good sense, too. Practical rationality counsels 
specialists to attempt to modify more global theories only as a last resort; they probably do 
not and cannot know enough to tackle the task, and modifying a 
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more global theory is likely to send reverberations into currently quiescent areas of 
science. Quine has expressed the point by saying that in revising their theories, scientists 
should minimize mutilation.
Specialization has also fostered local methodologies and standards of evidence. These 
provisionally override more global and holistic perspectives and declare data, obtained via 
local methods, to bear on this or that local hypothesis. These will tell us, for example, that 
we have more reason to be confident of the existence of electrons than of gluons or of the 
existence of prime numbers than of inaccessible cardinals. Holists will urge, however, that 
local conceptions of evidence, in particular those that lead us to take data as confirming 
specific hypotheses, are ultimately justified pragmatically via their ability to promote 
science as a whole, and not via some a priori basis. Hence the divisions we find in the 
practice and scope of the various sciences should not be taken as refuting holism or as 
indicating hard-and-fast epistemic divisions between mathematics and the so-called 



empirical sciences. Nor do they show that it is invariably irrational to modify some global 
principle to fix a more local problem.
These reflections apply to our ordinary conception of mathematical evidence as well. 
Empirical success no more confirms individual mathematical claims than it does individual 
theoretical hypotheses. However, it does provide a pragmatic justification for positing 
mathematical objects, truths about them, and principles for applying mathematical laws to 
experience. It encourages mathematicians to develop their own standards of evidence, so 
long as the result does not harm science as a whole. Because mathematics is our most 
global science, we should expect that many mathematical methods and principles would be 
justified by means of considerations neutral between the special sciences, and thus often 
pertaining to mathematics alone. In this way we can reconcile holism with the features of 
mathematical practice that Chihara, Parsons, and Sober have emphasized.
Considering the place of proof in mathematics will illustrate this. Early mathematicians 
probably took their experience with counting, bookkeeping, carpentry, and surveying as 
evidence for the rules and principles of arithmetic and geometry that they eventually took 
as unquestionably true. They began to put more emphasis on deduction after they became 
aware of the difficulties in deciding certain mathematical questions by appealing to 
concrete models—which, for example, are notoriously unreliable in deciding geometric 
questions. By the time of the Greeks, the goal of mathematics was to prove its results. 
Moreover, proof wins out from the perspective of science as a whole. For requiring 
mathematicians to give proofs increases the reliability of their theorems, and decreases 
their susceptibility to experimental refutation.
The development of non-Euclidean geometry and abstract algebra further promoted the 
purely deductive methodology of the axiomatic method through showing mathematicians 
how to make sense of structures that might not be realized physically. It also promoted a 
shift from viewing mathematical sentences 
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as unqualifiedly true or false to regarding them as true or false of structures of various 
types. These two developments have further insulated mathematics against empirical 
refutation. To see how, consider the case of Euclidean geometry. General relativity did 
refute it in its original role as a theory of physical space, but it still has important 
mathematical models, and survives through being reinterpreted as a theory of Euclidean 
spaces. A similar move is available when a scientific model incorporating a bit of 
mathematics proves inadequate to a physical application. It is usually far simpler to save 
the mathematics from refutation and conclude that the physical situation to which it was 
being applied failed to exhibit a suitable structure. We can use this technique to rescue any 
consistent theory—even a so-called empirical theory—by reinterpreting it. However, 



mathematical theories need no reinterpretation, since they do not assert that the structures 
they describe are realized in this world.
Of course, more needs to be done to answer fully the objections to the holist account of 
mathematical evidence. The foregoing paragraphs are offered as an indication of a way of 
responding to those objections.

3.  Ontological Commitment: Recognizing Objects

3.1.  Quine's Criterion of Ontological Commitment

One's first thoughts on the recognition of objects might be that we first acknowledge an 
object and then learn things about it. For example, we first see the tiger as it emerges from 
the brush, and later realize that it is about to attack us. But this would be contrary to both 
more sophisticated commonsense and holism. For to see the tiger we must see it as a tiger, 
and to do that, we must hold many beliefs about it. For example, we probably will believe 
that it is a large, animate object that looks like other objects we have identified as tigers. 
According to holism, recognizing the tiger is a matter of modifying our system of beliefs in 
certain ways; thus our evidence for the existence of the tiger ultimately traces to our 
evidence for a system of beliefs concerning it. What goes for tigers goes for objects 
generally: our evidence for them depends upon our evidence for our beliefs countenancing 
them. For this reason it is essential that we have a means for determining which objects we 
commit ourselves to in holding a system of beliefs. Quine's criterion of ontological 
commitment serves this purpose.
Quine's criterion applies directly to sentences and sets thereof (theories), and only 
indirectly to beliefs. (The transition from beliefs to sentences is based upon 
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assuming we can determine people's beliefs by seeing what sentences they are prepared to 
affirm.) Then the roughest form of the criterion may be put quite simply: a set of sentences 
is committed to those entities that must exist in order for the members of the set to be true. 
But this happens when the sentences in question affirm the existence of things through the 
use of quantifiers. Thus we may put the criterion more precisely as Sentences are  
committed to those entities over which their bound variables must range in order for them 
to be true. Here is how Quine puts it in "On What There Is": 
… We can very easily involve ourselves in ontological commitments by saying, for 
example, that there is something (bound variable) which red houses and sunsets have in 



common; or that there is something which is a prime number larger than a million. But this 
is essentially the only way we can involve ourselves in ontological commitments: by our 
use of bound variables. (Quine 1948, 12) 
… The variables of quantification, "something," "nothing," "everything," range over our 
whole ontology, whatever it may be; and we are convicted of a particular ontological 
presupposition if, and only if, the alleged presuppositum has to be reckoned among the 
entities over which our variables range in order to render one of our affirmations true. 
(Quine 1948, 13) 
Quine came to emphasize the triviality of what's going on here. 
The artificial notation " x" of existential quantification is explained merely as a symbolic 
rendering of the words "there is something x such that." So, whatever more one may care 
to say about being or existence, what there are taken to be are assuredly just what are taken 
to qualify as values of "x" in quantifications. The point is thus trivial and obvious. (Quine 
1990, 26-27) 
However, often it is far from clear as to what the ontological commitments of a set of 
sentences are. This is especially true of day-to-day talk in ordinary language. 
The common man's ontology is vague and untidy in two ways. It takes in many purported 
objects that are vaguely or inadequately defined. But also, what is more significant, it is 
vague in its scope; we cannot even tell in general which of those vague things to ascribe to 
a man's ontology at all, which things to count him as assuming. 
… a fenced ontology is just not implicit in ordinary language. The idea of a boundary 
between being and nonbeing is a philosophical idea, an idea of technical science in a broad 
sense… . 
We can draw explicit ontological lines when desired. We can regiment our 
notation. … Then it is that we can say the objects assumed are the values of the 
variables. … Various turns of phrase in ordinary language that seem to invoke novel sorts 
of objects may disappear under such regimentation. At other points new ontic 
commitments may emerge. There is room for choice, and one chooses with a view to 
simplicity in one's overall system of the world. (Quine, 1981a, 9-10) 
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To illustrate what Quine has in mind, consider this bit of hypothetical dialogue: 
John: I saw a possible car for you. 
Jane: I have many things occupying my time, but for your sake, I will look at it. 
John seems to be committed to possible cars (he says he saw one). Mary, on the other 
hand, seems committed to her own time, things that occupy it, and John's sake. But what is 
a sake? Or a thing occupying a person's time? Or a person's time, for that matter? If we 
simply paraphrase the dialogue, we can avoid such questions and reduce its apparent 
ontological commitments. 



John: I saw a car that might do for you. 
Jane: I am very busy now, but I will look at it, since you want me to. 
We have done quite a bit to clean up John's and Mary's ontologies! Now we may take John 
to commit himself to just the car he actually saw instead of a possible one, whatever that 
might be. Mary, though she is quite busy, need no longer be seen as involved with sakes or 
things occupying her time. This is just a somewhat humorous illustration of Quine's 
procedure. For Quine the serious applications are scientific and philosophical theories. By 
paraphrasing them into the canonical notation of extensional first-order logic, we try to 
assess and reduce ontological commitments. 
… But the simplification and clarification of logical theory to which a canonical notation 
contributes is not only algorithmic; it is also conceptual. Each reduction that we make in 
the variety of constituent constructions needed in building the sentences of sciences is a 
simplification. Each elimination of obscure constructions or notions that we manage to 
achieve, by paraphrase into more lucid elements, is a clarification of the conceptual 
scheme of science. The same motives that impel scientists to seek ever simpler and clearer 
theories adequate to the subject matter of their special sciences are motives for 
simplification and clarification of the broader framework shared by all sciences. … The 
quest of a simplest, clearest overall pattern of canonical notation is not to be distinguished 
from a quest of ultimate categories, a limning of the most general traits of reality. (Quine 
1960, 161) 
For Quine, one of the philosopher's major contributions comes from clarifying the 
language of science and mathematics in order to assess and reduce the ontological 
commitments of our theories of the world. Though Quine's criterion may be trivial in itself, 
the applications one might make of it are far from trivial.

3.2.  The Canonical Language and Benefits of Regimentation

As we have seen, before applying Quine's criterion, one must paraphrase the theory to be 
assessed into "canonical notation." Part of the reason for doing so is 
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to eliminate spurious ontological commitments. For example, even the language of 
working mathematics contains terms, such as, "1/0" or "(sin x)/x with x = 0" that appear to 
be referential, yet may fail to denote anything. Now we might declare sentences containing 
such terms to be false just as we might declare pieces of fiction false. But then what do we 
do with truths such as "There is no such number as 1/0"? In the face of this, some 
philosophers have responded that every name denotes something—even "the largest 



natural number." But for Quine there is a simpler and more economical solution: we avoid 
the offending expressions by paraphrasing away names and functional terms altogether. 
This can be done quite straightforwardly using Russell's theory of descriptions. Quine 
employs it, or an equivalent device, quite frequently, and in his canonical notation the only 
singular terms are variables.
Quine sees logic as ending with first-order logic,5 and his canonical notation also bans 
other notable adjuncts to first-order logic, such as modal operators and substitutional 
quantifiers. The modal operator "it is possible that" allows us to formulate the claim "It is 
possible that there are numbers but there are (in fact) no numbers"—a claim to which some 
nominalists subscribe. Such talk seems to recognize a kind of existence intermediate 
between being and nonbeing. Quine has never been able to make sense of this idea, and has 
made relatively little sense of modal operators themselves. Despite this and Quine's 
influence, modal operators have made a comeback in recent technical philosophy of 
mathematics.6 
Substitutional quantification is also popular with nominalists. Instead of requiring the 
existence of F, its truth a substitutional " xFx" counts as true if and only if "Fx" has a true 
substitution instance.7 This will count " x(x is a flying horse)" as true so long as we take 
"Pegasus is a flying horse" as true. Since some philosophers demur at counting the latter as 
false, they can use substitutional quantification to analyze talk of fictional entities. Fans of 
modal logic have also used it to deal with problems arising in interpreting quantifications 
containing modal operators. What is more significant for our purposes is that philosophers 
of mathematics have proposed using it to gain the formal advantages of having classes 
without having to pay the price of admitting them into one's ontology.
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Although substitutional quantifiers form no part of Quine's canonical notation, he appears 
to think that, unlike modal operators, they are not intrinsically unacceptable. However, 
nominalists should draw no comfort from this. 
This does not mean that theories using substitutional quantification and no objectual 
quantification can get on without objects. I hold rather that the question of the ontological 
commitments of a theory does not properly arise except as that theory is expressed in 
classical quantificational form, or insofar as one has in mind how to translate it into that 
form. I hold this for the simple reason that the existential quantifier, in the objectual sense, 
is given precisely the existential interpretation and no other: there are things which are thus 
and so. (Quine 1969c, 107) 
In Quine's view, rewriting mathematics using substitutional quantifiers would amount to 
abandoning the quest for ontological economy rather than achieving it.
Today realists in the philosophy of mathematics use Quine's criterion largely to argue for 
the existence of mathematical entities. "To do science," they claim, "we use variables 



ranging over mathematical entities and are, consequently, committed to their existence." 
(More on this in the section 4 below.) Anti-realists, on the other hand, often appeal to 
Quine's criterion to measure the success of their various attempts at ontological economy. 
"My system has no variables ranging over mathematical entities," they argue, "so, we need 
not be committed to their existence." Ironically, it's unclear how successful these anti-
realist attempts have been, because they employ languages that exceed Quine's canonical 
notation.8 

3.3.  Ontological Naturalism: Science Is the Ultimate Arbiter of Existence

Quine often emphasizes that his criterion tells us only what a theory says exists. It does not 
tell us what does exist. That, you will recall, is the job of science; this is Quine's 
naturalism. 
… naturalism: the recognition that it is within science itself, and not in some prior 
philosophy, that reality is to be identified and described. (Quine 1981a, 21) 
But Quine's criterion still has a role to play, since by applying it to the theories that science 
affirms, we determine what, according to science, exists.
Philosophers are not entirely out of the picture, however. Though they cannot transcend 
science, they can work within science and propose clarifications and 
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ontological reductions. It's in this spirit that Quine regards his own proposals for reducing 
mathematics to set theory. Here again is part of an earlier quote: 
The same motives that impel scientists to seek ever simpler and clearer theories adequate 
to the subject matter of their special sciences are motives for simplification and 
clarification of the broader framework shared by all sciences. … The quest of a simplest, 
clearest overall pattern of canonical notation is not to be distinguished from a quest of 
ultimate categories, a limning of the most general traits of reality. (Quine 1960, 161) 

3.4.  Introducing New Objects: Positing

Our focus so far has been on how we justify countenancing various objects. Though one 
might cite a local conception of evidence as an immediate justification for recognizing an 
object, ultimately one tacitly appeals to the success of a broader system committed to the 
type of thing in question. For example, having digested a proof of Cantor's Theorem, we 



may feel fully justified in countenancing uncountable sets. But this is predicated on our 
prior acceptance of sets themselves, and of whatever set theory might be needed for 
carrying out the proof in question and for inferring the existence of uncountable sets. With 
Quine, we might justify acquiescing in sets by citing their benefits to mathematics. We 
could in turn justify this by pointing to the importance to science as a whole of having a 
flourishing mathematics.9 
Now, what we have observed concerning sets applies to other types of objects—even 
ordinary physical bodies. You know there's an owl out in the dark, because you heard it 
screech, and you know an owl's screech. But here you are already presupposing owls and a 
rich body of beliefs about them, and all these are contained in a framework provided by 
your beliefs about birds, animals, and physical bodies.
Once we have in place a framework that countenances objects of a given kind, we are in a 
position to identify and authenticate objects of that kind, whether we do so via observation, 
instrumentation, or theoretical deduction. But how do we come to add new objects of 
various types to our ontology in the first place? Even when, according to later theory, we 
have been observing a type of object with our unaided senses all along, we seem to have a 
serious problem. For prior to having a framework countenancing the objects in question, 
we need not even be aware that we are observing any definite thing at all. For example, a 
layperson looking at the sky on a clear night may be aware of only the stars and the moon, 
while astronomers will be aware of galaxies, and much more. The difference between the 
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layperson and astronomers is that the latter have hypothesized a much richer ontology 
along with a rich theory of its members' behavior and their observable effects. To introduce 
an ontology in this way is to posit it. But while to posit some things is similar to making up 
a story about them—at least it is initially—this does not mean that astronomers have 
created the heavens. 
… .Considered relative to our surface irritations, which exhaust our clues to external 
physical objects, the molecules and their extraordinary ilk are thus much on a par with the 
most ordinary physical objects. The positing of these extraordinary things is just a vivid 
analogue of the positing or acknowledging of ordinary things: vivid in that the physicist 
audibly posits them for recognized reasons, whereas the hypothesis of ordinary things is 
shrouded in prehistory… . 
To call a posit a posit is not to patronize it. … Everything to which we concede existence is 
a posit from the standpoint of a description of the theory-building process, and 
simultaneously real from the standpoint of the theory that is being built. (Quine 1960, 22) 
Quine no more admits existence by fiat than he does truth by fiat.
This has very important consequences for Quine's philosophy of mathematics. 
Mathematics, at least on the realist reading of it that Quine favors, is about objects that 



have no place in space or time, and no effects upon our sensory apparatus. How, one 
wonders, could we have ever come to have any knowledge of such things? Not through 
intuition or other a priori insight—at least not if Quine is right. But there is nothing 
mysterious about our building theories that posit mathematical objects, for theory 
construction itself requires no contact with the things the theory purports to concern. And, 
if the theory forms a workable part of our overall system, no matter what its subject may 
be, then the entities to which it is committed (via Quine's criterion) have as much title to 
existence as "ordinary things" hypothesized "in prehistory."

4.  The Indispensability Argument for Mathematical Realism

Everyone grants that mathematics is very useful to the pursuit of science. It gives science 
the wherewithal for representing empirical findings through statistical and other numerical 
means and for explaining these findings using such concepts as those of acceleration, state 
vector, random mating, allelic frequency, expected utility, and welfare function. Moreover, 
mathematical laws permit scientists to deduce nonmathematical conclusions from 
assumptions, such as Newton's laws of motion, that are formulated in a mix of scientific 
and mathematical vocabulary. Eliminating mathematics would thus drastically alter the 
practice of working science.
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But what if the theoretical purposes of mathematics could be accomplished using a more 
parsimonious ontology without any reduction in the overall simplicity and economy of the 
resulting scientific theory? Quine would heartily approve, but he would not ask scientists 
to stop using mathematics. He would merely claim that since mathematics could be excised 
from the canonical formulation of science, science (and thus we) should no longer 
acknowledge its truth or ontological commitments. 
… not that the idioms thus renounced are supposed to be unneeded in the market place or 
in the laboratory. … The doctrine is that all traits of reality worthy of the name can be set 
down in idiom of this austere form if in any idiom. (Quine 1960, 228) 
Although Quine attempted to eliminate mathematics from science and applauded efforts 
aimed at showing that the mathematical needs of science can be reduced, he came to 
believe that most classical mathematics is indispensable to science (Quine 1960, 270).
Since there is, so far as we know, no way of eliminating mathematics from the "austere 
idiom" of the canonical formulation of science, we are bound to admit the existence of 
those mathematical objects that science posits. This argument, which is rooted in Quine's 



writings and was propounded explicitly by Hilary Putnam, has become known as the 
Indispensability Argument for Mathematical Objects.10 
We can formulate a more explicit version of an indispensability argument as follows: First, 
mathematics is an indispensable component of natural science. Second, thus, by holism, 
whatever evidence we have for science is just as much evidence for the mathematical 
objects and the mathematical principles it presupposes as it is for the rest of its theoretical 
apparatus. Third, whence, by naturalism, this mathematics is true, and the existence of 
mathematical objects is as well grounded as that of the other entities posited by science. I 
call this the Holism-Naturalism (H-N) Indispensability Argument. It is clearly based upon 
principles that Quine accepts, although it is not as clear that it accurately paraphrases his or 
Putnam's arguments.
Now lots of philosophical energy and talent—including some of Quine's—has been spent 
trying to undermine the first premise of this argument by showing that mathematics is 
dispensable from science.11 More recently, however, 
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philosophers have questioned other aspects of the argument. Neither Penelope Maddy nor 
Elliott Sober thinks that we can count on science to provide evidence for the truth of 
mathematics. As we saw earlier, Sober claims that scientific testing fails to confirm the 
mathematics used in science.
Maddy's criticism is based upon observing that much of the mathematics used in science 
occurs in theories, such as the ideal theory of gases, that scientists openly acknowledge as 
false yet still employ. She argues that this raises the possibility that the confirmation 
coming from membership in scientific theories that are accepted as true covers too little 
mathematics to be of comfort to mathematical realists. In short, too much of mathematized 
science may fall outside the scope of the H-N argument's naturalism premise to support 
mathematical realism (Maddy 1992, 281).
It is not clear how Quine or Putnam would respond to this criticism, for it is not even clear 
that the H-N argument is theirs. But one can set aside Maddy's worry by moving to another 
version of the indispensability argument. For whatever attitude scientists take toward their 
own theories, they cannot consistently regard the mathematics they use as merely of 
instrumental value. Take Newton's account of the orbits of the planets as an example. He 
calculated the shape of the orbit of a single planet, subject to no other gravitational forces, 
traveling about a fixed star. He knew that no such planet exists, but he also believed that 
there are mathematical facts concerning its orbit. In deducing the shape of such orbits, he 
presumably took for granted the mathematical principles he used. For the soundness of his 
deduction depended upon their truth. Furthermore, in using his (mathematical) model to 
explain the orbits of actual planets, he presumably took its mathematics to be true. For he 
explained the orbits of planets in our solar system by saying that they approximate the 



behavior of an isolated system consisting of a single planet orbiting a single star. For this 
explanation to work, it must be true that the type of isolated system (Newtonian model) has 
the mathematical properties Newton attributed to it. This illustrates that even when 
applying mathematics to idealizations or theories they know are wrong, scientists use it in 
a way that commits them to its truth and ontology.
Reflecting on this leads one to the Pragmatic Indispensability Argument, which runs as 
follows: 

1. 
 
In stating its laws and conducting its derivations, science assumes the existence of 
many mathematical objects and the truth of much mathematics. 

2. 
 
These assumptions are indispensable to the pursuit of science; moreover, many of the 
important conclusions drawn from and within science could not be drawn without 
taking mathematical claims to be true. 

3. 
 
So we are justified in drawing conclusions from and within science only if we are 
justified in taking the mathematics used in science to be true. 
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Notice that, unlike the earlier H-N Indispensability Argument, this one does not 
presuppose that our best scientific theories are true or even that they are well supported. It 
applies wherever science presupposes the truth of some mathematics. Thus, as we noted 
earlier, it applies even to the mathematics contained in those refuted scientific theories that 
scientists still use and to the mathematics of idealized scientific models. Furthermore, the 
argument, at least as it stands, contains no claim that the evidence for science is also 
evidence for mathematics. We can extend this argument to infer that we should 
acknowledge the truth of mathematics on pragmatic grounds. For given that we are 
justified in doing science, we are justified in using (and thus assuming the truth of) the 
mathematics in science, because we know of no other way of obtaining the explanatory, 
predictive, and technological fruits of science.12 
Since much standard mathematics is used in science, the indispensability arguments 
support realism about many parts of mathematics. Yet, as Quine was aware, and Maddy 
and others have emphasized, indispensability arguments fail to cover the more theoretical 
and speculative branches of mathematics. Currently science neither needs nor employs this 
mathematics, and it does not even help in simplifying and systematizing the mathematics 
that science does apply. Thus it is not part of the Web of Belief, and not connected even 
indirectly to experience.

5.  Ontology and Ontological Relativity



Quine has frequently urged that we take the ontology of mathematics to be one of classes 
or sets. Numbers, functions, vectors, groups, spaces, and so on are to be reduced to them in 
the familiar ways.13 This is because we need to use classes for many purposes, both 
mathematical and nonmathematical, and we obtain a simpler ontology by having just 
classes rather than classes plus other mathematical and abstract objects. Here is how Quine 
argued for countenancing classes in Word and Object: 
The versatility of classes in thus serving the purposes of widely varied sorts of abstract 
objects is best seen in mathematics, but it spills over. … Such is the power of the notion of 
class to unify our abstract ontology. To surrender this benefit and face the old abstract 
objects again in their primeval disorder would be a wrench, worth making if it were all. 
But we must remember that the utility 
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of classes is not limited to explication of the various other sorts of abstract objects. The 
power of the notion on other counts … keeps it in continual demand in mathematics and 
elsewhere as a working notion in its own right. … Thus it is that one resolves to keep 
classes and somehow excise the paradoxes. (Quine 1960, 267) 
Here Quine was writing both as a philosopher and as a logician, and advocating that we 
need no abstract objects in all of science but classes. This sounds like first philosophy, but 
remember that, on Quine's view, the work of clarifying and reducing the ontological 
requirements of philosophy and mathematics is the same type of work that scientists in 
other fields do when they clarify and simplify theories in their home disciplines. The work 
of Frege, Russell, Quine, and others in unifying the foundations of mathematics using class 
theory is as much a piece of theoretical science as Von Neumann's reformulation of 
quantum mechanics using Hilbert spaces.
Some philosophers and mathematicians have argued that mathematics has no need for a 
reduced ontology. One might read such an argument into some of Hilbert's writings. On 
this reading, all that mathematicians need are clearly specified axioms for the branch of 
mathematics within which they are working. It is enough that they be assured that some 
things satisfy those axioms. Otherwise the nature of these things is of no concern.14 I am 
not aware of Quine's responding explicitly to such reasoning, but a response is implicit in 
the passage quoted above. It would run as follows: Mathematics, even on Hilbert's' view of 
it, needs some ontology in order to be assured that its axioms are not vacuous. There are 
too few concrete physical objects to fill the bill. (Ditto for mental objects—if you are so 
rash as to countenance them.) Thus mathematics requires abstract objects. These are best 
provided through a unified ontology of classes.
Quine was aware of other proposals for ontological foundations for mathematics. For 
example, some mathematicians have urged that category theory is a much better vehicle for 



mathematics than set theory, and that it should take over that role. In Set Theory and Its  
Logic (1963), Quine does mention that category theory is useful for dealing with very large 
collections. But he does not defend sets and classes against the attacks from advocates of 
category theory in that book, and I am not aware of any place where he does.
As late as Theories and Things (1981c) Quine runs through his usual brief for an ontology 
of physical objects and sets of physical objects. But then he takes the argument a step 
further. In the name of simplicity we reduce physical objects to the space-time regions they 
occupy, and these in turn to sets of space-time coordinates relative to some fixed 
coordinate system. But space-time coordinates are ordered quadruples of real numbers, and 
these in turn reduce in familiar ways to sets built up from the empty set, leaving nothing 
but pure sets (Quine 1981a, 16-18).
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Quine's discussion then turns from this reduced ontology to other ontological candidates 
generated by reinterpreting our theory of the world while preserving its observational 
consequences. Here "we … merely change or seem to change our objects without 
disturbing either the structure or the empirical support of a scientific theory in the 
slightest" (Quine 1981a, 19). To do this, it suffices that we be able to specify a one-one 
function—Quine calls it a "proxy function"—which maps each object in the original 
ontology to an object in the new ontology. Then, using a well-known technique from 
formal logic, we can reinterpret each predicate of our theory so that it is true of something 
in the new ontology if and only if it was true (as originally interpreted) of this things 
inverse under the proxy function. 
The apparent change is twofold and sweeping. The original objects have been supplanted 
and the general terms reinterpreted. There has been a revision of ontology on the one hand 
and of ideology, so to say, on the other; they go together. Yet verbal behavior proceeds 
undisturbed, warranted by the same observations as before and elicited by the same 
observations. Nothing really has changed. (Quine 1981a, 19) 
Quine concludes from this that reference is inscrutable, that is, there is no saying 
absolutely whether our words refer to this or that, but what they refer to relative to a fixed 
interpretation. As we move from one ontology to another, our words change their 
reference, too; yet we have arranged for the truth-values of our sentences—the facts, so to 
speak—to stay the same. There is no fact of the matter concerning the references of our 
words—at least in the sense that we can vary their references at will while leaving the facts 
unvaried. Besides calling this the inscrutability of reference, Quine refers to it as 
ontological relativity: there is no fact as to what the ontology of a theory is absolutely, but 
only relative to a means of interpreting it in a language we take at face value (Quine 1981a, 
19-20; see also Quine 1969a, 50-54 and 1990, 30-34).



Notice how nicely this fits with Quine's holism. According to holism, it is only relative to a 
local conception of evidence that we can say that a particular experience verifies or 
falsifies a particular sentence of some theory. Otherwise, experience bears upon the theory 
as a whole. Similarly, it is only relative to our parochial ontology and interpretation of our 
language that we can say that a particular word picks out a particular object of our 
experience. But doesn't something (e.g., our behavior or the causal relations between our 
words and the world) fix the references of our words? No. Just as there are many ways to 
reconcile a theory with a recalcitrant experience, so there many candidate references for 
our words, and no way to single out one. After applying a proxy function, "verbal behavior 
proceeds undisturbed, warranted by the same observations as before and elicited by the 
same observations. Nothing really has changed" (Quine 1981a, 19).
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Of course, if we take our home language at face value, then we can simply single out an 
intended interpretation, using our own words to do so. Thus we simply state: the intended 
model of the Peano Axioms is the natural number sequence. So long as we don't question 
the reference of "the natural number sequence," we have no trouble distinguishing the 
standard model from, say, the sequence of even natural numbers or in ruling out an 
interpretation that construes the successor function, s(x), as x + 2. But once we question the 
references of our own words, nothing precludes the phrase "the natural number sequence" 
from referring to the even number sequence, the finite Von Neumann ordinals, or any 
progression.
These considerations led Quine to put an emphasis on the logical structure of a theory, 
since this is what remains invariant under applications of proxy functions. As Quine put it, 
"structure is what matters to a theory, and not the choice of its objects." The objects "serve 
merely as indices along the way, and we may permute or supplant them as we please as 
long as sentence-to-sentence structure is preserved" (Quine 1981a, 20; see also Quine 
1990, 31).
Yet after presenting these ideas Quine was moved to reaffirm his realism with respect to 
ordinary bodies and the theoretical entities of science and mathematics. As a naturalist, he 
is committed to the ontological commitments of current science. As to his previous 
reflections that seem to belittle objects, Quine points out that these belong not to ontology 
but to "the methodology of ontology and thus to epistemology." The considerations 
showed that we could turn our backs upon external things and classes and "ride the proxy 
functions to something strange and different without doing violence to any evidence. But 
all ascription of reality must come rather from within one's theory of the world; it is 
incoherent otherwise" (Quine 1981a, 21).15 
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13. Three Forms of Naturalism
Penelope Maddy 

Many philosophers—from Hume1 to the pre-Fregean German materialists,2 from 
Reichenbach to Arthur Fine3 —have been classified as "naturalists," in some sense or other 
of that elastic term, but the version most influential in contemporary philosophy of logic 
and mathematics undoubtedly comes to us from Quine. For him, naturalism is 
characterized as "the recognition that it is within science itself, and not in some prior 
philosophy, that reality is to be identified and described" (1981a, p. 21). Agreeing 
wholeheartedly with this sentiment and the spirit behind it, some post-Quinean naturalists, 
including John Burgess4 and myself, occasionally find ourselves uncomfortably at odds 
with particular doctrines Quine 
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develops in his pursuit of philosophy naturalized, doctrines that seem to us less than 
completely true to his admirable naturalistic principles. Yet Burgess and I sometimes 
disagree on just which doctrines those are and on how to go about correcting the situation!
My plan here is to sketch the outlines of the Quinean point of departure, then to describe 
how Burgess and I differ from this, and from each other, especially on logic and 
mathematics. Though my discussion will touch on the work of only these three among the 
many recent "naturalists," the moral of the story must be that "naturalism," even restricted 



to its Quinean and post-Quinean incarnations, is a more complex position, with more 
subtle variants, than is sometimes supposed.5 

I.  Quinean roots

When Quine describes his naturalism as the "abandonment of the goal of a first 
philosophy" (1975, p.72), he alludes to Descartes, who viewed his Meditations on First  
Philosophy as the only hope for "establish[ing] anything at all in the sciences that [is] 
stable and likely to last" (1641, p. 12). His approach, of course, was to doubt everything, 
including all of science and common sense, in order to uncover prescientific, first 
philosophical certainties that would then underpin our knowledge.6 Few would suggest, at 
this late date, that Descartes succeeded in this, but Quine goes further, rejecting the project 
itself: 
I am of that large minority or small majority who repudiate the Cartesian dream of a 
foundation for scientific certainty firmer than scientific method itself. (Quine 1990, p. 19) 
The simple idea is that no extrascientific method of justification could be more convincing 
than the methods of science, the best means we have.
The Quinean naturalist, then, "begins his reasoning within the inherited world theory as a 
going concern" (Quine 1975, p. 72). Alongside the familiar pursuits of physics, botany, 
biology, and astronomy, the naturalist asks how it is that human beings, as described by 
physiology, psychology, linguistics, and the rest, come to reliable knowledge of the world, 
as described by physics, chemistry, 
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geology, and so on.7 This is the task of epistemology naturalized, "the question how we 
human animals can have managed to arrive at science" (Quine 1975, p. 72). Ontology is 
also naturalized: 
Our ontology is determined once we have fixed upon the over-all conceptual scheme 
which is to accommodate science in the broadest sense … the considerations which 
determine a reasonable construction of any part of that conceptual scheme, for example, 
the biological or the physical part, are not different in kind from the considerations which 
determine a reasonable construction of the whole. (Quine 1948, pp. 16-17) 
Ontological questions … are on a par with questions of natural science. (Quine 1951, p. 
45) 
Insofar as traditional philosophical questions survive in the naturalistic context, they are 
undertaken "from the point of view of our own science, which is the only point of view I 
can offer" (Quine 1981c, p. 181).



One portion of this naturalistic undertaking will be a scientific study of science itself. 
Obviously, this intrascientific inquiry can deliver no higher degree of certainty than that of 
science. As Quine remarks, "Repudiation of the Cartesian dream is no minor deviation" 
(1990, p. 19). "Unlike the old epistemologists, we [naturalists] seek no firmer basis for 
science than science itself" (Quine 1995, p. 16). The naturalist 
sees natural science as an inquiry into reality, fallible and corrigible but not answerable to 
any supra-scientific tribunal, and not in need of any justification beyond observation and 
the hypothetico-deductive method. (Quine 1975, 72) 
Science, on this picture, is open to neither criticism nor support from the outside.
But this leaves ample room for both vigorous criticism and rigorous support of particular 
scientific methods: "A normative domain within epistemology survives the conversion to 
naturalism, contrary to widespread belief … " (Quine 1995, p. 49).8 What's changed is that 
the normative scrutiny comes not from an extrascientific perspective, but from within 
science: "Our speculations about the world remain subject to norms and caveats, but these 
issue from science itself as we acquire it" (Quine 1981c, p. 181). Here Quine returns to a 
favorite image: 
Neurath has likened science to a boat which, if we are to rebuild it, we must rebuild plank 
by plank while staying afloat in it. The philosopher and the scientist are in the same boat. 
(Quine 1960, p. 3) 
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He [the naturalist] tries to improve, clarify and understand the system [science] from 
within. He is the busy sailor adrift on Neurath's boat. (Quine 1975, p. 72) 
This process is familiar: norms of confirmation and theory construction often arise in 
scientific practice, from simple canons of observation through elaborate guidelines for 
experimental design to highly developed maxims like mechanism.9 As science progresses, 
these are put to the test, sometimes successfully and sometime not, and in this way their 
claim to a role in shaping future science is correspondingly strengthened or undermined. 
As Quine remarks, "We were once more chary of action at a distance than we have been 
since Sir Isaac Newton" (1981c, p. 181).
When Quine begins his naturalistic scientific study of science, he is struck by a simple but 
important observation of Duhem: 
The physicist can never subject an isolated hypothesis to experimental test, but only a 
whole group of hypotheses; when the experiment is in disagreement with his predictions, 
what he learns is that at least one of the hypotheses constituting this group is unacceptable 
and ought to be modified; but the experiment does not designate which one should be 
changed. (Duhem 1906, p. 187) 
This phenomenon undermines the picture of a single scientific claim enjoying "empirical 
content" by itself, and leads Quine to holism and his famous "web of belief": 



Our statements about the external world face the tribunal of sense experience not 
individually but only as a corporate body. … The totality of our so-called knowledge or 
beliefs, from the most casual matters of geography and history to the profoundest laws of 
atomic physics … is a man-made fabric which impinges on experience only along the 
edges. … (Quine 1951, pp. 41-42) 
Somewhat later, Quine tempers this holism to something more "moderate": 
It is an uninteresting legalism … to think of our scientific system of the world as involved 
en bloc in every prediction. More modest chunks suffice … (Quine 1975, p. 71) 
But the moral—that particular scientific theories are tested and confirmed as wholes—
remains intact.
Faced with a failed prediction, then, Quine notes that, strictly speaking: 
Any statement can be held true come what may, if we make drastic enough adjustments 
elsewhere in the system. … Conversely, by the same token, no statement is immune to 
revision. (Quine 1951, p. 43) 
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Practically speaking, we are guided by the "maxim of minimum mutilation" (Quine 1990, 
p. 14), "our natural tendency to disturb the total system as little as possible" (Quine 1951, 
p. 44), so we quite properly prefer to alter simple statements about observable physical 
objects—deciding that the swami only seems to levitate—rather than highly general laws 
(e.g., the law of gravity) if this is at all possible. In the image of the web, altering a 
statement closer to the experiential edges causes less widespread disturbance than revising 
a centrally located generality.
Granting that confirmation accrues holistically to scientific theories, on what sort of 
evidence is this confirmation based? On what grounds, for example, do we adopt atomic 
theory? Quine addresses this question as he continues his pursuit of a "scientific 
understanding of the scientific enterprise" (1955, p. 253). 
The benefits … credited to the molecular doctrine may be divided into five. One is 
simplicity. … Another is familiarity of principle. … A third is scope. … A fourth is 
fecundity. … The fifth goes without saying: such testable consequences of the theory as 
have been tested have turned out well, aside from such sparse exceptions as may in good 
conscience be chalked up to unexplained interferences. (Quine 1955, p. 247) 
In another place ((1970), ch. V), Quine and Ullian give a slightly different list of 
theoretical virtues—conservatism, generality, simplicity, refutability, modesty, plus 
conformity with observation—and elsewhere (1990, p. 95), Quine lists economy and 
naturalness as examples, but the general flavor is the same throughout. Finally, as Quine 
notes, the various virtues can conflict; they must be balanced off against one another in 
particular cases.



Quine acknowledges that such a defense of atomic theory is indirect, and he considers the 
possibility that 
the benefits conferred by the molecular doctrine give the physicist good reason to prize it, 
but afford no evidence of its truth. … Might the molecular doctrine not be ever so useful in 
organizing and extending our knowledge of the behavior of observable things, and yet be 
factually false? (Quine 1955, p. 248) 
Quine begins his response by pushing this skeptical line of thought even further, calling 
into question the tendency to "belittle molecules … leaving common-sense bodies 
supreme": 
What are given in sensation are variformed and varicolored visual patches, varitextured 
and varitemperatured tactual feels, and an assortment of tones, tastes, smells and other 
odds and ends; desks [and other common-sense bodies] are no more to be found among 
these data than molecules. (Quine 1955, p. 250) 
This line of thought tempts us to conclude that 
In whatever sense the molecules in my desk are unreal and a figment of the imagination of 
the scientist, in that sense the desk itself is unreal and a figment of the imagination of the 
race. (Quine 1955, p. 250) 
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The upshot would be that only sense data are real, but this conclusion 
is a perverse one, for it ascribes full reality only to a domain of objects for which there is 
no autonomous system of discourse at all. … Not only is the conclusion bizarre; it vitiates 
the very considerations that lead to it. (Quine 1955, pp. 254, 251) 
We can hardly see ourselves as positing objects to explain our pure sense data when those 
sense data can't even be described without reference to objects.
All this, Quine counts as a reductio: "Something went wrong with our standard of reality' 
(1955, p. 251). To correct the situation, he urges that we turn this tendency of thought on 
its head: 
We became doubtful of the reality of molecules because the physicist's statement that there 
are molecules took on the aspect of a mere technical convenience in smoothing the laws of 
physics. Next we noted that common-sense bodies are epistemically much on a par with 
the molecules, and inferred the unreality of common-sense objects themselves. (Quine 
1955, p. 251) 
But surely "the familiar objects around us" are real if anything is; "it smacks of a 
contradiction in terms to conclude otherwise." So, 
Having noted that man has no evidence for the existence of bodies beyond the fact that 
their assumption helps him organize experience, we should have done well, instead of 
disclaiming the evidence for the existence of bodies to conclude: such, then, at bottom, is 
what evidence is, both for ordinary bodies and for molecules. (Quine 1955, p. 251) 



This, then, is Quine's conclusion: the enjoyment of the theoretical virtues is, at bottom, 
what supports all our knowledge of the world.
With this quick summary of Quine's views on science and the scientific study of science as 
backdrop, we can turn to his naturalist's position on logic and mathematics. He sees our 
knowledge of both as part of our web of belief, part of our best scientific theorizing about 
the world, confirmed with the rest by cooperative enjoyment of the theoretical virtues: 
A self-contained theory which we can check with experience includes, in point of fact, not 
only its various theoretical hypotheses of so-called natural science but also such portions of 
logic and mathematics as it makes use of. (Quine 1954, p. 121) 
Confining our attention to logic for the moment, this means, for example, that the pursuit 
of the theoretical virtues might one day lead us to revise one or another of our current laws: 
Revision even of the logical law of the excluded middle has been proposed as a means of 
simplifying quantum mechanics; and what difference is there in principle between such a 
shift and the shift whereby Kepler superseded Ptolemy, or Einstein Newton, or Darwin 
Aristotle? (Quine 1951, p. 43) 
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The great weight of the maxim of minimum mutilation would stand against such a move, 
and Quine remarks, skeptically, that "the price is perhaps not quite prohibitive, but the 
returns had better be good" (1970, p. 86; 1986, p. 86).10 
Readers familiar with this classical Quinean position on the revisability of logic are 
sometimes puzzled by later remarks to the effect that a deviant logician cannot disagree 
with the classical logician because his embrace of different logical laws shows that he 
actually means something different by the logical connectives. As Quine puts it: "Here, 
evidently, is the deviant logician's predicament: when he tries to deny the doctrine he only 
changes the subject" (1970, p. 81; 1986, p. 81). This is less jarring than it might seem, 
given that a change to new connectives can apparently be motivated by the same scientific 
reasons that were first imagined as motivating a change of logical laws: 
By the reasoning of a couple of pages back, [the deviant logician] changes the subject. This 
is not to say that he is wrong in doing so. … he may have his reasons. (Quine 1970 p.83; 
1986, p. 83) 
It is undoubtedly odd to hear Quine distinguishing change of meaning from change of 
theory,11 but the central thesis of the revisability of logic on empirical grounds remains 
untouched.
However, a real departure on the revisability of logic can be found in a late discussion of 
the holism. Here Quine returns to the scientist facing a falsified prediction: 
We have before us some set S of purported truths that was found jointly to imply the false 
[prediction]. … Now some one or more of the sentences in S are going to have to be 
rescinded. We exempt some members of S from this threat by determining that the fateful 



implication still holds without their help. Any purely logical truth is thus 
exempted. … (Quine 1990, p. 14) 
This qualification of the revisability doctrine to rule out revision of logic is perhaps not 
unwelcome: one common objection to the original Quinean web has been that some laws 
of logic are needed for the simple manipulations of web maintenance12 (the law of 
noncontradiction, for example, is what tells us we have 
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to change something when we reach a falsified prediction13 ), so it is hard to see how these 
laws could be revised without crippling the scientific enterprise. But we are left with no 
replacement for the holistic justification of the assumption that our logic (with our 
meanings), as opposed to some deviant logic (with deviant meanings), is more suitable for 
our scientific theorizing about the world.
Finally, mathematics. First, we observe that our scientists typically make use of 
mathematics in their theorizing. This might be a mere manner of speaking—like saying 
"patience is a virtue" to mean that a patient person is to that extent virtuous—but strenuous 
efforts to reconstrue science in a mathematics-free idiom, from Quine and Goodman to 
Field, have all failed.14 Second, as naturalized metaphysicians, we take science to be our 
best guide to what there is and how it operates. Third, as holists, we take a scientific theory 
to be confirmed as a whole, the mathematical along with the physical hypotheses.15 To 
conclude, we apply Quine's criterion of ontological commitment (Quine 1948), which 
takes science to establish the existence of precisely those things that appear in its 
existential claims. Thus we arrive at Quine's mathematical realism by means of his 
"indispensability argument." Notice that the evidence for mathematical objects is the same 
as for molecules and for common-sense objects—participation in a theory with the 
theoretical virtues—and recall that "such … at bottom … is what evidence is" (Quine 
1955, p. 251).
This famous argument only supports the existence of those mathematical entities that 
appear in our best scientific theory. But there is more to mathematics than this, as Quine 
recognizes: 
A word finally about the higher reaches of set theory itself and kindred domains where 
there is no thought or hope of applying in natural science. When 
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I likened mathematical truths to empirical ones … I was disregarding these mathematical 
flights. … how should we view them? (Quine 1995, p. 56) 
At one point, they're dismissed as meaningless: 



So much of mathematics as is wanted for use in empirical science is for me on a par with 
the rest of science. Transfinite ramifications are on the same footing insofar as they come 
of a simplificatory rounding out, but anything further is on a par rather with uninterpreted 
systems. (Quine 1984, p. 788) 
Later on, Quine grudgingly relents: 
What of the higher reaches of set theory? We see them as meaningful because they are 
couched in the same grammar and vocabulary that generate the applied parts of 
mathematics. We are just sparing ourselves the unnatural gerrymandering of grammar that 
would be needed to exclude them. (Quine 1990, p. 94) 
Having allowed them meaning, he also allows truth-value, but given their complete 
isolation from the data of experience, no evidence is available either way.
In the absence of holistic confirmation or disconfirmation from experience, Quine proposes 
we proceed simply by applying the remaining theoretical virtues. In particular, he suggests, 
simplicity or economy supports Gödel's axiom of constructibility, V = L, and opposes large 
cardinal axioms. This choice "inactivates the more gratuitous flights of higher set theory" 
(Quine 1990, p. 95), Quine remarks with approval. He insists this approach is "no threat to 
the starry-eyed set theorist for whom the sky is the limit," because the set theorist's 
statements are still meaningful and his theory of large cardinals "still makes proof-theoretic 
sense" (Quine 1995, p. 56). But this concession can't mask the fact that Quine's preference 
for V = L contradicts the near-unanimous opinion of practicing set theorists.

II.  Two Post-Quineans

Given this sketch of Quine's naturalism and its consequences, as he sees them, for logic 
and mathematics, let's turn to the views of our two post-Quinean naturalists, to illuminate 
both their departures from Quine himself and their disagreements with each other. To bring 
some order to this three-ringed circus, I'll break down this exercise in compare-and-
contrast under a series of headings. Let's begin by considering the "science" in which 
"reality is to be identified and described."
end p.445

II.1. Science

Quine plainly acknowledges that "I use 'science' broadly," including not only the "hard 
sciences", but also "softer sciences, from psychology and economics through sociology to 
history" (1995, p. 49). All these presumably display the markers of "observation and the 



hypothetico-deductive method" (1975, p. 72) and some attention to the theoretical virtues. 
And, conversely, any undertaking that shares these markers is likewise science, regardless 
of whether or not it falls squarely within some established branch. For Quine, the scientific 
study of science, a part of naturalized epistemology, is of this sort: 
The inquiry proceeds in disregard of disciplinary boundaries but with respect for the 
disciplines themselves and appetite for their input. (Quine 1995, p. 16) 
We theorize about science, using the results and methods of science itself.
Burgess's "science" seems in some ways narrower than Quine's; for example, he speaks of 
the "scientific community … whether understood narrowly, as including only specialist 
professionals, or broadly, as including also informed laypeople" (Burgess 1990, p. 5). Even 
the broad sense here seems limited to the established scientific disciplines, each a specialty 
unto itself, which may leave us wondering where the naturalist's scientific study of science 
is to find a home. And the semblance of a serious departure from Quine is encouraged by 
Burgess's insistence that the naturalist's project must be purely descriptive: "It seems that 
prescriptive methodology could not be a branch of science, though descriptive 
methodology is" (Burgess 1990, p. 6).16 
In tone, at least, this tune diverges from Quine's. "The busy sailor adrift on Neurath's boat" 
is out to "improve, clarify and understand the system from within," not simply to describe 
the behaviors of the tribe of credentialed scientists. For Quine, the naturalistic study of 
science examines the methods of science with an eye to understanding how and why they 
are effective. Shoulder to shoulder with scientists, the naturalist strives to appreciate the 
reasons behind their design of experiments, their evaluation of evidence, and their 
preference for one theoretical elaboration over another; the ideal practicing scientist should 
be prepared to explain these things in terms of the general canons of scientific inquiry they 
both share. If the naturalist is a member of the scientific community, she should have the 
same grounds for scientific ratification and critique of scientific methods as are available to 
her fellow scientists. Science is a self-corrective process in which the naturalist 
participates.
At least on the score of normativity, I suspect that the semblance of disagreement here is 
largely illusory. Burgess (writing in collaboration with Gideon 
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Rosen) clearly holds that the naturalist is a "citizen of the scientific community" (Burgess 
and Rosen (1997), p. 33).17 And there is this important passage: 
science is not a closed guild with rigid criteria of membership. Philosophers professing 
naturalism often do contribute to debates in semantical theory or cognitive studies or other 
topics in the domain of linguistics or psychology, even though they are not officially 
affiliated with a university department in either of those fields. In principle nothing would 
bar such philosophers from participating in discussions on topics in the domain of 



chemistry or geology, though in practice they seldom do. The naturalists' commitment is at 
most to the comparatively modest proposition that when science speaks with a firm and 
unified voice, the philosopher is either obliged to accept its conclusions or to offer what  
are recognizably scientific reasons for resisting them. (Burgess and Rosen 1997, p. 65; 
added) 
This leaves room for Quine's naturalistic justification and critique of scientific methods, for 
normative, prescriptive stands, since his "busy sailor" was never tempted to offer anything 
other than "recognizably scientific" grounds. Thus, it seems that Burgess's insistence that 
the naturalist's task is purely descriptive doesn't contradict Quine's insistence that 
normativity survives the move to naturalism because Quine is endorsing evaluations 
internal to science and Burgess is rejecting evaluations external to science.
But perhaps one more subtle difference remains. In Burgess's phrasing, the philosopher 
"should become a citizen of the scientific community … should become naturalized" 
(Burgess 1990, p. 5). In contrast, Quine's "busy sailor" would seem to be a native, not 
someone in need of conversion. Perhaps this is merely stylistic, but for my part, I much 
prefer the latter formulation. My naturalist "begins his reasoning within the inherited world 
theory as a going concern" (Quine 1975, p. 72). Such a naturalist, asked why she believes 
in, say, atoms, will react as an ordinary scientist, citing the usual scientific evidence (more 
on this below). Another sort of naturalist, the sort who started as a first philosopher and 
subsequently became a naturalized citizen of science, might be tempted to reply to the 
same question by citing the fact that her fellow scientists so believe and that she now 
believes as her fellow citizens do (i.e., "science says there are atoms and I, the naturalist, 
believe the utterances of science"). I have no reason to think that the Quinean or Burgessite 
naturalist would give the second answer, but my naturalist would certainly give the first.18 
Where our three naturalists' views of "science" clearly diverge is on the status of 
mathematics. As we've seen, Quine includes mathematics as scientific, but only insofar as 
it takes part in empirical science, plus a bit more for "simplificatory roundings out" and a 
bit more again to avoid "unnatural gerrymandering of 
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grammar." But evidence, for Quine, is always empirical evidence; proper methods are 
always those of natural science. Even in the grudgingly admitted higher reaches of set 
theory, it is the familiar theoretical virtues common to empirical theories that carry the day.
My naturalist sees things differently.19 She begins, as Quine's does, within empirical 
science, and eventually turns, as Quine's does, to the scientific study of that science. She is 
struck by two phenomena: first, most of her best theories involve at least some 
mathematics, and many of her most prized and effective theories can only be stated in 
highly mathematical language; second, mathematics, as a practice, uses methods different 
from those she's turned up in her study of empirical science. She could, like the Quinean, 



ignore those distinctive methods and hold mathematics to the same standards as natural 
science, but this seems to her misguided. The methods responsible for the existence of the 
mathematics she now sees before her are distinctively mathematical methods; she feels her 
responsibility is to examine, understand, and evaluate those methods on their own terms; to 
investigate how the resulting mathematics does (and doesn't) work in its empirical 
applications; and to understand how and why it is that a body of statements generated in 
this way can (and can't) be applied as they are.
Burgess (with Rosen) goes further in his disagreement with Quine, sharply criticizing any 
naturalism according to which 
the mathematical sciences—so often considered by non-philosophers the very model of a 
progressive and brilliantly successful cognitive endeavor—must somehow be expelled 
from the circle of "sciences." (Burgess and Rosen 1997, p. 211) 
To do this is to "mak[e] invidious distinctions … marginaliz[e] some sciences (the 
mathematical) and privileg[e] others (the empirical)" (Burgess and Rosen 1997, p. 211). 
Here it must be admitted that both Quine and I are guilty of so privileging natural science 
and of giving special attention to mathematics only because of its role in science.
But, I do not follow Quine in the final move decried by Burgess (with Rosen), the one 
taken by those who "simply discard whatever of pure mathematics has not yet found 
application in the empirical sciences" (Burgess and Rosen 1997, p. 211). My naturalist, 
unlike Quine's, does not hold that those parts of mathematics that have been used in 
applications should be treated differently from the rest. She notes that branches of 
mathematics once thought to be far removed from applications have gone on to enjoy 
central roles in science20 and, perhaps more important, that the methods that have led to the 
impressive practice she now observes, the practice so liberally applied in our current 
science, are the actual methods of mathematics, not the methods of natural science (as the 
Quinean naturalist would have it) nor 
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some artificially gerrymandered subset of mathematical methods (as exclusive attention to 
the methods of applied mathematics, as distinct from pure mathematics, would require). 
She concludes that the entire practice of mathematics should be taken seriously, a practice 
including both applied and unapplied portions of contemporary pure mathematics, 
intricately intertwined.21 
One more question arises for naturalists like Burgess and myself who venture beyond 
Quinean naturalism. Addressed to my version of naturalism, it takes this form: If the 
naturalist, engaged in her scientific study of science, discovers that one practice of human 
beings (namely, mathematics) is carried out using methods different from those of her 
natural science, why should she view this mathematical practice as different in kind from 
other practices with methods of their own, like astrology or theology? Addressed to 



Burgess, this becomes: Why should mathematics, but not astrology or theology, figure in 
the list of sciences?
My answer to this question, suggested above, has been that mathematics is used in science, 
so the naturalist's scientific study of science must include an account of how its methods 
work and how the theories so generated manage to contribute as they do to scientific 
knowledge. Astrology and theology are not used in science—indeed, in some versions they 
contradict science—so the naturalist needs only to approach them sociologically or 
psychologically.22 Perhaps Burgess intends a similar answer to the analogous question for 
his view, for he writes (with Rosen): 
You cannot simply dismiss mathematics as if it were mythology on a par with the 
teachings of Mme Blavatsky or Dr. Velikovsky. A geologist interested in earthquake 
prediction or oil prospecting had better steer clear of Blavatsky's tales about the sinking of 
lost continents and Velikovsky's lore about the deposition of hydrocarbons by passing 
comets; but no philosopher will urge that the geologist should also renounce plate 
tectonics, on the grounds that it involves mythological entities like numbers and functions. 
(Burgess and Rosen 1997, p. 5) 
Presumably, Burgess would also join my naturalist in holding that mathematics as a whole, 
not just its applied portion, is so-separated from Blavatsky tales and Velikowsky lore, 
perhaps for reasons not unlike those my naturalist gave a moment ago.23 
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In sum, then, "science" for Quine and for me is natural science, while for Burgess it is a 
variety of natural and mathematical sciences,24 but Quine and I differ on the status 
mathematics earns for itself in the course of our scientific study of natural science. I'll 
examine the differing results of this study for our three naturalists in more detail below, but 
first a brief look at logic.

II.2. Logic

The status of logic is not often the focus of Burgess's discussions, but passing comments 
(with Rosen) suggest that he would adopt something like the second Quinean position 
sketched above: "logical and analytic knowledge … is ultimately knowledge of language" 
(Burgess and Rosen 1997, p. 42). It isn't clear whether he would then follow the Quine 
who continues to count logic as empirically revisable or the Quine who exempts logic from 
holistic jeopardy (or takes some other stance entirely). As indicated above, I think both 
Quinean moves have their downsides.



My own rather speculative suggestion (see Maddy 2002) has been that humans are so 
constructed as to conceptualize the world in terms of some simple fundamental categories 
(e.g., as comprised of individual objects standing in various relations); that the world, to a 
large extent, is properly described as so structured (up to the point of quantum mechanics, 
at least); and that a rudimentary logic is implicit in these shared structures (e.g., fair 
versions of "or," "and," cruder counterparts to "not" and "if/then," and simple 
quantifications). This much logic, then, is obvious to us, as part of our most basic 
conceptual machinery, true of the world (for the most part), and, furthermore, can be 
known by us when we verify that the simple structures required for its support are present 
in the situations to which logic is applied. Beyond this rudimentary basis, we add 
idealizations of various sorts—bivalence, the truth-functional conditional, assumptions 
about our domains of quantification—whose wisdom must be judged as the wisdom of any 
scientific idealization is judged: by their appropriateness in particular contexts. Most cases 
for deviant logics can be seen largely as arguments that the relevant idealization is not 
advisable for one reason or another.
This brief sketch may well be too quick to be decipherable; I commend the interested 
reader to the longer sketch (Maddy 2002), and (I hope) to more detailed future 
elaborations. For present purposes, one point is worth noting: simple arithmetical claims 
like "2 + 2 = 4" can be expected to correspond to logical truths of the most rudimentary 
sort, and thus to robust truths about the world.
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II.3. The Scientific Study of Science

We've seen that Burgess disagrees with Quine on the scope of "science" and that I disagree 
on what the scientific study of science tells us about mathematics, but both Burgess and I 
also depart from Quine on fundamental aspects of the scientific analysis of natural 
scientific method. This in turn impinges on how we understand the notion of "best current 
scientific theory," the central notion of our naturalized metaphysics and epistemology.
Recall that Quine's analysis of the method of natural science comes down to holism and the 
theoretical virtues. Burgess's critique focuses on the virtue of economy, in particular the 
preference for theories that posit fewer things. According to Quine, this virtue implies that 
if we could do science without mathematical objects (and without seriously compromising 
other theoretical virtues), we should do so, for this would rid our theory of a vast ontology 
of abstracta, yielding a more economical, and thus better, scientific theory. Thus it is only 
the failure of his attempt to reconstruct science without abstracta that leads Quine to his 
indispensability argument for the existence of mathematical entities.



In contrast, Burgess doubts that scientific standards actually include a preference for 
theories with smaller ontologies of abstracta.25 Most often, such economy is "a matter to 
which most working scientists attach no importance whatsoever" (Burgess 1983, p. 98). In 
most cases, "proposed changes in the mathematical apparatus of physics that have received 
ultimate acceptance have increased its power and freedom" (Burgess 1990, p. 11). On 
occasions when scientists have hesitated over adding new mathematical ontology (e.g., the 
introduction of analytic methods into geometry or of infinitesimals in the calculus), he 
argues that "decrease in rigor and/or a danger of inconsistency," not the new ontology, was 
the cause of concern, and points out that "rigor and consistency are already usually 
conceded … to be weighty scientific standards" (1990, pp. 11-12). Thus Burgess (with 
Rosen) proposes a modification of the list of theoretical virtues to reflect, among other 
things, a more limited version of economy (Burgess and Rosen 1997, p. 209).
On the main point here I completely agree: scientists feel free to adopt any mathematical 
apparatus that is convenient and effective, without concern for its abstract ontology.26 But 
my own discomfort with the Quinean picture goes beyond the detail of the theoretical 
virtues, to the holistic model of confirmation itself. Based on a look at the historical case of 
atomic theory, I suggest that the theory enjoyed the Quinean virtues in abundance by 1860, 
when its successes in chemistry were crowned by the computation of stable atomic 
numbers, and even more so by 1900, after the rise of kinetic theory in physics. But 
scientists were 
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not satisfied until the direct detection of atoms by Perrin, verifying the crucial predictions 
of Einstein's 1905 calculations. This, I claim, means that the theoretic virtues are not 
enough; that enjoyment thereof is not what evidence is; that our best scientific theory is not 
confirmed as a whole; that some of its posits are properly regarded as fictional until 
further, more specific testing is possible.27 
This anti-holistic point of view makes room for the wider range of things that scientists 
want to say—for example (in 1900), that atomic theory is one of our most highly accepted 
theories, but we don't yet know whether or not atoms exist, or (right now) that general 
relativity is one of our most highly accepted theories, but we don't know for sure if space-
time is a continuous manifold.28 The actual attitudes of practitioners toward their best 
theories are complex and nuanced, as when scientists worry over whether or not some 
aspect of their best theory is or isn't an artifact of their mathematical modeling, or when 
Einstein admits to using the continuum to formulate general relativity because "I have been 
unable to think of anything organic to take its place" ((1949), p. 686). Burgess (with 
Rosen) expresses some sympathy for this line of thought: it "might be that science itself 
makes invidious distinctions"; to show this would require "presenting studies of the 



distinctions and divisions observed within the community of working scientists" (Burgess 
and Rosen 1997, p. 213). This is what I've tried to do.
Finally, we post-Quineans owe one more item in our scientific study of science, namely, an 
account of mathematical methods. Burgess's general observations on this line have already 
been noted: rigor and consistency are important mathematical standards; economy of 
ontology is not. He also clearly regards the methods of mathematics as distinct from those 
of the natural sciences: 
Among sciences, mathematics is, owing to its distinctive methodology of deductive proof, 
a special case (Burgess 1992a, p. 437) 
… Rigorous proof is clearly distinguishable from systematic observation or controlled 
experiment. (Burgess 1992b, p. 10) 
Beyond this, however, he sets aside the problem of axiom selection and, it seems, the 
related dynamics of concept formation, which have been my focus. Let me take a quick 
look at how this goes.
One moral of metaphysics naturalized is that natural science itself tells us a considerable 
amount about ontology. For example, medium-sized physical objects 
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exist in space and time, interact with one another causally, are as they are largely 
independently of our thought and knowledge of them; unobservable atoms also so exist 
and compose these more familiar objects; and so on. As my naturalist begins her study of 
the methods, justificatory procedures, and conclusions of pure mathematics, she might well 
ask an analogous question: What does mathematics tells us about its ontology? Some 
answers come quickly—there are numbers, sets, spaces, and so on—but very little is 
forthcoming about the nature of this existence. Further claims—that mathematical things 
exist in a non-spatiotemporal, acausal world; that mathematical things are mental 
constructions of an idealized mathematician; that mathematical things exist only as fictions
—can be found in the literature, but a look at their role, especially in resolution of various 
historical debates, suggests that they are not integral parts of mathematical method, but 
extramathematical philosophizing.29 If this is right, the upshot is that mathematics, in 
contrast to natural science, tells us nothing about the metaphysical nature of its objects 
beyond the bare claim that they exist.
In her analysis of mathematical methods, then, the naturalist should ignore such 
extramathematical metaphysical debates and attend to the explicit or implicit 
intramathematical reasons being offered for one course of action or another. The hope is 
that an understanding of the goals of a particular mathematical undertaking can be reached, 
and that alternative methods can then be evaluated in terms of their effectiveness as means 
toward those goals.30 In (2001b), I sketch such analyses of the development of the concepts 
"group" and "topological space." In (1997, pp. 206-232), I argue on such grounds that the 



set theorist's rejection of V = L is rational, given the goals of set-theoretic practice. This 
highlights the contrast between Quine's naturalist and mine: the Quinean endorses V = L, 
applying the methods of natural science, while my naturalist rejects it, applying the 
methods of the relevant branch of mathematics, that is, the methods of set theory.
Finally, let me emphasize that a purely internal, methodological study of mathematics is 
not the only investigation of the subject that my naturalist can undertake. Mathematics is a 
form of human activity, a distinctive linguistic practice, and as such it can be studied like 
any other such practice: by linguistics, psychology, and so on, as well as various natural 
scientific studies spanning the standard disciplines. Here the naturalist will face questions 
about the similarities and dissimilarities between mathematical and natural scientific 
language, and questions about how this practice manages to function so effectively in 
natural science. These inquires will raise naturalized versions of traditional philosophical 
questions about the ontology and epistemology of mathematics. This naturalized 
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philosophy of mathematics31 is distinct from the naturalized methodology of mathematics 
discussed above but, given that we want a philosophical analysis of mathematics as it is, 
our naturalized philosopher must respect the practice; justification and criticism are 
internal to the practice, the province of internal methodology, not philosophy, even 
naturalized philosophy.

II.4. The Indispensability Argument

We can now assess the effects of these post-Quinean departures on the crucial 
indispensability argument. On Burgess's analysis, economy of abstract ontology is not 
among the theoretical virtues, so our "best scientific theory" will include mathematical 
entities regardless of the success or failure of strenuous nominalistic efforts to remove 
them.32 There is still room here for a naturalistic argument to the existence of mathematical 
entities via holism and the criterion of ontological commitment,33 but this is not the line 
Burgess takes. There are, no doubt, various more subtle reasons for this, but one 
straightforward motivation is clear: 
A thorough-going naturalist would take the fact that abstracta are customary and 
convenient for the mathematical (as well as other) science to be sufficient to warrant 
acquiescing in their existence. (Burgess and Rosen 1997, p. 212) 
For Burgess (writing with Rosen), mathematics is a science in its own right, and fully 
capable of justifying its own existence claims.34 Thus, Burgess embraces an ontology of 
mathematical entities, but on grounds quite different from those of the Quinean naturalist.



Since I share Quine's starting point in natural science, my own engagement with his 
indispensability argument focuses on our disagreement over holism. If cases like atomic 
theory show that proper scientific method does not regard the 
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existence of all posits of our best scientific theory as confirmed, then we have to look more 
carefully at the status of its mathematical posits in particular. Obviously much mathematics 
occurs in explicitly idealized situations, when physical situations are mathematized in 
terms of simple geometrical structures, when large finite collections are treated as infinite, 
when discrete situations are treated as continuous, and so on; surely no simple ontological 
morals should be drawn from these appearances of mathematics.35 In more fundamental 
theories, the most convenient and effective mathematics is used, seemingly without qualm, 
as Burgess suggests. But it is also true that the appearance of, say, a continuous manifold 
in our best description of space-time does not seem to be regarded as establishing the 
continuity of space-time; the microstructure of space-time remains an open question.36 
These observations suggest, first, that holism is incorrect, that our best scientific theory is 
not simultaneously confirmed in all its parts, that at least in cases like atomic theory, some 
variety of "direct detection" is required. Recall Quine's claim that the theoretical virtues 
served to establish the existence of atoms and of medium-sized physical objects—that this 
is, in the end, what evidence is; applying this conclusion to mathematical objects yields the 
indispensability argument. But if the evidence for atoms is something more direct—and 
surely medium-sized physical objects are "directly detectable" if anything is—it follows 
that the "evidence" for mathematical objects is not the same as for the others. And, second, 
when we look more closely at the considerations that actually move scientists to include 
the mathematical posits they do, we find the likes of convenience and effectiveness. 
Perhaps unsurprisingly, when structures are posited on such a basis, the success of the 
overall theory in which they appear is not regarded as confirming their existence. On this 
analysis, the indispensability argument fails because ordinary scientific standards do not 
confirm all parts of our best theory, and because the mathematical posits are not among the 
posits that are confirmed.
There are passages where Burgess might be taken to agree with this conclusion:37 
An ontology of abstracta may be one feature of [our] current theories that is merely 
conventional. (Burgess 1983, p. 99) 
Our science [is] the way it is in part because the universe is the way it is and in part 
because we are the way we are … the presence of "Avogadro's number" in the language of 
science is not caused by the presence of Avogadro's number 
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in the universe. The relation between name and object is thus in one crucial respect unlike 
that between mirror image and object in the scene reflected. (Burgess 1990, p. 13) 
And with Rosen: 
The naturalized epistemologist may largely accept the nominalist's description according to 
which our method of positing mathematical systems as models is just the most efficient 
way for us, with such cognitive capacities as we have, to cope with physical systems. 
(Burgess and Rosen 1997, p. 33; see also pp. 238-244) 
If we can see, in the course of our scientific study of science, that certain parts of our 
theory are there by convention, that they don't reflect what's actually present in the physical 
situation, that we posit them merely because we have no better way of describing things, 
then it seems reasonable to conclude that these parts of our theory are not, in fact, 
confirmed by our scientific methods. But we've seen that, for Burgess, this is beside the 
point; the ground of mathematical ontology lies in mathematics, not natural science.
So, in short, Burgess sees the indispensability argument as flawed—it concedes too much 
to the nominalist in requiring that mathematics be indispensable—and beside the point—
because mathematical science by itself gives us grounds for accepting the existence of 
mathematical entities. My own position is both more Quinean, in granting that natural 
science is the final arbiter of existence, and more firmly non-Quinean, in its explicit 
rejection of holism. The upshot, for my naturalist, is that the role of mathematics in natural 
science does not seem to support the claim that mathematical things exist.

II.5. Post-Quinean Philosophy of Mathematics

The outlines of Burgess's naturalism should now be clear, but there remains an open 
question for my version: Does pure mathematics provide support for the existence of 
mathematical objects? It surely implies that there are numbers, sets, functions, geometric 
and topological spaces, real numbers, continuous manifolds, Hilbert spaces, algebraic 
structures, complex numbers, and much more. Burgess would count this as the end of the 
story: the existence of these items is implied by one among our best sciences. But for my 
naturalist, natural science is the final arbiter of what there is, and it doesn't seem to support 
its mathematical ontology, so my story will have to be more complex.
Granting that mathematics itself offers no ontological guidance beyond the minimal 
"mathematical things exist," naturalized methodology of mathematics is of no further use; 
we can only turn to naturalized philosophy of mathematics. One chapter of this study is the 
aforementioned conclusion that the confirmation 
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of natural scientific theories in which mathematics figures does not confirm its ontology, 
that the empirical confirmation does not transfer holistically to the mathematical existence 
claims. But perhaps support will come from other quarters of this study—for example, 
from the investigation of the semantics of mathematical language,38 or from the analysis of 
human mathematical experience, or of how pure mathematics comes to be so effective in 
applications.39 
My guess is that, in the end, the explanations and accounts of naturalized philosophy of 
mathematics will not involve a literal appeal to the objects of pure mathematics.40 But even 
if this is so, it would not settle the case between, say, "set theoretic claims are true, and sets 
just are the kind of things that are referred to and known about by set-theoretic methods" 
and "set-theoretic claims aren't true and sets don't exist, but it's perfectly rational and 
proper to say that they are and do while developing set theory in the pursuit of various 
mathematical goals." In fact, I suspect that a decision on these matters will have more to do 
with the theory of truth than with the methodological or naturalized philosophical facts 
about mathematics or natural science.41 
But I leave this for another time, along with a large number of other worthy naturalistic 
undertakings: for example, a more complete account of set-theoretic methods, of the 
distinctive methods of the various other branches of mathematics, and of their 
interrelations;42 a full discussion of how mathematics works in natural science, from the 
sorts of detailed analyses given by applied mathematicians (e.g., an explanation of why it's 
proper to regard fluids as continuous substances when we do fluid dynamics), to 
consideration of general questions 
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about the applicability of mathematics (the "miracle" of applied mathematics); a broad and 
careful study of how science can assess the ontological morals of its own best theories, 
beginning with a study of how we tell when an aspect of our best scientific theory is an 
artifact of the mathematical modeling; and so on. My more modest aim here has been to 
illuminate the outlines of three versions of naturalism, and perhaps to demonstrate that 
philosophizing naturalistically involves attention to matters of considerable subtlety and 
detail. My hope is that the reader may be inspired to further investigation of one or another 
of these, or some improved descendant thereof!
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14. Naturalism Reconsidered
Alan Weir 



We're all naturalists now, aren't we? Well, not quite. It may be said, moreover, that the 
term "naturalism" means so many different things to different philosophers that calling 
someone a naturalist has very little substantive content; but this would also be an 
exaggeration. In what follows, I will not spend too much time on terminological matters; in 
my view, the phrase has a fairly definite content, in the context of discussions in the 
philosophy of mathematics and science such as this one, and picks out a program which 
attracts a great deal of support.
I will, though, make one terminological distinction: between methodological naturalism 
and ontological naturalism. The methodological naturalist assumes there is a fairly definite 
set of rules, maxims, or prescriptions at work in the "natural" sciences, such as physics, 
chemistry, and molecular biology, this constituting "scientific method." There is no 
algorithm which tells one in all cases how to apply this method; nonetheless, there is a 
body of workers—the scientific community—who generally agree on whether the method 
is applied correctly or not. Whatever the method is, exactly—such virtues as simplicity, 
elegance, familiarity, scope, and fecundity appear in many accounts—it centrally involves 
an appeal to observation and experiment. Correct applications of the method, the 
methodological naturalist goes on, have enormously increased our knowledge, 
understanding, and control of the world around us to an extent which would scarcely be 
imaginable to generations living prior to the age of modern science. The methodological 
naturalist therefore 
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prescribes that one ought to follow scientific method, at a level of sophistication 
appropriate to the problem at hand, whenever attempting to find out the truth about 
anything and whenever attempting to understand any phenomenon.
The ontological naturalist holds first of all that the ontology of the natural sciences consists 
of physical objects and perhaps also physical properties and relations. Explaining just 
exactly what these are is a somewhat delicate matter, even in the case of physical objects. 
The most obvious account in the latter case is a Cartesian one: physical objects are 
extended in space and time; they occupy a region of space and an interval in time or, in 
post-Einsteinian terms, occupy a region of space-time. Even that is not entirely 
unproblematic, given interpretations of quantum mechanics in which, it is claimed, 
fundamental particles lack definite position. Explicating what it is for a property to be 
physical is more tricky still.1 At any rate, let us concede to the ontological naturalist that 
we have a rough idea what is meant by a physical ontology. The ontological naturalist's 
position is then straightforward: everything which exists is physical, either a physical 
object or, if such entities are countenanced, a physical property or relation.
Further light on the nature of naturalism can be shed by contrasting it with 
paradigmatically anti-naturalist positions, in methodology or in ontology. In the former 



case, the paradigm of an anti-naturalist is someone who holds a view on the basis of an 
appeal to an authority whose credentials are not in turn based on experiment or 
observation: the authority of religious leaders and sacred texts is the standard example, 
since this does not typically seem to rest on observation or experiment in the usual sense. 
A related anti-naturalist method is appeal to internal "intuition" or some mystical form of 
revelation or apprehension, distinct from ordinary sense perception, in order to justify a 
belief or attitude whose object is supposed to be an external entity or phenomenon. A 
classic anti-naturalist ontological position is that of Cartesian dualism, with its 
commitment to disembodied souls existing in time but not extended in space, though 
mysteriously interacting with physical bodies and in particular human brains.
As noted at the outset, not all contemporary philosophers are naturalists in one or other of 
these senses; but it would be fair, I think, to say that a naturalistic attitude predominates 
among "analytic" philosophers. This is why philosophy of mathematics, quite apart from 
its intrinsic interest, is of such importance in contemporary philosophy. For, on the face of 
it, mathematics is an enormous Trojan Horse sitting firmly in the center of the citadel of 
naturalism. Modern natural science is mathematical through and through: it is impossible 
to do physics, chemistry, molecular biology, and so forth without a very thorough and 
quite extensive knowledge of modern mathematics (indeed, this is true to an increasing 
extent of social sciences such as psychology and economics). Yet, prima facie, 
mathematics provides a counterexample both to methodological and to ontological 
naturalism. 
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The central mathematical method of proof from axioms shares one feature with empirical 
science, namely, the key role of deduction of conclusions from premises; indeed, this role 
is far more central to mathematics than to science. But there is a crucial difference: where 
the ultimate premises in science are hypotheses and conjectures up for testing against 
experiment, in mathematics they are "axioms," traditionally held to be known a priori, in 
some accounts by virtue of a form of intuitive awareness. The epistemic role of the axioms 
in mathematics, then, seems uncomfortably close to that played by the insights of a mystic.
When we turn to ontology, matters are, if anything, worse: mathematical entities, as 
traditionally construed, do not even exist in time, never mind space. Difficult though it 
may be to see how Cartesian souls can interact with physical bodies, since they persist and 
change through time, such interaction does at least make some sort of sense, certainly on 
broadly Humean notions of causality. If, by contrast, mathematical entities are abstract and 
causally inert, how on earth do we have any knowledge of them?2 This classic 
epistemological problem provides both a ground for ontological naturalism, for denying 
the existence of abstract entities, and a severe internal problem, since naturalism seems to 
presuppose mathematics, which seems in turn to presuppose abstract objects.



In this chapter I intend to look critically at some responses which naturalists have made to 
these difficulties. I will not examine each with the same detail, of course. Since many of 
the positions which are discussed elsewhere in this volume are motivated, in part, by a 
desire to deal with the questions raised above, this would be superfluous, not to mention 
impossible. Rather, I will attempt to give some sort of overview or map of the strategies of 
response, looking in more detail only at a select few.

I 

First, then, I will look at three responses the methodological naturalist might make. I start 
with logicism. It is undeniable that logical inference is part of scientific method, whatever 
else is. But mathematics raises the additional problem of our knowledge of the axioms: the 
naturalist does not want to base this on some mysterious intuition or direct apprehension 
that the axioms characterize the appropriate mathematical domain. If, however, logicism is 
right and mathematics is just a branch of logic (plus definitions), then will these problems 
not simply disappear?
This might seem a very unpromising route for the naturalist. Was not logicism 
conclusively refuted both by the paradoxes flowing from Frege's Axiom V and by 
end p.462

Gödel's incompleteness results? Moreover, there are clear differences between logic and 
mathematics; the most a sensible logicist could maintain is that mathematics has the same 
status as logic, as a priori, or analytic, or some such. But then the naturalistic logicist faces 
criticism from Quineans—supporters, in these matters, of the views of W. V. Quine—for 
they contend that such notions have been discredited.
The first two problems are not insuperable, according to the "neologicists" or "neo-
Fregeans" such as Crispin Wright and Bob Hale, who seek to found mathematics not on 
the inconsistent Axiom V but on formally similar but consistent abstraction principles such 
as "Hume's Principle" for arithmetic and, for set theory, weakened forms of Axiom V such 
as George Boolos's "New Y." The recent trend among neologicists has been to treat such 
abstraction principles as implicit definitions of the relevant concepts—"number," "set," and 
so forth. Even if not all mathematical truths are derivable (given an effectively decidable 
notion of theoremhood), the logicists' goals will be achieved if the main branches of 
contemporary mathematics, certainly of those areas utilized in modern science, can be 
founded on abstraction principles (i.e., if axiomatizations of each branch can be derived).3 
As to the Quinean problem, it is worth remarking that the later Quine seems to step back 
somewhat from the very extreme empiricism on logic which appears to be entertained in 
Quine (1951), "Two Dogmas of Empiricism." Examples of his retreat start with §13 of 



Word and Object (Quine 1960), on translating the connectives. This retreat, in my view, is 
essential for the coherence of the Quinean position. The famous quotation "Any statement 
can be held true come what may, if we make drastic enough adjustments elsewhere in the 
system. … Conversely, by the same token, no statement is immune to revision" (Quine 
1951, p. 43) is either trivially true or incoherent, at least if we extend the position from one 
concerning the holding of statements to one concerning the adoption of inference rules.4 

Certainly anyone who believes in determinacy of meaning for logical particles will 
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find it trivial: any rule we accept could be abandoned if the particles involved in it take 
new meanings (whether of old particles or not); likewise, mutatis mutandis, for rules we 
reject. The nontrivial version of revisability says that any rule is revisable in a way which 
does not require us to impute meaning change (of course someone who rejects determinacy 
of meaning for logical particles will be committed to the nontrivial version, since we will 
never be required to impute meaning change, there being no meanings to change).
But now the proponent of the nontrivial thesis faces a dilemma. What are the (syntactic) 
consequences of theory T? Any sentence A derivable from T using some system of rules 
we could come to accept without changing the meaning of terms in T and A? But any 
sentence A is a consequence in this sense, according to the nontrivial revisability thesis, so 
every theory ends up having the same useless content, the set of all sentences of the 
language. Yet theories are individuated by their consequences—according to Quine, by 
their observational or empirical consequences—so if logical consequence is wholly 
indiscriminate in this way, the notion of a theory is, too. Thus critics of the radical Quinean 
position maintain that if there are no a priori principles, consequence is trivially 
undiscerning: everything entails anything.5 If logic is nontrivially and unrestrictedly 
revisable, the connections which determine the web of belief dissolve.6 
If not every sentence which could be derived by some rule or other is a consequence of T, 
what does determine T's consequences, for the radical Quinean? The most obvious 
response would be to say that T's consequences (or its consequences relativized to today) 
are all those sentences derivable by rules we accept, or are disposed to apply today (or 
perhaps some canonical subset of them). However, those inferential dispositions and 
practices could change; we might even be disposed to change them in systematic ways. 
Quine's theory of language, for instance, has a prominent place for higher-order 
dispositions to change lower-order ones (e.g., in the account of observation categoricals). 
On this horn of the dilemma we debar sentences derivable by means of the changed rules 
from counting as consequences of the theory, from determining the identity of the theory. 
But this position is just a traditional "logical connections are analytic" one. Change today's 
rules and you are no longer working with today's theory. It would be merely an 



uninteresting terminological maneuver to deny that the rules in question are "meaning-
constitutive;" they are not revisable except trivially, and thus are presumably a priori.
The only other option available to a Quinean is a type of ultraholism. We take the networks 
which face the tribunal of "experience" to be pairs comprising a logic 
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L and a theory T. The right (or a right) notion of logical consequence is any such L which 
in combination with some T or other yields all true (pegged) observational sentences (or 
observation categoricals), and in that sense faces the tribunal of experience successfully. 
But this ultraholist view makes logical consequence unknowable, since we have no idea 
what the set of all true observation categoricals is; hence logical consequence becomes 
potentially divorced from even best inferential practice.
So Quine was wise to move on this issue of the analyticity of logic. Even so, this 
restriction of empiricism on logic does not necessitate a blanket welcome to all of logic in 
Quine's sense—namely, first-order classical predicate calculus with identity—back into the 
analytic fold. For the failure of a radical revisability of logic thesis does not entail that all 
the logic we uphold must be validated by rules which are meaning-constitutive or in some 
sense analytic (forced on us by the verdict matrices, say). A "moderate" Quinean might 
argue this is true only of some very basic rules, such as &E, and VI; other rules or 
principles—excluded middle, distributivity principles, various of the structural rules 
needed to generate a suitable proof architecture, and so forth—may be nontrivially 
revisable in the light of empirical experience, it might be urged. Logic, as usually 
construed, divides up into "analytic" and "synthetic" parts, on this view. And similarly, 
even if the considerations advanced above against total revisability are accepted, the 
Quinean might still claim that mathematics, as well as substantial portions of logic, is 
empirical and not a priori.
This point illustrates a serious problem for the neologicist. In order to generate standard 
mathematics from her favored abstraction principles—the Peano-Dedekind axioms from 
Hume's Principle, for example—the neologicist needs a powerful background logic: 
second-order logic with the full axiom scheme of comprehension and untrammeled by the 
restrictions on first-order and second-order E and I found in free logic systems. The anti-
naturalist might well argue that these components of the powerful logic wielded by the 
neologicist pose the same epistemological problems as the axiom systems of standard 
mathematics which the neologicist is hoping to put on a sound footing by deriving them, in 
this potent logic, from abstraction principles.
Moreover, even if it is legitimate for the neologicist to exclude classically inconsistent 
abstraction principles such as Axiom V from functioning as analytic or as implicit 
definitions, this still leaves too many abstraction principles in play, since there are 
indefinitely many consistent but pairwise inconsistent abstraction principles. Setting out a 



non-ad-hoc criterion for winnowing out kosher from nonkosher principles is no easy task. 
Whether, then, the neologicist route is a promising one for the naturalist cannot be decided 
without further, more detailed debate.7 
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II 

A diametrically opposed strategy for naturalizing mathematics is to be found in Quine. The 
anti-naturalist argues that the methodology of mathematics goes beyond scientific 
methodology by laying down axioms as a priori starting points, in contrast with the 
provisional and contingent hypotheses of empirical science. But where the naturalistic 
neologicist attempts to show that it is naturalistically acceptable to take the axioms as a 
priori starting points, Quine adopts a radical empiricism. The axioms of mathematical 
systems are hypotheses just like the hypotheses of physics or chemistry, each confirmed or 
disconfirmed not directly, but indirectly by dint of contributing to a total theory of the 
world which directly confronts experimental and observational data. The difference 
between empirical science, on the one hand, and mathematics (and the synthetic parts of 
logic, if the considerations of the last section are accepted), on the other, is not a qualitative 
one. Mathematics and (synthetic) logic pervade all areas of science, with the result that 
alterations to the mathematics or logic have very far-reaching and disruptive effects; 
consequently we are more loath to make changes there than in a more localized discipline. 
But the difference is purely one of degree. Though we are more likely to revise an 
inflationary hypothesis in cosmology than the distributive laws of logic, in principle we 
may do the latter, too (as quantum logicians, in fact, have done); neither the cosmological 
nor the mathematical hypothesis is directly confirmed or disconfirmed by experiment, both 
can be confirmed or disconfirmed indirectly.
Though the Quinean position falls foul of pretty strong intuitions that some, at least, 
mathematical truths—Kant's 7 + 5 = 12 and so forth—are necessary and a priori certain, 
this is a brilliantly bold naturalist response to the problem posed by mathematics. The main 
problem I will raise for it comes under the heading of "ontological naturalism." But a 
methodological worry can be raised by considering that old favorite in discussions of 
positivism, "The Absolute is lazy." Suppose T is a wonderfully successful total theory of 
the world. Add to T, "The Absolute is lazy" (abbreviate it by A) and we still get, at least as 
far as empirical adequacy is concerned, a successful total theory. Does this mean that "The 
Absolute is lazy" is confirmed just as much as the fundamental theorem of calculus (cf. 
Bergstrom 1993, p. 333)?
The obvious response is to say that T, A contains some unnecessary fat. Economy being a 
scientific virtue, we should hone it down to T. The problem is: Where does this honing 
stop? If E is the set of T's empirical consequences, why not treat everything in T minus E 



as blubber and slim our total theory down to the lean, mean E, excising theoretical "fat"—
all of mathematics along with theoretical science? If our accepted theory T is recursively 
enumerable, our language is countable, and there is an effective way of deciding whether a 
sentence is 
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observational or theoretical, then the set of observational consequences E of T is also 
recursively enumerable. Indeed, Craig's method shows how we can construct a decidable 
set "visibly equivalent," as Quine says, with it. Why not work simply with the program for 
enumerating E? To be sure, this will involve some mathematics, but only a weak amount, 
sufficient arithmetic for proof theory.
Quine's answer is that we have no realistic chance of getting at E except via deduction 
from T, or rather a formulation of "T: The theory formulation is a device for remote control 
and mass coverage" (1975, p. 324)—mass coverage of observation sentences, that is. 
Furthermore, if E turns out to contain falsehoods, revision to a more acceptable E′ will be 
practically possible only by looking at ways of amending formulations of T. Quine's 
empiricism counsels, then, adopting the leanest, meanest theory which we can grasp and 
which is empirically adequate. True, Quine also admits scientific virtues other than 
empirical adequacy, scope, and coverage; he admits, for instance simplicity and 
conservatism (Quine 1955, p. 247, 1990 p. 95; see Maddy 1997, ch. 13, §I).8 But his 
empiricist emphasis on economy and empirical adequacy leads him to jettison parts of 
mathematics which seem to play no role in scientific applications—for example, the higher 
flights of transfinite set theory. This rejection takes a number of forms. Penelope Maddy 
charts the different nuances (ch. 13, §I this volume). Sometimes Quine is tempted to write 
off the investigation of large cardinal axioms as a purely logical enterprise—the 
investigation of logical connections among essentially meaningless sentences (1984, p. 
788). At other times (1990, p. 95) he advocates the adoption of the axiom of 
constructibility, V = L; this "thins" out the bloated hierarchy V of sets and commits him to 
the nonexistence of a vast range of sets which he views as empirically redundant.
However, this vast range of nonconstructible sets form the main topic of research for 
contemporary set theorists. They may be reluctant to accept that they are engaged merely 
in logic-chopping with empty formulas. Are they to be accused of delusions of transfinite 
grandeur which have led them to expend their energies arguing about nonentities? Must we 
urge them to get a life and join their colleagues across the corridor working in analysis or 
group theory and dealing with respectable denizens of reality? Quine's naturalism has led 
him into a radical revisionism with respect to pure mathematics, which might seem at odds 
with his insistence that there is no first philosophy and with his reluctance to let philosophy 
decide matters of objective existence and nonexistence.
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III 

Maddy, therefore, proposes a variant on Quinean naturalism which recognizes the 
autonomy of mathematics. She joins (ch. 13, §I) Quine in that "large minority or small 
majority who repudiate the Cartesian dream of a foundation for scientific certainty firmer 
than scientific method itself" (Quine 1990, p. 19).9 Maddy adds: "The simple idea is that no 
extra-scientific method of justification could be more convincing than the methods of 
science, the best means we have."
However Maddy then goes on to urge that no extramathematical method of justification 
(including naturalistic philosophizing) could be more convincing than the methods of 
mathematics, which lead most set theorists, for instance, to affirm V ≠ L. Philosophers 
should eschew any imperialistic ambitions to interfere in the internal affairs of the 
mathematical community. 
To judge mathematical methods from any vantage-point outside mathematics, say from the 
vantage-point of physics, seems to me to run counter to the fundamental spirit that 
underlies all naturalism: the conviction that a successful enterprise, be it science or 
mathematics, should be understood and evaluated on its own terms, that such an enterprise 
should not be subject to criticism from, and does not stand in need of support from some 
external, supposedly higher point of view. (Maddy 1997, p. 184) 
Note that whereas Quine seemed to be congenitally hostile to boundaries (leaving aside 
those on maps, at any rate), seeking to replace them with differences of degree across 
spectra, Maddy's naturalism, taken neat, presupposes fairly determinate boundaries 
between philosophy, science, and mathematics. They need not be totally precise, nor need 
there be nontrivial necessary and sufficient conditions which characterize the distinctions, 
but if there is not even a vague boundary between philosophy and science or philosophy 
and mathematics then it does not make sense to say that "if our philosophical account of 
mathematics comes into conflict with successful mathematical practice, it is the philosophy 
that must give" (1997, p. 161).
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A treaty of noninterference across boundaries makes sense only where the boundaries 
exist. How can a Quinean class something as respectable philosophy and simultaneously 
deny it the right, so to speak, to criticize science? Maddy seems to accept this: "I do not 
assert that philosophy is irrelevant to the assessment of mathematical methodology; I could 
hardly do so without a principled distinction between philosophy and mathematics" (1997, 
p. 200). Yet she denies (1997, 197-198) that there is such a principled distinction. The 
upshot seems to be a less absolutist, more fallibilistic, prescription on interference: "What I 



do assert, on the basis of the historical analysis, is that certain types of typically 
philosophical considerations have turned out to be irrelevant in the past" (ibid.).
At any rate, if naturalistic philosophers should only describe, not prescribe, where the 
methods and results of mathematics are concerned, why does this not apply also to 
astrology or theology or "creation science" (cf. Dieterlie 1999)? Consider, for example, 
cosmologists who believe in a plurality of causally isolated mini universes, as a response to 
the "fine-tuning" problem; in this multiverse plurality all parametric values which have to 
be put in "by hand" in current physics are randomly distributed. Imagine, in addition, there 
is subgroup with specific views about what types of mini universe there are. In particular, 
one cosmological sect says there are exactly forty-two subuniverses in which there are 
Twin Earths where there has developed a parallel human or humanlike form of life, in 
exactly one of which John F. Kennedy (i.e., his parallel clone) is not assassinated; exactly 
one in which Scotland, not England, wins the (Association) Football World Cup in its 
equivalent of 1966 (our cosmologists call this mini universe Paradise); and so on. Perhaps 
these twists on (a substrain of) modern cosmology are based on scriptures they hold sacred 
or on interpretations of revelations of the sect leaders, grounds about which they debate 
apparently quite fruitfully and using methods they mostly seem to agree on. Since their 
position does not disagree at all with what standard science says about the universe we are 
all causally connected to, why is this not a successful enterprise with an extra flourish, a 
flourish comparable to the higher flights of transfinite set theory or some other branch of 
pure mathematics remote from any obvious possibility of empirical application?
Maddy answers that she is not advocating a quietist tolerance of all systems of thought and 
belief. She is a scientistic naturalist like Quine, but one who disagrees with Quine, on  
scientific grounds (for the Quinean considers epistemology and methodological 
prescriptions a subdiscipline of natural science), about scientific methodology. Science is 
less of a seamless whole than Quine suggests, even when he allows that science is "neither 
discontinuous nor monolithic. It is variously jointed, and loose in the joints in varying 
degrees" (Quine 1975, p. 314). Possession of the theoretical virtues adumbrated by Quine 
is insufficient to generate belief in a theory, in all circumstances and departments of 
science. Using a detailed investigation of the fate of the atomic theory in the nineteenth and 
early twentieth 
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century, up to its general adoption after the experimental work of Perrin, Maddy 
concludes: 
The theory enjoyed the Quinean virtues in abundance by 1860, when its successes in 
chemistry were crowned by the computation of stable atomic numbers, and even more so 
by 1900, after the rise of kinetic theory in physics. But scientists were not satisfied until the 
direct detection of atoms by Perrin, verifying the crucial predictions of Einstein's 1905 



calculations. This, I claim, means that the theoretic virtues are not enough, that enjoyment 
thereof is not what evidence is, that our best scientific theory is not confirmed as a whole, 
that some of its posits are properly regarded as fictional until further, more specific testing 
is possible. (Maddy 1997, ch. 13, §II.3) 
Maddy's conclusion seems to be that science as a whole is rather more heterogeneous than 
Quine thinks, that some parts of our overall system we may not believe in, but nonetheless 
accept "as fictional." She even moots the possibility that the existential deliverances of 
mathematics may come under that score—"My guess is that, in the end, the explanations 
and accounts of naturalized philosophy of mathematics will not involve a literal appeal to 
the objects of pure mathematics" (Maddy 1997, ch. 13, §II.5)—with one way to cash that 
out being "mathematical claims aren't true and mathematical things don't exist, though it's 
rational and proper to assert that they are and do in the course of doing mathematics" 
(ibid.). Moreover, given the tight interconnections inside mathematics, pure and applied, 
the same ontological reading should apply to all such deliverances, from the existence of 
infinitely many primes to the existence of inaccessible cardinals.
To distinguish different types of ontological commitment in different types of existential 
assertions, to discern fundamental ambiguities in "exist" in this way, is to proceed on very 
un-Quinean lines (see Quine 1960, pp. 131, 241-242) which certainly need substantive 
justification. If, on the other hand, the claim is that mathematicians and nonatomistic 
chemists hold that atoms and prime numbers do not exist, in the only sense of "exist" 
which exists (!), but nonetheless find it a useful fiction to pretend that they do, then there 
certainly needs to be some work doing making that claim good, at least for the 
mathematical community. Moreover, one does not need to be a Quinean to ask what makes 
the atomic hypothesis part of the overall theory "held" by chemists such as Ostwald who 
treated (pre-Perrin) the hypothesis as a useful instrument. How is atomism part of their 
theory if they did not actually believe in atoms?10 At any rate, even the second-class, 
nonliteral existence accorded by some to atoms in the nineteenth century, and 
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which might perhaps be accorded to prime numbers in the twenty-first, Maddy certainly 
does not want to allow to the cosmological sect's forty-two Twin Earths.
Speaking as a scientific naturalist from within the perspective of current science, for she 
knows of no higher or better perspective, Maddy would reject the weird cosmology 
because there are no scientific reasons to believe in the forty-two Twin Earths. But there 
are overwhelming scientific reasons (the indispensability argument) for believing in, or at 
least "accepting," contemporary mathematics. Moreover, detailed investigation of current 
mathematics, Maddy conjectures, will show that, unlike science in general, it is, if not a 
seamless whole, at least highly interconnected. It may well prove very difficult to separate 
out those parts which are clearly "pure" mathematics, with no possible practical 



applications, from those which are applied or liable to be applicable, especially when one 
considers the highly esoteric branches of mathematics—non-Euclidean geometry, infinite 
dimensional Hilbert vector spaces—which later have turned out to be highly useful.
For Maddy, the direct reasons for believing that V ≠ L are mathematical reasons—not 
scientific ones but still worthy of respect because of the indispensability of mathematics as 
a whole in science; so in that sense, indirectly scientific. The Twin Earth cosmologist 
might claim that her scriptural, or whatever, reasons for believing in the forty-two Twin 
Earths have a similarly indirect scientific justification. The idiosyncratic parts of her 
cosmology cohere very well, she may claim, with the more standard parts of her 
cosmological and scientific views in such a way that it would spoil the overall elegance of 
the theory to rip the idiosyncratic, scriptural parts out and leave the rest. Insofar as the rest 
is indispensable in accounting for the phenomena, so are the details of the forty-two Twin 
Earths.
Such a cosmologist might claim this, but without any plausibility. True, much will depend 
on providing a philosophical justification for the claim that "scientific methodology," 
whatever it is, exactly, is more rational than the methods used by creationists and others to 
arrive at results contrary to science. But it would be obtuse to deny that the methods of set 
theory, "higher" and "lower," are much closer in nature to the mathematical methods 
utilized in, for example, quantum physics than the imagined disputations and dogmas of 
the forty-two Twin Earths sect. However, Quine himself allowed into his total theory some 
currently unapplied parts of pure mathematics for "simplificatory rounding out" (1984, p. 
788) and to spare oneself "unnatural gerrymandering of grammar" (1990, p. 94). So maybe 
the difference here between Maddy and Quine is largely one of judgment as to how far one 
should go in "rounding out."
Furthermore, Maddy may still be vulnerable to less extreme theistic views than those 
considered or imagined above. After all, there have been, and continue to be, eminent 
scientists who have been or are theists, often theists of a rationalistic, nonfidiestic stamp. 
Many of them do not see their religious beliefs as sharply discontinuous in content or in 
their underlying justification from their scientific ones, but rather as complementing or 
even enhancing the coherence of their scientific 
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worldview. Only a belief in a beneficent God, they might argue, renders reliance on 
inductive extrapolation reasonable, or explains adequately the "fine-tuning" of natural 
constants to values which permit stable complex molecules to exist or explains the 
"unreasonable effectiveness" of mathematics, some of it highly esoteric and without 
obvious physical application when introduced, in generating deep and plausible scientific 
theories with staggeringly good records of predictive accuracy.11 



The Quinean may say that in order to make a sharp break with theistic scientists of this 
type, one should adhere only to total theories which meet Quine's empiricist theoretical 
virtues, and that will necessitate excluding not only theism but also much of transfinite set 
theory. Maddy could retort that the examples of esoteric pure mathematics turning out to 
have unexpected empirical applications provide a purely empiricist reason for accepting 
the methods and results of mathematicians as a whole, pure and applied. Alternatively, an 
atheistic naturalist could nonetheless allow that some theists provide naturalistic reasons, 
albeit ones the atheist does not accept, for their theism, in much the same way as some 
methodological naturalists are led to the prima facie anti-naturalist doctrine of Platonism in 
mathematics—that is belief in abstract, eternal, mind-independent numbers, functions, sets, 
and the rest.

IV 

I turn, finally, to ontological naturalism. The ontological naturalist holds that we have a 
reasonably determinate conception of what it is to be physical and avers that everything is 
physical; in particular, all objects are physical, as are all properties and relations (trivially, 
for a nominalist in the medieval sense, who believes there are no properties or relations). 
Providing a characterization of physicality is not an entirely straightforward matter (cf. 
Burgess and Rosen 1991, §1.A.1), but I will assume for present purposes that it is not 
impossible. Certainly we seem to have a clear idea in particular cases: the sun is a physical 
object (albeit its boundaries are vague) and the mass of the sun a physical property, while 
Cartesian souls, if they exist, are nonphysical.
We can then divide naturalists in general into two camps with respect to ontological 
naturalism: the ontological naturalists and the revolutionary defeatists. The second group 
reject ontological naturalism but argue that this rejection is 
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compatible with—perhaps even implied by—their methodological naturalism, the strand of 
naturalism which is important to them. Logicists and Quineans typically belong to this 
grouping, taking mathematics pretty much at face value and arguing, if in Quine's case 
somewhat reluctantly, that this commits us to the existence of an infinite mathematical 
ontology of objects and (for the logicists) properties which are clearly nonphysical.
The ontological naturalist camp divides further into fictionalists such as Field, who deny 
the existence of mathematical entities but seek to account for the importance of 
mathematics via its instrumental utility, and less radical philosophers who seek to construe 
or reinterpret mathematics so that its theorems come out as true but with no commitment to 
abstract, nonphysical objects and properties. One strategy here is to take modality as 



primitive and read mathematics as dealing not with an actual infinity of abstract objects but 
with possibilities that infinite structures could exist or with endless possibilities for 
constructing concrete but nonetheless mathematical objects—tokens of mathematical 
formulas for example.12 Examples include the modal structuralism of Geoffrey Hellman 
(1989), the modalized type theory of Charles Chihara (1990), and perhaps Philip Kitcher's 
empiricist constructionalism (1983). The main difficulties here, from a naturalistic 
perspective, are the legitimacy of taking modality as primitive or, more radically, the 
respectability of modality from a naturalistic perspective. Quine, of course, took a very dim 
view on this score.
A rather different strategy builds on the idea that the finite cardinals are properties of 
properties: two is a property shared by all doubly instantiated properties, and so on 
(Bigelow 1988 is an example of this strategy). This is quite an attractive strategy for 
anyone who believes in the objective existence not only of first-order physical properties 
but also of higher-order ones, arguably a reasonable position for a physicalist to take. If 
position properties exist, should we not see velocity as dependent on higher-order 
properties of position properties, acceleration as dependent on third-order properties of 
velocity properties, and so on? The classic difficulty with this position is that if there are in 
actual fact only finitely many first-order properties, then arithmetic, never mind analysis 
and so forth, will not get off the ground. There certainly seems to be no a priori reason for 
supposing there are infinitely many physical objects or properties. Logicism runs into 
similar difficulties, at least if the argument of Shapiro and Weir (2000) is right.13 
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Since these problems are treated more fully elsewhere, I want to focus finally on a problem 
which afflicts, I will urge, both Quine's account of mathematics and also Field's, despite 
their opposing stances on indispensability. We might call it the problem of the conceptual 
indispensability of mathematics for theoretical science as opposed to any deductive or 
methodological reliance on mathematics for churning out predictions from theories, or 
ontological dependence of science on mathematical objects as playing a role in causal 
explanation—Field's "heavy-duty platonism" (Field 1980).
According to scientific realists, many, at least, of our theoretical terms refer to objects way 
too small or large for us to come into contact with them through normal perceptual means. 
How do we manage to do this referring? Naturalists, who generally adopt a realist 
position14 ought to want to explain this. True, the enormous problems which have beset all 
attempts at giving a naturalistic explanation of language understanding, at accounting for 
the normativity of language, and so on, are very daunting and it is not surprising that many 
philosophers have thrown in the towel and adopted a sort of Wittgensteinian quietism. 
Even so non-Wittgensteinian a philosopher as Tim Williamson writes: 



The epistemic theory of vagueness makes the connection between meaning and use no 
harder to understand than it already is. At worst, there may be no account to be had, 
beyond a few vague salutary remarks. Meaning may supervene on use in an unsurveyably 
chaotic way. (Williamson 1994, p. 209) 
But it would be unnaturally defeatist for a naturalist to adopt this stance.15 
Now what account does Quine have of the mechanism by which theoretical words link to 
theoretical objects? It is largely a negative account: operationalist, verificationist and other 
"reductionist" explanations of this link are hopelessly 
end p.474

inadequate: the holistic points of "Two Dogmas" alone show this. On the positive side, 
Quine develops an account of empirical meaning for observation sentences—the stimulus 
theory (albeit one which he held with less and less assurance and more and more 
qualification in his later work; see George 1997))—and argues that we grasp theoretical 
terms solely by grasping the interconnections among theoretical sentences and the 
empirical meaning of their empirical consequences. As we saw in section II, 
"consequences" can mean little more, for Quine, than the basic analytic logical 
connections. Constraints imposed by "synthetic logic," mathematics and nondeductive 
methodology are simply further nodes in the overall theory.
Suppose an interpreter selects a set of operators O of our language as subject to meaning-
constitutive constraints.16 Call a sentence nonlogical if no member of O is its dominant 
connective; and consider pairs of functions f, g  where f maps the nonlogical sentences 
(including open sentences) onto sentences (logical or nonlogical) and g is a permutation of 
the members of O. Let an interpretation function I be a mapping of the language such that 
(1) if S is nonlogical, I(S) = f(S); and (2) where C  O, I[C(S 1 , … S n )] = g[C](I(S 
1 ), … I(S n )), where the S i are the immediate constituents of the sentence [C(S 1 , … S n )] 
(in which C is dominant). Finally, declare an interpretation to be Quinean if f preserves 
empirical content and g maps connectives onto connectives with the same meaning, 
according to our meaning-theory (e.g., the verdict matrix theory) for logical connectives.
If all Quinean interpretations are correct, if they all preserve objective meaning, then will 
there not be a plurality of widely diverging, indeed incompatible, interpretations? For the 
only constraints on interpretation are to preserve empirical meaning and the meaning of the 
logical connectives, as given by the verdict matrices, or something similar. Quine, of 
course, agrees. This is indeterminacy "from above" (Quine 1970), and the argument need 
not rely on any demand for behavioristic reduction of meaning: the main premises are that 
the above two constraints are the only ones, plus a modest Quine/Duhem holist denial that 
the typical theoretical sentence has any empirical meaning. What conclusions should then 
be drawn, with respect to realism? Compare Quine's indeterminacy from below, his 



argument for ontological relativity. I am not concerned here with the plausibility of the 
argument, merely with the conclusions he draws.
Quine claims that for some singular terms, "Bugs Gavagai" and "Bugs Gavagai's left ear," 
say, we can have "the objective meaning of 'Bugs Gavagai' = the objective meaning of 
'Bugs Gavagai's left ear.' " But surely we also have the following principle concerning the 
dependence of reference on meaning (omitting, for simplicity, a uniform relativization to 
context). "If the objective meaning of singular term t = the objective meaning of singular 
term u then the referent of t = the referent of u."
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Putting the above two together, we infer that the referent of "Bugs Gavagai" = the referent 
of "Bugs Gavagai's left ear" and then, disquoting with respect to reference, that Bugs 
Gavagai = Bugs Gavagai's left ear, which is absurd. But Quine does not conclude from all 
this that his thesis of indeterminacy from below is absurd. Rather, 
Reference is nonsense, except relative to a coordinate system. … What makes sense is to 
say not what the objects of theories are, absolutely speaking, but how one theory of objects 
is interpretable or reinterpretable in another. (Quine 1969, pp. 48, 50) 
Now, however, consider the "argument from above," the interpretation of (late) Quinean 
holistic empiricism as saying that the only constraints on interpretation are preservation of 
empirical content and of the meaning (as given by the verdict matrices, say) of the logical 
connectives. Take as example Newton's inverse square law x yN where N is 

•

stating that the gravitational force exerted on the line between massive objects x and y is 
proportional to the product of their masses and inversely proportional to the square of the 
distance r between them. The law has no empirical content on its own, independent of 
auxiliary hypotheses concerning the other forces in play and boundary conditions telling us 
what other objects there are in their world. Neither has the negation of Newton's law, x
yN, any empirical content, and the same is true of each instance of N and each of its 
negations N. If O contains just the usual sentential logical operators, the function f, which 
is trivial except that it maps Newton's law to its negation, preserves empirical content. 
Thus by a blunt application of the Quinean "argument from above," Newton's law and its 
negation have the same objective meaning.17 Add the corresponding principle of 
dependency of truth on meaning—"If the objective meaning of sentence p = the objective 
meaning of sentence q then the truth-value of p = the truth-value of q"—and the 
disquotational schema—"The truth-value of p = the truth-value of q iff A ↔ B—whose 
instances are generated by substituting a name of the substituend 
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for A for p and similarly a name of the substituend for B for q. Now we are able to 
conclude, in parallel fashion to the ontological relativity argument, 

•

which is absurd, not only in classical logic but in many weaker ones, too.
How to avoid this contradiction? The parallel conclusion to draw is a deep relativism 
regarding truth: 
Truth is nonsense, except relative to a coordinate system. … What makes sense is to say 
not whether a theory is true or not, absolutely speaking, but how one theory is interpretable 
or reinterpretable in another, taken to be true. 
Even Newton, then, had he been a Quinean(!), could not have said that the inverse square 
law was true absolutely. It is true relative to a "homophonic" interpretation and false 
relative to others. The only sentences true or false absolutely are observation sentences 
which wear their empirical meaning on their sleeve. The problem for the naturalist is that 
Quineanism leads to radical instrumentalism, for on the Quinean picture there is a radical 
asymmetry between truth for observation sentences (absolute) and truth for theories 
(relativistic), and it is this metaphysical asymmetry between theory and observation which 
is the essential feature of instrumentalism.18 
Now Quine recoils from relativity of truth—partly, I think from a residual realism, partly 
as a result of the false notion that any substantive form of relativism is paradoxical, and 
partly because he thinks his rejection of first philosophy immures him to relativism: "there 
is no extra-theoretic truth, no higher truth than the truth we are claiming or aspiring to" 
(Quine 1975, p. 327).
But this is to confuse epistemological with metaphysical issues. The instrumentalist can 
adopt Quine's methodology, espouse nothing not endorsed or at least compatible with best 
scientific practice, but give a metaphysical reading of theoretical sentences at variance with 
that given to observational. Quine is in fact that instrumentalist.
Thus the dilemma for a naturalist who adopts a Quinean empiricism on mathematics based 
on a general holism plus empiricism about meaning: how to buy into so very much of the 
Quinean package without swallowing all the relativistic 
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instrumentalism, which of course will apply to mathematics through and through. The least 
prime number theorem and its negation will have the same meaning for Quine, both being 
devoid of empirical content and a reinterpretation of, say, the theory of rationals in the 
theory of the natural numbers, will be perfectly licit.19 



There is, though, an obvious strategy of response here, but it is one which brings no 
comfort to the naturalist. Let O be a Quinean observation sentence and consider O, O & O 
and O V  O. These three sentences, being logically equivalent, are empirically equivalent. 
Furthermore, the interpretation I based on f(O) = O & O and the trivial mapping g sending 
all sentential operators to themselves is a good Quinean one, as is I* based on 
f*(O) = O V O and the same g. Yet there are clear materials within the Quinean philosophy 
of language itself for distinguishing the meaning of O, O&O and O V O. The phrase 
structure tree associated with the first is very different from that for the other two, and 
although those two in turn have structurally identical phrase trees, the constituents on the 
corresponding nodes where they differ—& and V—differ in meaning according to purely 
Quinean conceptions of meaning. So even an empiricist can discern a notion of meaning 
narrower than sameness of empirical content, narrower than mutual interpretability 
according to Quinean interpretation functions. The notion is evidently close to Carnap's 
notion of intentional isomorphism—same grammatical structure, synonymous ultimate 
constituents—though for semantic purposes it would be sensible to widen somewhat: to 
allow, for example, that sentences transformable into one another by very simple means, 
such as active/passive transformations, are synonymous. Quine himself objects to this sort 
of use of the Carnapian notion to stymie indeterminacy, but the main reason he gives is 
question-begging: that if we use intentional isomorphism to characterize a more fine-
grained notion of synonymy, then the indeterminacy thesis fails.20 
However, merely appealing to the meanings of the logical connectives in a Carnap-style 
account of meaning will not of itself explicate how logically incompatible but empirically 
equivalent sentences can differ in meaning. To do that, we need to explain how ultimate 
constituents other than logical operators (and observation sentences) can differ in meaning. 
One way is to steal some leaves out of the logicist's book. If S differs from R only in that S 
has the numerical operator Nxφx where R has a class operator {x: φx}, then they differ in 
meaning because the rule governing the meaning of the numerical operator—the rule form 
of Hume's 
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Principle, perhaps—differs from that governing the class operator, perhaps a weakening of 
the rule form of Axiom V.
In what way could all this lay the basis for a naturalistic explanation of how our theoretical 
terms reach out to items utterly inaccessible to perception? Here's a very crude story. 
Imagine we grasp a four-place predicate xy Cong zw which we apply to observable rods (or 
rodlike segments of surfaces) and whose meaning is that the rod whose two end slices are 
x and y is congruent with that whose end slices are zw. We might manifest our grasp of this 
purely empirical predicate by, among other things, transporting rods and laying them end 
to end before issuing in a judgment. (How closely our grasp of such empirical predicates is 



tied to such verificatory behavior is, of course, a highly controversial matter.) As well as 
simple judgments that one segment is congruent (or not) with another, we will be able to 
grasp such ideas as that there is a point t between the end points zw of a segment such that 
xy is congruent with zt and with tw.
Now imagine that we also have an independent grasp of basic arithmetic. We might then 
be taught that there is a point t between the end points zw of a segment such that xy is 
congruent with zt and with tw.  is synonymous21 with zw is 2 times the length of xy . And 
so on for three times, four times, and so on. If, in our system, ab is a standard unit, like the 
old Parisian standard meter, then for many values n, zw is n times the length of ab  will be 
synonymous with an expression which language users utterly innocent of arithmetic can 
produce. But in other cases not: we might find ourselves saying that zw is 1045 times the 
size of ab or 10−45 the size of ab, and neither sentence may have any translation back into 
our purely empirical notion of congruence. Yet it may be suggested that by this means we 
are able to refer to lengths vastly greater than, or less than, anything perceptually 
discernible.
This suggestion may, of course, be strongly resisted. I am not intending to suggest here that 
this naturalistic strategy for explicating how we get beyond acquaintance solely with 
medium-sized dry objects is obviously going to succeed in the case of length (far less other 
physical magnitudes), or indeed that this is the only model for the introduction of 
theoretical terms; there is, of course, the Lewisian structuralist model in terms of Ramsey 
sentences (Lewis 1970), although, as Lewis himself seems to accept, this will not take us 
from observation to theory on its own. My claim is just that it is hard to see another route 
for the naturalist to follow in attempting to explain our grasp of the nonobservable. But 
now the whole strategy depends on our having an independent grasp of arithmetic, or more 
generally mathematics, that is an independent understanding of the sentences of these 
disciplines and some significant, albeit fallible, ability to differentiate correct from 
incorrect mathematical sentences. Granted that, and a disquotational notion of truth, we are 
committed to the existence of a body of truths grasp of which is 
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independent of our understanding of empirical theory—indeed, the latter presupposes it. 
Grasp of the highly theoretical sector of language T presupposes, first grasp of 
observational fragment O and also grasp of a fragment M of mathematics. So now the 
naturalist has the problem explaining our grasp of M, and Quinean holism cannot provide 
the answer.
Moreover, this problem is also Field's, despite his rejection of Quinean indispensability. 
Suppose Field can show us that mathematics is ontologically dispensable in science—that 
is, that mathematical objects play no role in scientific explanation—and also that it is 
deductively indispensable—we do not need mathematics, other than as a useful proof-



shortening device, either in the deduction of predictions from scientific theory or in a 
scientific explanation of deduction (so that model theory and proof theory are dispensable). 
Even if Field can achieve this much, he still has to give us a naturalistic explanation of how 
we manage to grasp the meanings of theoretical terms which refer to items far removed 
from those we are acquainted with through our normal perceptual abilities, and he has to 
do this without appeal to an independent grasp of mathematics. I am suggesting that this 
cannot be done.

V 

I said earlier that one of the strongest, if not the strongest, versions of naturalism is Quine's 
radical empiricism. If the conclusions of the last section are correct, then mathematics 
proves to be a fatal stumbling block for that project. But I do not conclude that naturalism 
is fatally wounded. The conclusion to draw is that accommodating mathematics continues 
to pose an extremely thorny and as yet unresolved problem for naturalism, and that the 
attempts to accommodate it (as also the attempts to show it cannot be accommodated) have 
generated some of the best and most illuminating philosophical work of recent times.
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15. Nominalism
Charles Chihara 

Undoubtedly, the most enlightening published work dedicated to giving knowledgeable 
readers an overview of the topic of nominalism in contemporary philosophy of 
mathematics is A Subject with No Object by John Burgess and Gideon Rosen.1 So I shall 
begin with a brief description of that work, in order to provide readers of this chapter with 
a solidly researched account of nominalism with which my own account of nominalism 
can be usefully compared. Part I, then, will briefly present the Burgess-Rosen account. My 
contrasting account will be given in the longer part II.

I. The Burgess-Rosen Account

According to Burgess and Rosen, nominalism is the philosophical view that everything 
that exists is concrete and not abstract (Burgess and Rosen, 1997, p. 3). Thus, according to 
these authors, one can also characterize contemporary nominalism as the view that there  
are no abstract entities. They view the contemporary nominalist, then, as someone who 
"denies that abstract entities exist, as an atheist is one who denies that God exists" (Burgess 
and Rosen, 1997, p. 11).



These characterizations raise a number of tricky questions: (1) What makes something 
abstract and not concrete? (2) Why should one not believe in the 
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existence of any abstract entities? (3) Why should philosophers who do not believe in 
abstract entities try to produce nominalistic interpretations or constructions of 
mathematics? That is, why should nominalists attempt to reconstrue or "reconstruct" 
mathematics in such a way that its assertions can be seen not to assert the existence of 
abstract entities?2 
Burgess and Rosen devote a whole section to question (1), but for reasons that will become 
clear later, I shall not go over their worries about the distinction at issue. I turn instead to 
(2) and (3). The latter question needs some preliminary discussion. What is a nominalistic  
interpretation or construction of mathematics? The answer: the nominalist attempts to 
construct a system of mathematics and/or physics that is consistent with his/her skepticism 
about abstract entities.3 Thus, it is an attempt to reproduce what ordinary mathematics 
accomplishes without presupposing the existence of such things as numbers and sets.
Let us now reconsider question (2): Why should one not believe in the existence of any 
abstract entities? Burgess (1990) quotes the nominalistic reconstructivists Daniel Bonevac, 
Dale Gottlieb, and Hartry Field, who cite an argument of Paul Benacerraf's published in his 
article "Mathematical Truth"4 as providing motivation for undertaking their 
reconstructions. This argument, based upon "a causal account of knowledge," is supposed 
to show that "belief in an assertion or theory implying or presupposing that there are 
numbers or objects of some similar sort cannot be knowledge" (Burgess 1990, p. 1). 
Burgess then spends most of the article blunting this argument,5 arriving in the end at the 
rather awkward double negative conclusion that "it is not known that it cannot be known 
that there are numbers" (p. 12).
Burgess and Rosen (1997) take up, with great attention to detail and to subtleties, not only 
Benacerraf's original "causal theory" argument, but also refinements of that argument 
which nominalists have put forward to motivate their reconstructive programs. In 
particular, they take up Hartry Field's argument based upon a "reliability thesis" (pp. 41-
49), as well as an epistemological argument involving the theory of reference (pp. 49-60). 
Burgess and Rosen provide 
end p.484

assessments of these arguments concluding, in each case, that a kind of stalemate between 
the nominalist and the anti-nominalist (sometimes referred to as "realist" or "Platonist") 
results, where no decisive conclusion can be drawn. For reasons to be articulated shortly, 



that there is such a stalemate between the two antagonists in this dispute is taken by these 
authors to be very significant.
Burgess and Rosen are clearly most sympathetic with a position that may be called 
"moderate realism" or "minimal anti-nominalism."6 Minimal anti-nominalists do not 
present arguments for their belief in mathematical objects as does the typical realist. Nor 
do they attempt to explain how set theorists have come to know that, say, the null set exists 
or that the pair set axiom is true. Instead, the minimalist anti-nominalist starts with a "fairly 
uncritical attitude towards, for instance, standard results of mathematics." 
Having studied Euclid's Theorem, we are prepared to say that there exist infinitely many 
prime numbers. Moreover, when we say so, we say so without conscious mental 
reservations or purpose of evasion. … 
For those of us for whom something like this is the starting-point, any form of nominalism 
will have to be revisionary, and any revision demands motivation.7 
In other words, minimalists start with their "fairly uncritical attitude" about mathematical 
existence, and demand of the nominalist a proof or convincing argument that their starting 
point cannot be maintained. It is a strategy that consists in throwing the onus upon the 
nominalist to show that the minimalists' anti-nominalist position is untenable. Thus, having 
arrived at the important stalemates described above, they can argue that no compelling  
argument justifying the revisions demanded by nominalism has been provided and hence  
that the minimalists are justified in maintaining their anti-nominalistic stance.
Additional Reasons for Rejecting the Nominalist's Position
In the last section of their book, "Conclusion," Burgess and Rosen (1997) question the 
philosophical motivation for developing the kinds of nominalistic reconstructions of 
mathematics discussed above. "What good are these reconstructions?" they can be 
understood to be asking. The authors confine themselves to two possible rationales for 
such reconstructions: hermeneutic and revolutionary. 
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On the one hand, the nominalist's reconstructions of mathematics might be part of an 
attempt to give analyses of the mathematical propositions being asserted by actual 
practicing mathematicians. In other words, the nominalist might be claiming that the 
propositions of his or her reconstructions are what practicing mathematicians are actually 
asserting. A philosopher who held such a view would be classified by these authors as a 
hermeneutic nominalist. On the other hand, the nominalist might be proposing a new kind 
of mathematics that scientists ought to accept in place of their current mathematical 
theories. On this view, there is no suggestion that our actual mathematical theories are 
nominalistic; instead, it is argued that we ought to replace our current mathematical 
theories with the nominalistic reconstructions being developed. A philosopher who took 
this route would be classified as a revolutionary nominalist.



To understand adequately the reasoning underlying the Burgess-Rosen evaluations, it is 
necessary to review a paper cited earlier in which Burgess attacks reconstructive 
nominalism and defends his "moderate realism." What follows is a sketch of the argument.
We first need some definitions that Burgess gives: 
An instrumentalist maintains that "science is just useful mythology, and no sort of 
approximation to or idealization of the truth." 
A hermeneutic nominalist holds that when the language of mathematics is properly 
analyzed, one will see that the scientist, in asserting mathematical propositions, is not 
really asserting the existence of any abstract mathematical objects. 
A revolutionary nominalist is a nominalist who proposes a new version of science—a 
nominalistic version—in which there are no assertions of the existence of abstract 
mathematical objects. 
The argument proceeds from just one premise: 
[%] A nominalist is either an instrumentalist, or a hermeneutic nominalist, or a 
revolutionary nominalist. 
Burgess's strategy is to argue that none of the above three positions is really tenable. So 
let's turn to the details of his reasoning.
Few philosophers are "instrumentalists" in the extreme form given by the definition above. 
And I agree with Burgess that this sort of instrumentalism is not plausible. Thus, if one 
accepts Burgess's premise, one is faced with choosing between being a hermeneutic  
nominalist or being a revolutionary nominalist. Hermeneutic nominalism is a thesis about 
the proper analysis of sentences of mathematics—and since ordinary mathematics is 
expressed in English or some such natural language, it is a thesis about the proper analysis 
of sentences of ordinary languages. Now Burgess can find no linguistic evidence 
supporting the hermeneutic nominalist's thesis. And no philosopher has adduced any 
convincing evidence supporting such a thesis (that is, evidence that a linguist would take 
seriously).
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The revolutionary nominalist, on the other hand, is proposing a new version of science. So 
the question is: Why should we adopt the revolutionary version? What grounds are we 
given for accepting such a new version of science? There are, he claims, no good scientific 
grounds for such a revolution, and there are strong practical reasons for not proceeding 
with such revolution. For example: 
[A]ny major revolution involves transition costs: the rewriting of text books, redesign of 
programs of instructions and so forth. [I]t would involve reworking the physics curriculum 
[to allow the student to take courses to learn the logical or philosophical concepts required 
to understand the nominalist's reconstructions].8 
Thus, Burgess concludes: 



Unless he is content to lapse into a mere instrumentalist or "as if" philosophy of science, 
the philosopher who wishes to argue for nominalism faces a dilemma. He must search for 
evidence for an implausible hypothesis in linguistics, or else for motivation for a costly 
revolution in physics. Neither horn seems very promising, and that is why I am not a 
nominalist. (Burgess, 1983, p. 101) 
In a more recent work, Burgess argues that the hermeneutic and the revolutionary 
nominalists both make weighty claims the burdens of proof of which have "not yet been 
fully met" (1990, p. 7). Returning to the even more recent work by Burgess and Rosen 
(1997), they concentrate, for the most part, on the revolutionary nominalist's rationale for 
their reconstructions. Specifically, they question "the scientific merits of a nominalistic 
reconstruction as an alternative to or emendation of current physical or mathematical 
theory" (p. 205), and they argue that the ultimate judgment of the scientific merits of the 
nominalist's reconstructions should be made by the scientific community and not by the 
philosophical community. They go so far as to claim that "the true test would be to send in 
the nominalistic reconstruction to a mathematics or physics journal, and see whether it is 
published, and if so how it is received."9 They then write: 
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If nominalistic reconstruals are not plausible as analysis of the ordinary meaning of 
scientific language, and if nominalistic reconstructions are not attractive by our scientific 
standards as alternatives to current physical or mathematical theories—if nominalism 
makes no contribution to linguistic science, nor to physical or mathematical science—then 
must the programme of nominalistic reconstrual be judged … an intellectual entertainment 
addressed to no serious purpose? (Burgess and Rosen 1997, p. 208) 
This last question is addressed at the very end of their book, where they ask: "What is 
accomplished by producing a series of such distinct and inferior theories?" (Burgess and 
Rosen 1997, p. 238; italics added).
Notice that the nominalist's reconstructions are now judged to be "inferior." It is not clear 
to this writer why Burgess and Rosen feel justified in using the term "inferior" in their 
question.10 My own view is that their judgment of inferiority is based upon a mistaken 
understanding of what the reconstructions were devised to accomplish. If one thinks 
tweezers are nail pullers, then one would undoubtedly regard tweezers as inferior tools 
indeed.
In any case, they answer their question (the one that ends the paragraph preceding the last 
one) with "No advancement of science proper, certainly; but perhaps a contribution to the 
philosophical understanding of the character of science." Here is how they imagine such a 
contribution being made: 
Devising alternatives distinct from and inferior by our standards to our actual theories, but 
in principle possible to use in their place, is a way of imagining what the science of alien 



intelligences might be like, and as such a way of advancing the philosophical 
understanding of the character of science. 
It is just such an advance, we want to suggest, that is accomplished by the various 
reconstructive nominalistic strategies surveyed in this book. (Burgess and Rosen 1997, p. 
243) 
Thus, the work of the nominalist is likened to the work of science fiction writers, who help 
us to imagine what the intellectual products of alien intelligences might be like—quite a 
damning simile.11 
All in all, Burgess and Rosen have assembled quite a case against the nominalist. Judging 
from the pun in the title of their book, "A Subject with No Object,"12 it would seem that the 
Burgess-Rosen criticisms were aimed at undermining the very 
end p.488

object or goal of nominalism. Shapiro, for one, thinks that the authors of that book have 
succeeded admirably in raising "sharp and penetrating criticisms of the nominalistic 
projects and of the whole point of nominalism."13 

Part II.  A Nominalist's Response

I shall now give reasons for holding that Burgess and Rosen have not succeeded in 
undermining nominalism, at least when it is directed at the sort of nominalism I advocate. I 
shall first present a rationale for the nominalist's reconstructions of mathematics that is 
very different from the epistemological one described by Burgess and Rosen. To 
understand this rationale, one needs to appreciate the view of philosophy which motivates 
much of the work done by the nominalist of the kind I have in mind.

1.  A Nominalist's View of Philosophy

The field of philosophy is divided into a number of specialties: philosophy of language, 
philosophy of mind, philosophy of science, philosophy of logic, philosophy of art, and so 
on. For practically any area X of intellectual study, there is a philosophy of X. As a general 
rule, one can say that the philosophy of X is aimed at achieving a kind of understanding of 
X that is unique to philosophy. One might call this sort of understanding "big picture 
understanding." What one seeks in philosophy is the really "Big Picture:" What, in general 
and in broad outlines, is the universe like? What, in general and in broad outlines, is our 



(i.e., humanity's) place in the universe? How, in general and in broad outlines, do we 
(humans) gain an understanding of the universe? And, more specifically, how, in general 
and in broad outlines, does X fit into this big picture?
Of course, this goal of producing such a big picture should not mislead one into thinking 
that subtle distinctions, careful and detailed examination of conceptual matters, and 
lengthy and intricate reasoning about minute points should not matter. Philosophers are 
concerned with very fundamental concepts, so that their analyses, even about apparently 
small matters, have very far-reaching consequences for the big picture being constructed.
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In this search for the big picture, coherence is an essential ingredient. We seek an 
understanding of X that is consistent with, and holds together with, the other views we 
accept about the universe and about us. Take the philosophy of language, for example. 
Here, we seek an understanding of the nature of language and our mastery of language that 
is consistent with our general scientific, epistemological, and metaphysical views, both 
about the universe we inhabit and also about us as organisms with the features attributed to 
us by science. An account of the nature of language that made our ability to learn a 
language into a complete mystery would be considered by most philosophers of language 
to be in serious trouble. We seek a coherent and comprehensive big picture, where all the 
different Xs fit together. In general, one would not expect a contemporary philosopher's 
account of language to contradict any of our prevailing views of science and scientific 
knowledge without very compelling reasons.

Revolutions in Science

This conception of philosophy suggests an explanation of a striking feature of the history 
of philosophy. Following the development and acceptance of a revolutionary scientific  
theory—a theory that undermines fundamental and central beliefs of the well-educated 
elite—there tends to appear a heightened amount of philosophical theorizing. Think of the 
important (and radical) philosophical writings that appeared following the seventeenth-
century scientific discoveries that undermined much of the medieval conception of the 
universe. Or consider the philosophical activity that arose from the publication of Darwin's 
work on evolution.14 Other examples: the enormous number of philosophical works dealing 
with Freud's writings on mental illness and childhood sexuality, and the lively discussions 
in present-day philosophy of science dealing with the remarkable implications of relativity 
theory and quantum mechanics that conflict with so many fundamental beliefs underlying 
Newtonian physics.



The above-noted activity of philosophers is fitting, given the conception of philosophy I 
have been describing. When science undermines fundamental and central beliefs—
fractures our big picture of the universe—then philosophers feel a pressing need to put the 
pieces together again, to develop a new and coherent big picture of the universe.

The Importance of Paradoxes

Another characteristic of philosophy is its great attention to, and serious interest in, 
uncovering and solving paradoxes or antinomies. A paradox is an argument 
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that starts with premises that seem to be incontestable, that proceeds according to rules of 
inference that are apparently incontrovertible, but that ends in a conclusion that appears to 
be obviously false. In many cases, a paradox ends in a conclusion that is downright self-
contradictory. From the earliest beginnings of philosophy in classical Greece (think of 
Parmenides, Heraclitus, and Zeno), paradoxes have played an important role in motivating 
and developing philosophical theories.
Consider what is undoubtedly one of the most striking cases of philosophical fervor 
brought about by the discovery of paradoxes: the discovery of the various paradoxes of 
mathematics and set theory in the late nineteenth and early twentieth centuries. These 
paradoxes stimulated much research in the foundations of logic and mathematics.15 They 
led Frege eventually to abandon his logicism.16 They also stimulated Poincaré to come up 
with his vicious-circle principle.17 The paradoxes figured in Zermelo's defense of his 
axiomatization of set theory.18 Russell, who discovered the paradox that bears his name, 
was led to develop his Theory of Types and his "no-class" theory during the many years he 
spent searching for a solution to the paradoxes.19 Hilbert motivated certain aspects of his 
formalist philosophy of mathematics by the need to make certain that such paradoxes 
would never again be produced in mathematics.20 
Reasons for the importance philosophers attach to paradoxes are not hard to find, given the 
above view of philosophy. An antinomy starts from premises that appear to be obviously 
true and proceed according to principles of inference that seem to be clearly valid. These 
premises and principles may be fundamental to our belief system (some may belong to a 
body of beliefs classified as "folklore"). An antinomy may show that some such beliefs 
and/or principles clash with recent developments in science, mathematics, or logic, or are 
simply inconsistent.
Alfred Tarski once wrote: "The appearance of an antinomy is for me a symptom of 
disease" (1969, p. 66). What is diseased, evidently, is a body of beliefs or system of 



principles that had been largely unquestioned or taken for granted. In those cases, 
philosophers take it upon themselves to try to heal the body or system. 
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In the case of the mathematical and set-theoretical paradoxes, it was thought that the basic 
principles of mathematics or logic were shown to be diseased.21 It is no wonder that the 
discoveries of these paradoxes brought about so much unease and disquiet.22 One can see 
why foundationalists—mathematicians, logicians, and philosophers—put so much effort 
into an attempt to put the mathematical house in order. Since a paradox is a symptom that 
our body of beliefs and principles is not coherent, the above account of one of the principal 
goals of philosophy allows us to see why philosophers feel such a need to try to refashion 
our beliefs and principles into a coherent big picture in which the paradoxes can no longer 
be constructed.

2.  Why Nominalistic Reconstructions of Mathematics?

I shall now present a picture of what at least one type of nominalistic reconstructivist is 
attempting to accomplish—a picture that is very different from the one Burgess and Rosen 
have sketched in their work. First of all, the kind of nominalist I have in mind does not 
begin with the thesis that there are no abstract entities. I see the nominalist, rather, as an 
anti-realist. So to understand this kind of nominalism, one needs some acquaintance with 
realism in mathematics.

What Is Realism (Platonism)?

In the philosophy of mathematics, the realist maintains that mathematical objects exist and 
that the mathematician is attempting to provide us with information about these objects. 
Thus, realists base much of their view of mathematics on the hypothesis that such things as 
numbers, sets, functions, vectors, matrices, spaces, and such truly exist: they generally 
assert, for example, that the theorems of set theory are true statements that tell us what sets 
in fact exist and how these mathematical objects are related to one another by the 
membership relationship. Mathematical entities are not supposed to be things that can be 
seen, touched, heard, smelled, tasted, or even detected by our most advanced scientific 
instruments. So a problem for the realist is to explain how mathematicians have been able 
to gain knowledge of such things. Realists, however, have backed their belief in the 



existence of such mathematical entities with a variety of philosophical arguments. One 
such argument has been especially influential.
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Quine's Challenge

It was Willard Quine who advanced the well-known "indispensability argument" for the 
existence of mathematical objects, by making such declarations as 
Mathematics—not uninterpreted mathematics, but genuine set theory, logic, number 
theory, algebra of real and complex numbers, differential and integral calculus, and so on
—is best looked upon as an integral part of science, on a par with the physics, economics, 
etc., in which mathematics is said to receive its applications. (Quine 1966, p. 231) 
With such a view of mathematics, it is not surprising that Quine would maintain that the 
mathematical nominalist "is going to have to accommodate his natural sciences unaided  
by mathematics." Earlier, he had advanced a criterion of ontological commitment, 
according to which a theory T, expressed in a first-order logical language, is ontologically 
committed to entities of kind K iff such entities would have to be in the range of the bound 
variables of T in order that T be true.23 Thus, when he asserted that "Mathematics, except 
for some trivial portions such as very elementary arithmetic, is irredeemably committed to 
quantification over abstract objects,"24 he was in effect claiming that science itself was 
ontologically committed to the existence of mathematical objects. If the truth of all but 
trivial portions of mathematics requires that the quantifiers of the mathematical language 
range over mathematical objects or logically similar abstract objects, then it is hard to see 
how a nominalist can accept the pronouncements of the natural sciences without implicitly 
accepting the existence of mathematical objects. It is no wonder, then, that Quine thought 
that the nominalist would have to "accommodate his natural sciences unaided by  
mathematics" (Quine 1960, p. 269).
In my Ontology and the Vicious-Circle Principle (Chihara 1973), I took Quine to be 
proposing not so much a direct argument for the existence of mathematical objects, as a 
kind of challenge to the nominalist to produce a nontrivial system of mathematics which 
would be adequate for the needs of the natural scientist, but which would not require its 
quantifiers to range over mathematical objects.25 I regarded him are arguing roughly as 
follows: 
Let's see you nominalists accommodate science without committing yourself to  
mathematical objects. Let's see you produce a system of mathematics which would be  
adequate for the needs of the natural scientist, but which would not require its quantifiers  
to range over abstract objects. 



If this challenge cannot be met, then it can be plausibly argued, by a sort of inference to the 
best explanation, that we have good grounds for believing in the 
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existence of mathematical objects (i.e., for being mathematical Platonists).26 Burgess and 
Rosen put the argument as claiming that "we should believe in abstract entities, but only 
because nominalistic alternatives to standard scientific theories cannot be developed" 
(1997, p. 64).
Of course, Quine was convinced that no such nominalistic system of mathematics will ever 
be devised—the reason being that he believed mathematical objects were indispensable to 
the practice of science—so he reluctantly adopted the view of mathematics for which he is 
now famous: "reluctant Platonism."27 
Mark Steiner has suggested that what Quine was getting at with his indispensability 
argument can be expressed in the following way: 
[T]o describe the experience of diversity and change requires mathematical entities. 
Imagine defining rate of change without the resources of analysis. We cannot say what the 
world would be like without numbers, because describing any thinkable experience (except 
for utter emptiness) presupposes their existence. (Steiner 1978, pp. 19-20) 
Steiner's formulation can also be regarded as a form of challenge to the nominalist: 
defenders of the argument can be understood to be saying, "Let's see you describe any 
thinkable experience without making reference to or quantifying over mathematical 
objects."

Naturalized Epistemology

Another Quinean view that has been extremely influential is his doctrine of naturalized 
epistemology. Quine rejected the traditional a priori way in which philosophers tended to 
practice epistemology and advocated instead taking epistemology to be a subarea of 
psychology. He suggested that epistemology should study a "natural phenomenon, viz. a 
physical human subject": 
This human subject is accorded a certain experimentally controlled input—certain patterns 
of irradiation in assorted frequencies, for instance—and in 
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the fullness of time the subject delivers as output a description of the three-dimensional 
external world and its history. The relation between the meager input and the torrential 



output is a relation that we are prompted to study for somewhat the same reasons that 
always prompted epistemology; namely, in order to see how evidence relates to theory, and 
in what ways one's theory of nature transcends any available evidence. (Quine 1969, pp. 
82-83) 
Quine's naturalized view of epistemology was adopted by Burgess and Rosen. Since these 
authors regard the typical nominalist as attempting to justify his (or her) position on 
epistemological grounds, it was reasonable for them to pay special attention to the field of 
epistemology. Thus, they contrast "the traditional alienated conception of epistemology"—
the advocates of which they describe with the words "the epistemologist remains a 
foreigner to the scientific community, seeking to evaluate its methods and standards"—
with the Quinean "naturalized conception of epistemology," according to which the 
epistemologist "becomes a citizen of the scientific community, seeking only to describe its 
methods and standards, even while adhering to them". They argue that since the alienated 
epistemologist attempts to evaluate the methods and standards of the scientific community, 
he or she needs to use methods and standards of evaluation that are "outside and above and 
beyond those of science" (Burgess and Rosen 1997, p. 33).
It is clear where the sympathies of these two authors lie when they describe the "the 
pretensions of philosophy to judge common sense and science from some higher and better 
and further standpoint," and then go on to characterize the following words of David Lewis 
as giving an especially forceful expression of the rejection of such "pretensions": 
Renouncing classes means rejecting mathematics. That will not do. Mathematics is an 
established, going concern. Philosophy is as shaky as can be. To reject mathematics on 
philosophical grounds would be absurd. … I laugh to think how presumptuous it would be 
to reject mathematics for philosophical reasons. How would you like to go and tell the 
mathematician that they must change their ways, and abjure countless errors, now that 
philosophy has discovered that there are no classes? … Not me!28 
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Why Some Nominalistic Reconstructivists Should Not Be Classified as Alien 
Epistemologists

The nominalistic reconstuctivists of the sort I have in mind do not attempt to judge 
common sense and science from some higher, better, and further standpoint. They seek to 
piece together their account of mathematics in a way that is compatible both with what 
science teaches us about how we humans obtain knowledge and also with what we already 
know about how humans learn and develop mathematical theories. Furthermore, these 
nominalists do not reject mathematics—a fortiori, they do not reject mathematics on the 
basis of "some higher and better and further standpoint." On the contrary, their goal is to 



understand the nature of mathematics in a way that is compatible with the other features of 
the "big picture" they are attempting to construct.
It is true that, as nominalists, they do not believe that sets, classes, or extensions of 
concepts actually exist. But their skepticism about the existence of such things is not based 
upon the conviction that they have some decisive knockdown, a priori argument showing 
that mathematical objects cannot (or do not) exist. Rather, it is based upon a lot of different 
considerations such as: 

(a) That set theorists, sitting in their offices and merely thinking about sets, were able to 
discover somehow the truth of the axioms of set theory (taken to be assertions about 
mathematical objects) is something that nominalists typically find either utterly mysterious 
or unintelligible.29 
(b) Nominalists have serious doubts about the arguments (such as the various versions of 
the indispensability argument discussed earlier) that Platonists have given to support their 
belief in such things. All such arguments have seemed to them to be highly questionable.30 
(c) They find implausible and unscientific the philosophical theories that Platonists have 
advanced to account for their supposed knowledge of the things they postulate.31 
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(d) The Platonist's position that empirical scientists need to discover complex and 
complicated relationships between entities that do not exist in the physical world32 in order 
to develop their empirical theories has seemed bizarre and counterintuitive to nominalists. 
They question the explanations that Platonists have given of why knowledge of 
mathematical objects is required in order to obtain sophisticated scientific knowledge of 
the physical universe.33 
(e) Their assessment of the many doctrines, advanced by philosophers over the ages, that 
postulate some type of nonphysical, undetectable substance or object in order to account 
for some feature of language or belief has taught them to be skeptical of all such doctrines. 
(f) They are convinced that the descriptions Burgess and Rosen give of the nominalist ("the 
pretensions of philosophy to judge common sense and science"), as well as Lewis's diatribe 
against the presumptuousness of philosophers, are fundamentally misleading. 

First of all, contrary to what Lewis has suggested, there are many nominalists who 
maintain neither that our mathematical theories consist of false assertions nor that 
mathematicians have to change their ways because of what philosophers have discovered.34 

Second, one could easily get the impression from the above-mentioned Platonists that it is 
only the presumptuous philosopher (with pretensions of having some special means of 
judging the affirmations of science) who has doubts about the existence of mathematical 



objects. In fact, many (if not most) of the outstanding researchers in mathematics have 
serious doubts about the Platonist's account of mathematical theorems and knowledge.35 

And it has certainly been my experience that many empirical scientists find the Platonic 
view of mathematics quite fantastic. Also, anyone who has taught philosophy of 
mathematics (as I have for a great many years) will no doubt remember the look of 
disbelief, and sometimes of amazement, on the faces of some students on being told that 
highly respected philosophers and mathematicians at major universities believe that, in 
addition to planets, stars, galaxies, atoms, electrons, molecules, and photons, such things as 
numbers, sets, and 
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functions also exist. These reconstructivists feel that any account of mathematics should 
take account of the skeptical attitudes of nonphilosophers about the Platonic account. It 
suggests to them that the belief that Platonists have in mathematical objects is not at all like 
the belief that, essentially, everyone has in ordinary material objects like tables and chairs, 
despite what some Platonists have argued.36 
Such considerations as the above lead these nominalists to doubt the appropriateness of the 
Platonist's conception of mathematical theories as descriptions of a realm of objects that do 
not exist in the physical world. These nominalists are skeptical of the Platonic doctrine that 
to achieve genuine mathematical knowledge, one needs to know that such objects truly 
exist and are related to one another as the theory in question affirms. As a result, these 
nominalists search for an alternative way of understanding the nature of mathematics, and 
their reconstructions are seen as an aid to achieving their overall goal of arriving at such  
an understanding.
I would like to emphasize that my own reconstructive works were never motivated by 
Benacerraf-type epistemological arguments. My first reconstructive book, Ontology and  
the Vicious-Circle Principle, was published in 1973—the year Benacerraf's paper 
"Mathematical Truth" was published—and almost all of the main reconstructive ideas were 
developed many years earlier. I certainly based nothing in my book on the Benacerraf 
paper. Indeed, I began the book with the quotation from Quine's Word and Object (1960), 
in which Quine declares that the nominalist would have to "accommodate his natural 
sciences unaided by mathematics," followed by these words: 
When I first read these words in Word and Object several years ago, I wrote in the margin: 
"This philosophical doctrine should be soundly refuted." It was only much later, while I 
was working on an essay on the vicious-circle principle, that an idea came to me as to how 
one might construct such a refutation.37 
What I felt should be refuted was Quine's claim that the nominalist would be unable to 
develop a nontrivial system of mathematics for the natural sciences that would not be 
"ontologically committed" to mathematical objects. I had this conviction long before any 



talk of causal theories of knowledge or Benacerraf-type anti-realist arguments were heard 
in philosophical circles. The aim of my reconstruction, then, was to refute the Quinean 
claim by producing a nontrivial system of mathematics that does not require quantification 
over mathematical objects. But the nominalistic reconstruction was not supposed to be the 
end of the 
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story: it was to be an aid toward gaining an understanding of the actual functioning of the 
mathematical theories mathematicians actually use and develop.38 

3.  A Nominalistic Reconstruction of Mathematics

In order to give you some idea of what these nominalistic reconstructions of mathematics 
are like, I shall here very briefly sketch the main ideas of the Constructibility Theory of my 
book Constructibility and Mathematical Existence (1990).39 

A Brief Exposition of the Constructibility Theory

Set theory is a theory about sets. It tells us what sets exist and how these sets are related to 
one another by the membership relationship. The Constructibility Theory is a theory about 
open sentences: it tells what open sentences (of a certain sort) are constructible and how 
these constructible open sentences would be related to one another by the satisfaction  
relation. (Thus, in this theory, one open sentence can satisfy another.) The theory is 
formalized in what is basically a many-sorted, first-order logical language40 that utilizes, in 
addition to the existential and universal quantifiers of standard first-order logic, 
constructibility quantifiers.
Constructibility quantifiers are sequences of primitive symbols: either (C—) or (A—), 
where "—" is to be replaced by a variable of the appropriate sort. Using "Ψ " to be short 
for "  satisfies Ψ," "(C )Ψ ' can be understood to say 
It is possible to construct an open sentence such that satisfies Ψ, 
whereas "(A )Ψ " can be understood to say 
Every open sentence that it is possible to construct is such that satisfies Ψ. 
And just as "( x)Fx" is equivalent to "−(x)−Fx," and "(x)Fx" is equivalent to "−( x)−Fx', we 
have "(C )Ψ " is equivalent to "−(A )−Ψ ," and "(A )Ψ " is equivalent to "−(C ))−Ψ '.



The assertions of this theory are the sentences of the theory that can be derived from a set 
of axioms, which yield what is basically the mathematics of 
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Principia Mathematica. Essentially, the mathematics is what foundationalists call "the 
simple theory of types."
It needs to be emphasized that what are said to be constructible by means of the 
constructibility quantifiers are open-sentence tokens as opposed to open-sentence types. 
Open-sentence types are classified by Charles Parsons as "quasi-concrete" objects (in 
contrast to purely mathematical objects), because "they are directly 'represented' or 
'instantiated' in the concrete" (Parsons 1996, p. 273). Despite the fact that these objects are 
"quasi-concrete," it can be argued that they are as epistemologically disreputable as 
numbers and sets. Open-sentence tokens, however, are not open to the same objection: 
typically, an open-sentence token consists of particular marks on paper, which exist at a 
particular place in the universe and at a particular time. Furthermore, to say that an open 
sentence of a particular sort is constructible is not to imply or presuppose that any such 
open-sentence token actually exists or, indeed, that anything exists. Constructibility 
quantifiers do not carry ontological commitments as do the quantifiers of standard 
extensional logic.

What Does "Possible" Mean?

In the phrase "it is possible to construct," the term "possible" needs some explanation. 
There are, of course, many different kinds of possibility: logical, metaphysical, physical, 
epistemological, technological, to name just a few. Epistemological possibility is 
concerned with what is known. Thus, to say that is epistemologically possible for agent X 
is to say that is not logically precluded by what X knows—that is, is logically compatible 
with everything X knows. To say that is physically possible is to say something like "  is 
logically compatible with all the physical laws of our universe." The possibility talked 
about in the Constructibility Theory is what is called "conceptual" or "broadly logical" 
possibility—a kind of metaphysical possibility, insofar as it is concerned with how the  
world could have been. Every purely logical truth is necessary in this sense, but the set of 
conceptual necessary truths will include much more. What are called "analytic truths" 
(such truths as 'All bachelors are unmarried') are also held to be necessary in this broadly 
logical sense.41 As a rough guide, Graeme Forbes suggests that 'it is possible that P' should 
be taken to mean "There are ways things might have gone, no matter how improbable they 
may be, as a result of which it would have come about that P" (Forbes 1985, p. 2). Another 



way of expressing this sort of possibility is to take it to mean that the world could have 
been such that, had it been this way, P would have been the case. There are many different 
systems of modal logic, but the type of system that is generally believed 
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to correctly formalize the logical features of this broadly logical sense of necessity is S5.42 

What "(C )Ψ " Does Not Mean

"(C )Ψ " does not mean that one knows how to construct such an open sentence or that one 
has a method for constructing such an open sentence. Hence, the constructibility quantifier 
is not at all like the Intuitionist's existential quantifier. Furthermore, it does not mean that 
one can always, or even for the most part, determine what particular objects would satisfy 
such an open sentence or how one would determine what objects would satisfy . Nor does 
it mean that one can determine if a series of marks, sounds, hand signals, or what have you 
is or is not such an open sentence.

The Many Levels of the Constructibility Theory

The Constructibility Theory is similar to Frege's theory of concepts: just as Frege's 
hierarchy of concepts is stratified into levels, so the open sentences that are talked about in 
the Constructibility Theory are of different levels. Thus, consider the following situation. 
On the desk in my office, there are two pieces of fruit, which I have named Tom and Sue. 
On the blackboard in my office, I write the open sentence 
x is a piece of fruit on the desk in my office. 
Both Tom and Sue satisfy this open sentence. The desk does not. This open-sentence token 
is of level 1. Now suppose that I write the open sentence 
There is at least one object that satisfies F 
in the bottom left corner of my blackboard, where "F" is being used as a variable of level 
1. This open-sentence token is satisfied by the open-sentence token I constructed earlier—
the level 1 open sentence I first wrote on the blackboard. The second open sentence I 
constructed is a second-level open sentence. Clearly, then, we can go on to construct open 
sentences of levels 3, 4, 5, and so on.
In the next section, I shall sketch the development of finite cardinality theory within the 
framework discussed above.
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Notation I Shall Use to Refer to the Entities of Different Levels

 Level 0: Objects x, y, z,  …  
 Level 1: Properties F, G, H,  …  
 Level 2: Attributes 픉, 픊, ℌ,  …  

 Level 3: Qualities F, G, H,  …  

It needs to be emphasized that what I am calling "properties," "attributes," and "qualities," 
are just open sentences. Thus, the open sentences of level 1 that will be talked about in this 
theory are to be called "properties," and the uppercase letters F, G, H, and so on are to be 
used as variables to refer to these open sentences. Extrapolating from the level 1 case, one 
can see that the level 2 open sentences to be talked about will be called "attributes" and the 
script uppercase letters 픉, 픊, ℌ, and so on will be used as variables to refer to these 

second-level open sentences. Thus properties, attributes, and qualities are not being used to 
refer to universals or abstract entities of some sort, as is generally the case in philosophical 
works. I use this terminology simply to facilitate our keeping distinct and ordered the open  
sentences of different levels I shall be talking about.

Quantifiers

(a) Quantifiers containing occurrences of level 0 variables are just the standard quantifiers 
of first-order logic.
(b) Quantifiers containing occurrences of level 1 or higher variables are constructibility 
quantifiers.

Relations

All the open sentences to be talked about in this theory will be monadic open sentences 
(i.e., such open sentences as "x is a human" that contain occurrences of only one variable). 
The reason I restrict the theory to just monadic open sentences is simplicity: it makes the 
task of formalizing the theory so much easier.
In what follows, I shall define relations à la Kuratowski.

Couples



A couple {x, y} is a property that is satisfied by only the objects x and y. 
Example: "x = Tom v x = Sue" is a couple {Tom, Sue}. 
Notice that I have given here an example of a monadic open sentence: only one variable 
(i.e., "x") occurs in the open sentence—of course, there are two occurrences of this one 
variable.
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Notice also that I say "a couple" (instead of "the couple"), because it is possible to 
construct indefinitely many different such couples. Thus, "x is the very same person as 
Tom or x is the very same person as Sue" is also a couple {Tom, Sue}.

Ordered Pairs

An ordered pair x, y  is an attribute that is satisfiable by all and only couples {x, x} and {x, 
y} that could be constructed. 
Note that an ordered pair is an open sentence satisfied by other open sentences—it is not 
satisfied by the objects x and y. 
Example: The open sentence 
F is a couple {Tom, Tom} or F is a couple {Tom, Sue} 
is an ordered pair Tom, Sue .

Relations

A relation R is a quality that is satisfiable only by ordered pairs such that if an ordered pair 
x, y  could be constructed that satisfied R, then R is satisfiable by every ordered pair x, y  

that could be constructed. 
Example: "  is an ordered pair x, y  such that x is married to y" is a quality which is a 
relation corresponding to the intuitive relation of being married to. 

A Notational Definition

If R is a relation, then 



"xRy" means def "an ordered pair x, y  satisfies R." 
Notice that, as the term "relation" has been defined, if an ordered pair x, y  satisfies some 
relation R, so that xRy, then every ordered pair x, y  that is constructible would also 
satisfy R.
In what follows, many of the definitions will look exactly like those given in Frege's theory 
of cardinal numbers.

Relation R correlates F to G 
iff for every x that satisfies F, there is a y that satisfies G such that 
xRy; 
and for every y that satisfies G, there is an x that satisfies F such that 
xRy. 
end p.503

Relation R is a one-one relation 
iff for every x, y, and z, 
if xRy and xRz, then y = z; 
if xRy and zRy, then x = z. 
F is equinumerous with G 
iff it is possible to construct a one-one relation that correlates F to G. 

Example: Let us suppose that the objects under consideration here are people. Then 
consider the following open sentences: 
J: "x is the junior senator from some state" 
S: "x is the senior senator from some state" 
and let R be the open-sentence: 

is an ordered pair x, y  such that x is the junior senator from a state in which y is the 
senior senator. 
It can be seen that R is a one-one relation correlating property J with property S. Hence, J 
is equinumerous with S.
The developments in the following section deviate somewhat from the Fregean 
developments, because we don't have objects to serve as the cardinal numbers.

Cardinal Number Attribute of a Property

An attribute 픑 is a cardinal number attribute of property F iff 픑 is satisfiable by all and 
only those properties equinumerous with F. 



Example of a cardinal number attribute of a property: 
G is equinumerous with "x is the senior senator from some state" 
Cardinal Number Attribute
An attribute 픑 is a cardinal number attribute iff it is possible to construct some property 
F such that 픑 is a cardinal number attribute of property F. 
The next step is to define the natural number attributes. Thus, I first define 
A zero attribute is any cardinal number attribute that is satisfied by "x ≠ x." 
end p.504

Then the following four definitions yield what is desired: 

1. 
 
 The immediate predecessor relation P 
픐 P픑 iff it is possible to construct a property F which is such that some object x 
satisfies it and 픑 is a cardinality attribute of F and it is possible to construct a property 
G such that 픐 is a cardinality attribute of G and G is satisfiable by all (and only those) 
objects different from x which satisfy F. 

2. 
 
 P-hereditary qualities 
A quality Q is P-hereditary iff, for all cardinality attributes 픐, 픑, if 픐 satisfies Q and 
픐 P픑, then 픑 satisfies Q. 

3. 
 
 P-descendants 
A cardinality attribute 픑 is a P-descendant of cardinality attribute 픐 iff 픑 satisfies 
every P-hereditary quality that 픐 satisfies. 

4. 
 
 Natural number attributes 
A natural number attribute is any P-descendant of a zero attribute. 

Specific Natural Number Attributes

A natural number attribute is 

 a one attribute iff it is possible to construct a zero attribute which immediately precedes 
it; 
 a two attribute iff it is possible to construct a one attribute which immediately precedes 
it; 
 a three attribute iff it is possible to construct a two attribute which immediately precedes 
it; 
 and so on. 



Because of space restrictions, I shall end my exposition of the Constructibility Theory 
here. One can find a more detailed and expansive discussion of the constructibility 
development of finite cardinality theory in Chihara (2004, ch. 7). I turn now to the 
Burgess-Rosen objections.

4.  An Examination of the Burgess-Rosen Evaluation

According to Burgess's principal premise, the reconstructive nominalist must espouse one 
of three positions: scientific instrumentalism, hermeneutic nominalism, or revolutionary 
nominalism. Since I do not espouse scientific instrumentalism (certainly not in the form 
characterized by Burgess), Burgess's argument, directed at my nominalistic account, can be 
regarded as resting on the view that my choices are restricted to either hermeneutic 
nominalism or revolutionary nominalism.
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Now the position I developed in my book (Chihara 1990) does not fit comfortably any of 
the above descriptions of the possible types of nominalism that Burgess provides. I was not 
espousing an instrumentalist view of science, since I in no way considered science to be a 
myth. My view was that a great many (if not most) of the assertions of scientists are, if not 
literally true, at least close to being true, when the proper conditions are expressed.
I also made it clear in my book that my constructibility theory was not meant to be an 
analysis of the mathematical statements asserted by practicing mathematicians. Here's what 
I wrote in the first chapter: 
If we are puzzled about certain aspects of classical mathematics, why not construct 
another kind of mathematics that will avoid those features of the original system that gave 
rise to the puzzles? A study of these alternative mathematical theories will give us a new 
perspective from which to view classical mathematics, which could prove to be extremely 
enlightening. (p. 23; italics added) 
So was I proposing a revolutionary nominalism? Not at all. What I was proposing was an 
answer to the highly theoretical and deeply philosophical question posed by Quine: Can 
our contemporary scientific theories be reformulated or reconstructed in a way that will not 
require the assertion or the presupposition of abstract mathematical objects? My 
Constructibility Theory was meant to show how the mathematics needed for our 
contemporary scientific theories can be developed without requiring a commitment to 
quantification over abstract mathematical objects. I was not advocating that mathematics 



developable in my system be actually used by scientists and mathematicians. The system 
was devised to undermine a philosophical argument.
This point can be illustrated by taking up again Steiner's version of Quine's argument. 
Recall that he had suggested that one cannot describe "any [genuine nontrivial] thinkable 
experience" without presupposing numbers, since any such description would involve rate 
of change: "Imagine defining rate of change without the resources of analysis," he had 
challenged, confident that such a definition was impossible. In response, the nominalist can 
define rate of change using the Constructibility Theory, and this without presupposing 
numbers. Thus Steiner's challenge can be met.43 
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Does the Use of Classical Mathematics in Science Ontologically Commit One to the 
Existence of Mathematical Objects?

These developments also raise the question as to whether the use of even standard classical 
mathematics in science genuinely commits one to accepting the existence of abstract 
mathematical entities. If, as I have been arguing for many years, science can be done using 
the Constructibility Theory instead of standard versions of classical mathematics, without 
serious theoretical loss, this suggests that the role that mathematics is required to play by 
our contemporary scientific theories is not that of referring to and providing information  
about esoteric objects that do not exist in physical space (since the Constructibility Theory 
does not do these things). It encourages the thought that our contemporary scientific 
theories do not truly require belief in mathematical objects, as Quine and other Platonists 
have thought. Thus, we need to address the question: Does the use of even standard 
versions of classical mathematics in science logically commit one to the belief in abstract 
mathematical objects? But the answer to this question depends crucially on answering the 
following question: 
[#] Does the use scientists make of standard versions of classical mathematics depend  
upon (or presuppose) taking the theorems of classical mathematics (literally and  
platonically construed) to be true? 
Most Platonists have simply assumed that [#] is true. For example, Michael Resnik has 
included the following principle as a premise of several of his arguments for the existence 
of mathematical objects: 
[*] We are justified in drawing conclusions from and within science only if we are justified 
in taking the mathematics used in science to be true.44 
Resnik gives no justification for [*], perhaps because he thinks it is just obviously true. 
However, I have heard philosophers argue for [*] along the following lines: 



If the mathematics used in science and engineering were not true, how could we, in good 
conscience, use it in the way we do to build bridges and to design rockets? If the 
mathematical theorems upon which we base our scientific inferences and theories were 
false, would not our bridges collapse and our rockets go off target more often than not? 
end p.507

5.  How the Constructibility Theory Is Used in Analyzing Mathematical and Philosophical 
Reasoning

The Constructibility Theory plays a role in undermining the above indented argument, as 
well as the plausibility of [*] and [#]. Although I do not have the space here to explain my 
strategy in detail, I can at least indicate one kind of role that the Constructibility Theory 
plays in my refutation.45 In this way, I can give additional grounds for doubting the 
Burgess-Rosen suggestion that the nominalist's reconstructions of mathematics are good 
only for showing how an alien mathematician might reason.
To show how the inferences drawn in science and engineering can be sound, even if the 
mathematical theorems used in drawing the inferences are not true, I set out to show two 
things: 

1. 
 
 The standard inferences involving the use of mathematics are indeed sound; and 

2. 
 
 These inferences, justified by appeal to mathematical theorems, can be legitimately 
drawn, without assuming that the mathematical theorems (literally and platonically 
construed) are true. 

To justify claims (1) and (2), I needed to analyze mathematical reasoning and applications 
of mathematics in a way that does not presuppose the truth of the very mathematical 
theorems being analyzed. The Constructibility Theory is used in such an analysis, as is 
illustrated by the following examples.

Standard Arithmetical Inferences

Consider the case in which one concludes: 

There are twelve coins on table A at time t from the following premises: 



[1]   There are five dimes on table A at time t. 
[2]   There are seven quarters on table A at time t. 
[3]   A coin is on table A at time t iff it is either a dime or a quarter. 
[4]   Nothing is both a dime on table A at time t and a quarter on table A at time 

t. 
[5]   5 + 7 = 12. 

The Constructibility Theory can be used to establish the soundness of this inference in the 
following way. For each of premises [1]-[4], as well as the 
end p.508

conclusion, there is a corresponding sentence of the Constructibility Theory (which I shall 
call the c-version of the sentence) such that the sentence of the natural language is true iff 
the c-version of the sentence is true. It can be shown, using the Constructibility Theory, 
that if the c-version of the premises are all true, then the c-version of the above conclusion 
must also be true. We can thus see that (1) if the premises are all true, the conclusion must 
also be true; and (2) nowhere in this justification is it assumed that [5] must be literally 
true. All of this is worked out in detail (Chihara 1990, pp. 89-92) to show that our intuitive 
reasoning using arithmetic is indeed sound.
The above example indicates the kind of role that the Constructibility Theory can play in 
the nominalist's analyses of reasoning involving mathematics: here, it functions in the 
nominalist's metatheory as a sort of tool, which helps the theoretician to understand (and to 
explain) the workings of real mathematics without assuming that theorems of mathematics, 
literally and platonically construed, are true.
In the above account, I am not claiming that the c-versions of the premises give the 
meaning of the premises. I am not a hermeneutic nominalist. However, as a native speaker 
of English, I am in a position to know that each premise is true iff the c-version of the 
premise is true, even if I cannot confidently give a semantic analysis of the premise. 
Taking a page from G. E. Moore's philosophy, I take the position that I can know, for 
example, that this (pointing at my right hand) is a hand iff that (pointing at my left hand) is 
a hand, even when I am not in a position to give any precise semantic analysis of 
statements I may make using the sentence "This is a hand."
The Use of the Constructibility Theory to Evaluate Philosophical Arguments
The Constructibility Theory can also be used in the assessment of philosophical arguments 
involving arithmetic and cardinality theory. Consider Burgess's attempted refutation of a 
version of the causal theory of knowledge. Burgess (1990) notes that the statement 
Avogadro's number is greater than 6 × 1023 
has been judged by scientists not only to be true, but to be even known to be true (p. 6). He 
also points out that the statement seems to imply that there are numbers. Evidently, we 



have scientific grounds for asserting that it is known that there are numbers. Consequently, 
Burgess suggests, science provides us with grounds for rejecting the version of the "causal 
theory of knowledge" according to which any statement or theory implying that there are 
objects of a certain sort cannot be known to be true unless some objects of that sort 
causally interact directly or indirectly with us.
end p.509

Let us evaluate this reasoning. Certainly, scientists do claim to know such things as 
The number of planets whose orbits are smaller than that of the Earth is two. 
The question is: Are these scientists claiming to know something that implies the actual 
existence of abstract mathematical objects? Suppose we put to these scientists the question 
What justification do you have for making this claim? 
I am confident that whatever scientific grounds these scientists would provide in response 
to our question would amount to no more than the grounds they have for asserting that the 
open sentence "x is a planet whose orbit is smaller than that of the Earth" satisfies a two-
attribute. In other words, the grounds that the scientist would supply would be no more 
than the grounds we have for asserting the constructibility version of the cardinality 
statement.
Would any of the grounds that scientists supplied in answer to our question justify, over 
and above the constructibility cardinality statement, the proposition that there exist entities 
with which we are in no direct or even indirect causal relations? Not likely. I am confident 
that these scientists would provide a reasonably cautious person with no good reason for 
asserting, "Now I know that there exist in the actual world abstract entities from which we 
are completely and totally cut off causally." Hence, I am skeptical that science has 
provided us with grounds for rejecting the causal theory in the way Burgess has suggested.
Here again, the Constructibility Theory functions as a tool of the nominalist's metatheory, 
enabling the theoretician to more easily assess the soundness of certain philosophical 
arguments. These uses of the theory should not be lumped with science fiction.

The Vineberg defense

Against the earlier Burgess-Rosen objection to the reconstructive nominalist, Susan 
Vineberg has marshaled a case supporting the relevance of nominalistic reconstructions for 
deciding whether belief in mathematical objects is required by science.46 Vineberg 
investigates various views of compelling evidence that do not require a causal connection 
between the scientist and what she has evidence for. Of the above sort, Vineberg finds 



three: the well-known Bayesian view; the eliminativist view, advocated by Philip Kitcher47 

; and the contrastive view, proposed by Elliot 
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Sober and Larry Laudan.48 Omitting here the details of her reasoning, Vineberg concludes 
that, regardless of which of the above theories of evidence one may choose, "substantial 
confirmation requires eliminating, or revealing as improbable, alternative theories." Not 
surprisingly, it is common scientific practice to look for alternate theories that fit or explain 
the relevant experimental data and observations that have been gathered, and to attempt to 
find evidence that allows us to eliminate all but one of these theories. Within this context 
of scientific theory evaluation, the nominalistic reconstruction of mathematics discussed 
above can be seen to be fitting and reasonable: in the absence of genuine evidence (as 
opposed to mere pragmatic considerations such as "familiarity with established theory") 
that allows the Platonist to eliminate this alternative, the nominalistic reconstruction 
provides us with rational grounds for being skeptical about the existence of mathematical 
objects.
Vineberg's point can be illustrated by the following: it is thought by Platonists that the 
existence of mathematical objects is required to solve certain problems or puzzles, and that 
this fact alone counts strongly in favor of belief in mathematical objects. For example, 
according to Steiner, Frege completely solved what Steiner calls the "metaphysical 
problem of applicability".49 Since Frege's solution presupposes the existence of 
mathematical objects, it is thought that the very success of Frege's solution amounts to a 
reason for believing in the existence of mathematical objects.50 
The Constructibility Theory, however, allows one to devise an alternative solution to the 
"metaphysical problem of applicability"51 —a solution that does not presuppose the 
existence of mathematical objects—thus undercutting the idea that the postulation of 
mathematical objects is required to solve the problem. We can thus see how a nominalistic 
alternative can serve to undermine various claims of the Platonist that we have compelling 
scientific grounds for postulating the existence of mathematical objects.
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I should like to emphasize that the nominalistic reconstruction of mathematics described 
here was not put forward either as an analysis of the systems of mathematics used by 
practicing mathematicians or as a theory to be used in place of the standard mathematical 
systems in use today all over the world. But this does not mean that the only use left for the 
reconstruction is as an imaginative exercise in how alien mathematicians might have 
reasoned.



6.  Summation

It makes a big difference whether one sees realism in the positive way Gödel did—as part 
of a positive account of the nature of mathematical truth and of how mathematics is related 
to science—or in the purely negative ("anti-nominalist") way Burgess and Rosen do. 
Burgess and Rosen seem to have hit upon a brilliant strategy for defending realism. By 
characterizing their own version of realism in the negative way they did, they seem to have 
succeeded both in shifting the onus of justification onto the nominalist and at the same 
time absolving themselves of the enormous burden of explaining how they obtained their 
supposed knowledge of mathematical objects. However, I find their minimal anti-
nominalism very unsatisfying. I am inclined to call the Burgess-Rosen brand of realism 
"aphilosophical realism" instead of "moderate realism" or "minimal anti-nominalism," 
since it does not subject the doctrine being advanced to philosophical analysis or 
development, being content merely to assert the existence of mathematical objects without 
attempting to make sense of the doctrine, to reconcile the doctrine with the various 
epistemological views that are widely accepted, or to explain a number of very puzzling 
questions that arise in connection with what mathematicians and scientists do and say. If 
risk aversion is one's chief concern, then minimal anti-nominalism may be a good strategy, 
but from the perspective of those sympathetic to the view of philosophy described in the 
beginning of part II, minimal anti-nominalism will simply be a cop-out.
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16. Nominalism Reconsidered
Gideon Rosen 
John P. Burgess

 
1.  Nominalism and Its Varieties

Nominalism is usually formulated as the thesis that only concrete entities exist or that no 
abstract entities exist. But where, as here, the interest is primarily in philosophy of 



mathematics, one can bypass the tangled question of how, exactly, the general 
abstract/concrete distinction is to be understood by taking nominalism simply as the thesis 
that there are no distinctively mathematical objects: no numbers, sets, functions, groups, 
and so on. As to the nature of such objects (if there are any), we need only say that it has 
come to be fairly widely agreed, under the influence of Frege and others, that they are very 
different both from paradigmatically physical objects (bricks, stones) and from 
paradigmatically mental ones (minds, ideas)[Frege 1884]. Modern nominalism emerged in 
the 1930s as a response to the view of Frege and others that numbers, sets, functions, 
groups, and so on belong to a "third realm."1 
end p.515

This modern nominalism was not intended not as a reactionary movement back toward 
pre-Fregean views that would take mathematics to be directly concerned either with the 
contents of the physical universe or with those of the human mind. It did not say, "Yes, 
there are numbers, but they are somehow parts of nature or of the mind," but rather, "There 
are no numbers. Mathematics is not a descriptive science with a special subject matter of 
its own. Either it is a body of general truths with no distinctive subject matter, or it is not a 
body of truths at all." Our concern here will be with nominalism thus conceived.
One way to classify the varieties of nominalists is by considering their responses to the 
following methodological/epistemological argument for anti-nominalism. It has three 
premises that seem scarcely deniable. 

(1) 
 
 Standard mathematics, pure and applied, abounds in "existence theorems" that appear 
to assert the existence of mathematical objects, and to be true only if such objects 
exist; which is to say, to be true only if nominalism is false. Such, for instance, are 
There are infinitely many prime numbers. 
There are exactly two abstract groups of order four. 
Some solutions to the field equations of general relativity contain closed timelike 
curves. 

(2) 
 
 Well-informed scientists and mathematicians##x2014;the "experts"##x2014;accept 
these existence theorems in the sense both that they assent verbally to them without 
conscious silent reservations, and that they rely on them in both theoretical and 
practical contexts. They use them as premises in demonstrations intended to convince 
other experts of novel claims, and together with other assumptions as premises in 
arguments intended to persuade others to some course of action. 

(3) 
 
 The existence theorems are not merely accepted by mathematicians, but are 
acceptable by mathematical standards. They, or at any rate the great majority of them, 
are supplied with proofs; and while the mathematical disciplines recognize a range of 
grounds for criticizing purported proofs, and while it occasionally happens that a 



(1) 
 
 Standard mathematics, pure and applied, abounds in "existence theorems" that appear 
to assert the existence of mathematical objects, and to be true only if such objects 
exist; which is to say, to be true only if nominalism is false. Such, for instance, are 
There are infinitely many prime numbers. 
There are exactly two abstract groups of order four. 
Some solutions to the field equations of general relativity contain closed timelike 
curves. 
widely accepted proof is undermined by criticism on one or another of these grounds, 
nonetheless the proofs of the existence theorems, or at any rate the great majority of 
them, are not susceptible to this kind of internal mathematical criticism. 

There are four other premises a nominalist might try to challenge: 

(4) 
 
 The existence theorems really do assert and imply just what they appear to: that there 
are such mathematical objects as prime numbers greater than 1000, abstract groups of 
various orders, solutions of various equations of mathematical physics with various 
properties, and so on. 

(5) 
 
 To accept a claim in the sense of assenting verbally to it without conscious silent 
reservations, of relying on it in theoretical demonstrations and practical deliberations, 
and so on, just is to believe what it says, to believe that it is true. 
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(6) 
 
 The existence theorems are not merely acceptable by specifically mathematical 
standards, but are acceptable by more general scientific standards. Not only do 
empirical scientists in practice generally defer to the mathematicians on mathematical 
questions, existence questions included; they are by scientific standards right to do so. 
There is no empirical scientific argument against standard mathematical theorems, 
existence theorems included. 

(7) 
 
 There is no philosophical argument powerful enough to override or overrule 
mathematical and scientific standards of acceptability in the present instance. 

From (1), (2), (4), and (5) there follows an intermediate conclusion: 

(8) 
 
 Competent mathematicians and scientists believe in prime numbers greater than 
1000; abstract groups of various orders, solutions of various equations of 
mathematical physics with various properties, and so on. Hence, if nominalism is true, 
expert opinion is systematically mistaken. 



From (8) together with (3), (6), and (7) there follows the ultimate anti-nominalist 
conclusion: 

(9) 
 
 We are justified in believing (to some high degree) in prime numbers greater than 
1000, abstract groups of various orders, solutions of various equations of 
mathematical physics with various properties, and so on, which is to say we are 
justified in disbelieving (to the same high degree) nominalism. 

Nominalists who concede (8) are revolutionaries: They concede that their philosophical 
position is at odds with established mathematical and scientific opinion. Revolutionaries 
must reject either (6) or (7). Those who reject (6) are naturalized revolutionaries. They 
seek to correct entrenched errors of established mathematics and science only by appeal to 
the sorts of argument that typically weight with the experts themselves. Those who 
concede (6) but reject (7) are alienated revolutionaries. They seek to correct entrenched 
errors of established mathematics and science by appeal to arguments that may have little 
or no weight with mathematicians or scientists, but might come to have such weight if the 
experts could be persuaded to take a more philosophical view of the matter.
Nominalists who wish to stop the argument before (8), by rejecting either (4) or (5), are 
hermeneuticists. Those who reject (4) are content hermeneuticists, and those who reject (5) 
are attitude hermeneuticists. The former reject the straightforward "face value" construal of 
what the existence theorems themselves say, while the latter reject the straightforward 
"face value" construal of what mathematicians are doing when they assent verbally to such 
theorems. If either variety of hermeneuticism is correct, nominalist philosophy is fully 
compatible with the "deliverances" of ordinary mathematics and science.
We accept the schematic argument, and so reject both revolutionary and hermeneutic 
nominalism in all their guises. Our aim here, however, is not to refute the nominalists once 
and for all, but simply to point out some of the obstacles a compelling case for nominalism 
would have to overcome. We content ourselves 
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with only a rather brief review of revolutionary nominalism and related versions of 
content-hermeneutic nominalism. We have treated these positions at considerable length in 
our book A Subject with No Object [1997] (henceforth SWNO), and to our knowledge 
nothing substantially new has been added concerning these positions in subsequent years. 
Under the label "fictionalism," attitude-hermeneutic nominalism (which makes play with a 
distinction between two verbs, "accept" and "believe," that can be used interchangeably 
when discussing other forms of nomnalism) has become quite influential in recent years, 
and we turn to it next. Finally we consider the distinctive form of hermeneuticism 
advocated by Stephen Yablo.



2.  Naturalized Revolutionary Nominalism

The revolutionary nominalist concedes that scientists and mathematicians routinely assert 
and believe that mathematical objects of various sorts exist, and that the great majority of 
their assertions and beliefs of this kind are prima facie acceptable, given the standards that 
are brought to bear within mathematics and the sciences. Perhaps the best evidence is that 
existence theorems are often published in journals with the most stringent peer review 
procedures, and the vast majority of these published theorems survive subsequent scrutiny 
on the part of competent practitioners. A naturalized revolutionary nominalist must claim 
these theorems are nonetheless unacceptable by mathematical or scientific standards.
As we have already said, calling claim (3) of the preceding section "scarcely deniable," the 
claim will almost surely have to be that the existence theorems are unacceptable by broader 
scientific standards, not by narrowly mathematical standards. Such a position##x2014;one 
that criticizes mathematical results by "extramathematical" standards, even scientific as 
opposed to distinctively philosophical ones##x2014;is one that already will be dismissed 
out of hand by some anti-nominalists, those Penelope Maddy calls the "mathematical 
naturalists." Their credo is that 
Mathematics is not answerable to any extra-mathematical tribunal and not in need of any 
justification beyond proof and the axiomatic method. Where Quine takes science to be 
independent of first philosophy, [the] naturalist takes mathematics to be independent of 
first philosophy and natural science##x2014;in short, from any external standard. [Maddy 
1997:184] 
By contrast, scientific as contrasted with mathematical naturalism (whose most famous and 
influential representative, W. V. Quine, is mentioned by Maddy in the preceding passage), 
will at least be prepared to listen to an appeal beyond narrowly mathematical to broadly 
scientific considerations. Though there is a good 
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deal to be said for mathematical naturalism, we will not rehearse the case for it here, but 
rather will pass on to consider what arguments a nominalist might present to a scientific 
naturalist.
Of course there will be nothing like a direct empirical "disconfirmation" of, say, the claim 
that the number 1 has three complex cube roots, in the sense that there may be a direct 
empirical "disconfirmation" of the claim that spontaneous generation occurs. The 
nominalist argument will have to be less direct and more "theoretical." The most common 
form of the argument runs as follows: 



There is no a priori objection to standard mathematics, any more than to the phlogiston 
theory of combustion or the doctrine of metempsychosis. But mathematics is a body of 
theory, and as such is subject to correction as science progresses. One ground for rejecting 
a scientific theory that purports to describe a special domain of objects is a demonstration 
that we can account for the phenomena without invoking those objects, by constructing an 
alternative theory whose substantive commitments are in some sense weaker, or at least 
less problematic, but which is nonetheless capable of "doing the work" of the original. And 
it turns out that it is possible to construct nominalist alternatives to standard 
mathematically formulated theories. 
This is the inverse of what is known as the "Quine##x2013;Putnam indispensability 
argument" against nominalism, and might be called the "dispensability argument" for 
nominalism.
Of course, the larger part of the task of arguing for nominalism along the lines indicated 
must be the construction of the alternative theories. This has been attempted in different 
ways by different writers in the literature, and we have surveyed many of these in SWNO. 
Limitations of space preclude undertaking any such survey here. Suffice it to say that each 
of the proposed alternatives, while avoiding mathematical objects, involves auxiliary 
apparatus that will not be to everyone's liking (points and regions of physical space-time 
considered as substantive objects on one approach, and on other approaches, 
considerations of things there aren't but could have been, and how, if they had been, they 
would have compared with things there are). And even waiving any objections to the 
apparatus invoked, these alternatives still have the feature that they are significantly less 
perspicuous, tractable, familiar, and (so far as one can judge) fruitful for the further 
development of science.
The nominalist advocates of such alternatives hold that these drawbacks are outweighed by 
the fact that they avoid "ontological commitment" to mathematical objects. But can we 
really say that this avoidance is a factor that by scientific standards counts more than 
perspicuity, tractability, familiarity, fruitfulness, and the like? It is unclear why it should. 
There is no clear evidence from the history of science or mathematics that these disciplines 
are concerned to minimize their inventory of mathematicalia. Maddy has argued that, so 
far as the internal standards of mathematics are concerned, there is, on the contrary, 
evidence that 
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mathematics seeks to maximize the number and variety of the mathematical objects it can 
accommodate [Maddy 1997]; and it is also easy to understand why empirical scientists, 
who turn to mathematics for models and tools, would be happier to have more of them 
rather than fewer.



Thus there are grounds to suspect that, in valuing avoidance of mathematical objects as 
highly as they do, the revolutionary nominalists of the kind we have been discussing are in 
fact promoting a distinctively philosophical rather than scientific, let alone mathematical, 
standard of evaluation. That they are themselves to some degree conscious that this is what 
they are doing is suggested by the fact that they generally publish their proposals not in 
scientific but in philosophy journals. If the nominalist argument does involve such appeal 
over the head of science to a philosophy outside, above, and beyond it, then scientific as 
well as mathematical naturalists will reject it out of hand. But as with mathematical 
naturalism, so with scientific naturalism; we are not going to rehearse the case for it here 
but, rather, will pass on to consider naturalist arguments that reject it.

3.  Alienated Revolutionary Nominalism

If one is prepared to appeal above and beyond science to some superior and ulterior 
philosophy, however, then there are much more direct ways to argue for nominalism than 
by citing some alternative to current scientific and mathematical theories that is superior to 
them by philosophical, though inferior by scientific, standards. Some nominalists, for 
instance, report "intuitions" (though few have propounded arguments) to the effect that the 
positing of abstract, mathematical objects is meaningless. Many more nominalists express 
epistemological qualms about numbers, sets, and the rest, and propound epistemological 
arguments for nominalism.
Such arguments do not seek to show that mathematical existence claims are false (let alone 
meaningless), but rather seek to show that while such claims may be justified by 
mathematical and scientific standards, they are nonetheless not really justified, all things 
considered. Naturally such arguments, according to which meeting mathematical and 
scientific standards just isn't enough, are always published in philosophy, not in cognitive 
science, journals and are distinctively philosophical. There can be no question of surveying 
here all the different distinctively philosophical arguments for nominalism that might be 
found in the literature, but the epistemological type, because of its popularity, does call for 
comment.
Behind all epistemological arguments lies a certain picture. One key respect in which 
mathematical objects differ from physical and mental objects is that they are causally 
inactive and impassive##x2014;or, as nominalists like to say, causally isolated 
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from us. This fact leads to a picture of some great wall or gulf separating and isolating us 
on the one side from the mathematical objects on the other side, and the picture leads to the 



worry, "How can we possibly know what is going on over on the other side?" Those 
nominalists who take it upon themselves to go beyond a mere picture to an articulated 
argument would seem to need an analysis or theory of some key epistemic notion, such as 
rational opinion or justified belief or warranted assertion. But in assuming the burden of 
producing such a theory, these nominalists place themselves at a disadvantage.
For it is notoriously difficult to produce convincing analyses in this area, and no one 
proposal is likely to have even a majority of nominalist party members behind it. Though 
there can be no question of an extended survey of epistemological arguments, the survey in 
SWNO (I.A.2) shows that nominalist epistemological premises typically turn out to be 
either too weak or too strong. (For instance, the principle that one cannot justifiably believe 
in objects of a certain kind unless they are mentioned in the causal explanation of how one 
came to believe it is too weak to have the implications the nominalist wants, since 
mathematical objects are appealed to in the detailed scientific explanation of almost 
anything, cognitive processes included [Steiner 1975]. The principle that one cannot 
justifiably believe in objects unless they exert a causal influence on oneself, by contrast, is 
too strong and has consequences the nominalist does not want, such as the impossibility of 
knowledge of the future.)
And waiving all objections of detail, assuming one has somehow found an epistemological 
principle that is not too strong, not to weak, but "just right" for nominalist purposes, there 
is a further, general difficulty. The development of theories in epistemology is a quasi-
inductive affair. Typically one begins with what one takes to be clear cases of justified 
belief and clear cases of the opposite, and looks for a formula that covers the data and rings 
true on reflection. A theory developed in this spirit can then be used to correct 
pretheoretical verdicts at the margins. But it would seem that it cannot be used to 
undermine a vast and significant class of normally uncontroversial verdicts about 
justification.
If the theory really has the implications the nominalist wants, implying that our apparent 
mathematical knowledge is error or delusion, the anti-nominalist can simply claim that the 
novel theory, however meritorious in other respects, stands refuted by the counterexample 
of mathematical knowledge. It would be a gross mistake to repudiate the central claims of 
Mesozoic paleontology or Byzantine historiography on the basis of a theory of justification 
that had been developed and tested on examples drawn exclusively from, say, particle 
physics. The nominalist who wields a theory of justification developed by reflection on 
cases of empirical belief as a club against the mathematicians can with considerable 
plausibility be charged with a similar mistake.
We should not overstate the case, however. Philosophical theories of justified belief are 
only "quasi"-inductive. We may begin by extracting principles to cover a list of paradigms 
and foils, and find that once extracted, the principles strike us as so 
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obviously correct that they could motivate a significant redescription of part of the data. 
What can be said without overstatement, however, is that in the present case no one has yet 
produced an independently compelling general theory of justification that would support 
the view that scientists and mathematicians are systematically mistaken about what it takes 
to justify an existence claim in mathematics.
This being so, nominalists are likely to want to shift the burden to the other side, claiming 
it is not up to them to articulate a theory of justification showing that belief in 
mathematical existence is not justified, but rather is on their opponents to articulate a 
theory showing that it is justified. The epistemological challenge then might be put like 
this: 
Mathematicians (to whom empirical scientists defer in these matters) generally obtain their 
existence theorems by deduction from previously established results, which ultimately 
depend on existence axioms. But such a deduction provides a justification of the theorems 
only if the axioms are themselves justified. (This is not a "theory" of justification, but just a 
platitude.) Now has anyone shown that the kind of process by the axioms were arrived at is 
a reliable one, tending to lead to true axioms? Have the axioms been justified? Not by the 
main corps of mathematicians, who seldom if ever consider such questions. Only a small 
cadre of specialists, with one foot in philosophy, ever bother to consider the epistemic 
status of the axioms, and even they do not manage to agree among themselves as to what 
the justification for them is supposed to be. 
And indeed this last observation is quite true: There is no consensus among anti-
nominalists who take upon themselves the burden of articulating a theory of justification 
according to which belief in the axioms is justified.
Some claim that the axioms "force themselves upon us as true" [Gödel 1947], to which the 
nominalist will reply that this kind of subjective conviction is not accepted as sufficient for 
justified belief in any other area [Chihara 1973]. Some claim the axioms are "constitutive 
of the meaning" of mathematical terms [Wright 1983], to which nominalists will reply that 
no existential assertion can be analytic [Field 1984]. Some claim that the axioms are 
justified by their consequences, since the mathematical theories deduced from them are 
indispensable for scientific applications [Putnam 1971], to which the nominalist will reply 
that (even setting aside the question broached in the preceding section as to whether 
mathematical objects really are indispensable) it is unclear that indispensability in the 
relevant sense is a cogent reason for belief [Maddy 1997; Melia 1995]. Moreover, in the 
case of each specific anti-nominalist epistemological claim, a large segment of the 
antinominalist party will sympathize with the nominalist objection to that specific claim.
But there is another kind of anti-nominalist response, which simply rejects the 
presupposition of the nominalist challenge that our basic mathematical assumptions require 



some sort of positive defense. To see how rejection of the challenge might be motivated, 
consider the following skeptical parallel to or parody of the nominalist challenge itself: 
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Scientists generally derive their results from ordinary perceptual judgments (about their 
observational instruments and experimental apparatus). But such a derivation provides a 
justification only if ordinary perceptual judgments are themselves justified. (This is not a 
"theory" of justification, but just a platitude.) Now has anyone shown that the kind of 
process by ordinary perceptual judgments are arrived at is a reliable one, tending to lead to 
true judgments? Have ordinary perceptual judgments been justified? Not by the corps of 
scientists, who never consider such questions. Only a small cadre of specialists, with both 
feet in philosophy, ever bother to consider the epistemic status of perceptual judgments, 
and even they do not even manage to agree among themselves as to what the justification 
for them is supposed to be. 
And indeed this last observation is quite true: There is no consensus among anti-skeptics 
who take upon themselves the burden of articulating a theory of justification according to 
which belief in ordinary perceptual judgments is justified.
But many anti-skeptics simply reject the presupposition of the skeptical challenge that our 
basic ways of forming judgments of perception require some sort of positive defense. They 
take a standard for the justification of beliefs to be something that emerges from our 
evolving practice of criticizing the beliefs people actually form, one central feature of 
which practice is that we take our spontaneous perceptual beliefs for granted until we are 
given some sort of positive reason to doubt them. Perceptual judgments are justified by 
default, innocent until proven guilty, on this view. It is beyond dispute that we 
unhestiatingly accord them just such a status, as the view in question implies, when 
engaged in serious inquiry about matters of real importance. Why should we accept the 
demand of the skeptics that we hesitate to accept the results of important inquiries until a 
substantive justification for perceptual judgment is provided that would satisfy them? That 
is the question raised by one line of thought in response to the skeptical challenge, and 
insofar as the nominalist and skeptical challenges are parallel, a similar response would 
seem to be available to the anti-nominalist.

4.  Content-Hermeneutic Nominalism

So far we have been discussing the admirably straightforward nominalists who agree that 
scientists and mathematicians typically believe standard existence theorems, and that these 
beliefs are justified by internal scientific and mathematical standards. Nominalists of this 



sort are self-conscious revolutionaries. They may struggle in a losing cause, but at least we 
know what sort of struggle they're engaged in: the struggle to correct a mistake embedded 
in existing science.
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We did not attempt in our discussion in the preceding section to show that theirs is clearly 
a losing cause, but only that it is not clearly a winning one. A main lesson to take away 
from our discussion is that it is very difficult to settle issues when one rejects scientific 
standards for settling them. Argumentation over epistemology (or almost anything else) 
from an alienated, extrascientific, as opposed to a naturalized, intrascientific, standpoint 
usually tends to be inconclusive and often tends to bog down in issues of burden of proof. 
So it was that we saw that whichever side is saddled with the onus of articulating a detailed 
theory of justification finds itself at a serious disadvantage.
According to hermeneutic nominalism, to which we next turn, there is no need to enter into 
such inconclusive debates, since there is no conflict between nominalism and science at all. 
Of course, the hermeneuticist must explain away as somehow unreal the apparent conflict 
between the mathematician who affirms, "There are prime numbers greater than a 
thousand" and the nominalist who insists, "There are no numbers at all." Such is the task 
confronting nominalists who are not so straightforward as to admit that they are engaged in 
the business of correcting the errors of scientists and mathematicians. They must defend 
some subtle interpretation, either of the content of the existence theorem, or of the attitude 
of the mathematician who verbally affirms it, so as to reveal that the apparent or "surface" 
conflict is not, "deep down," a real one.
One way a nominalist might attempt to go about this would be to claim that one or another 
of what in our discussion of naturalized revolutionary nominalism we called nominalist 
alternatives to standard mathematical and scientific theories is not in fact an alternative, 
but a revelation of what "deep down" the standard theory has really meant all along. For 
instance, it might be maintained that 

(A) "There exist prime numbers greater than a thousand" 
is innocent because all it really means is 

(A*) There could exist a prime numeral greater than a thousand. 
or something of the sort. 

There are, however, two serious difficulties with such a view. For one thing, such a 
nominalistic translation seems to work too well. If (A) is nominalistically acceptable 
because "deep down" all it means is (A*), then it would seem that 



(B) "There exist numbers" 

must be acceptable, too, because all it means is 

(B*) There could have been numerals. 

But to concede (B) (and the corresponding statement about other kinds of mathematical 
objects) is to concede all the anti-nominalist maintains [Alston 1958].
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For another thing, there is a total lack of scientific evidence in favor of any such 
nominalistic reconstrual as a theory of what ordinary mathematical assertions mean. Or at 
least, no nominalists favoring such a reconstrual have ever published their suggestions in a 
linguistics journal with evidence such as a linguist without ulterior ontological motives 
might accept.
But there is another hermeneutic claim, not dependant on associating with mathematical 
existence assertions like (A) above another form of words such as (A*), and presumably 
not subject to the same kind of objections as views that are dependent on such an 
association. On this other view, there is simply an ambiguity in the word "exists," between 
a strong and a weak sense, which we may write as "exists" and "exists." (A) is supposed to 
be quite true if by "exists" one means "exists," and to become false only if one takes 
"exists" to mean "exists." Adherents of such a view maintain that there is no conflict 
between their species of nominalism and science or mathematics, since scientists and 
mathematicians, when immersed in their practice, are only talking about existence. The 
nominalist's quarrel is only with those "Platonist" philosophers who misread scientific and 
mathematical practice, and claim existence for mathematical objects.
Any proposal along these lines faces a considerable explanatory burden. The first task, 
obviously, will be to explain the distinction between the two supposed senses of existence. 
The second task will be to make it plausible that philosophical claims involve one sense, 
and internal mathematical and scientific claims the other. Suppose it is said, for instance, 
that for a thing to exist is for it to part of the ultimate furniture of the universe. However 
this last phrase is interpreted, it seems quite plausible that large, composite objects like the 
Eiffel Tower do not exist in this sense. But an anti-nominalist may be perfectly willing to 
grant that the Euler function may not exist in this sense either. The most the anti-nominalist 
wishes to claim that the Euler function exists in the same sense that the Eiffel Tower does. 
To put the matter another way, it is supposed to be uncontroversial that mathematical 
objects exist, and controversial whether they exist. But the genuinely controversial 
question is whether or not numbers, functions, and the like exist in the sense in which the 



planet Venus does and the planet Vulcan doesn't. The positing of two senses, strong and 
weak, of the same verb does nothing to settle this controversy.

5.  Attitude-Hermeneutic Nominalism

A different but not unrelated nominalist view, instead of distinguishing between two senses 
of "exists," and two corresponding contents that a statement like (A) 
end p.525

might have, distinguishes two attitudes with which a statement like (A) might be put 
forward. Often the view in question is expressed using a distinction between "acceptance" 
of and "belief" in existence theorems: mathematicians and scientists, it is said, only 
"accept" the existence theorems; "Platonist" philosophers err by believing them.
The advocates of such a nominalist view may avoid the task of explaining the differences 
between two senses of "exist," but they still have some explaining to do. The nominalist 
can hardly deny that informed practitioners routinely put forward existence theorems in 
serious conversation without conscious qualms, rely on existence theorems in high-stakes 
deliberations, and so on. So "acceptance" must be compatible with all of this and yet still 
somehow fall short of belief.
Now one doesn't have to be a behaviorist to think that when a person understands a 
sentence S, confidently affirms it without qualification and without conscious insincerity, 
organizes serious activity just as would be done if S were believed, and so on, then we 
have a powerful case for attributing to that person a belief that S: the attitude-hemeneuticist 
posits an attitude called "acceptance" that is supposed to be distinct from belief but to have 
all the most salient behavioral and instrospectable consequences of belief. But attitude 
types cannot be brutely different. There must be some difference between a believer and a 
mere accepter, and if there is such a difference, surely it is reasonable to expect that its 
presence will be betrayed somehow in behavior [Horwich 1991].
It would be one thing if scientific neophytes were regularly taken aside at some stage in 
their training by their mentors and told, "Don't believe it, just accept it. No one around here 
really believes what he says." We can imagine a community in which this happened, in 
which scientists and mathematicians were explicitly encouraged to regard the mathematics 
they employ in roughly the same spirit in which the aeronautical engineer regards 
Newtonian physics##x2014;as a theoretical instrument to be used in many important 
contexts, but not to be believed [Rosen 2001]. But while we can imagine such a 
community, we don't live in one. It is not part of the practice of ordinary mathematics to 
take steps to disavow belief in the standard existence theorems, to warn students against 



believing, or the like. Thus we lack what would be the best kind of direct evidence that the 
practice of mathematics and science involves something less than belief in existence 
theorems.
There are some phenomena of the behavior of mathematicians for which attitude-
hermeneuticism can give a plausible partial explanation, and which therefore constitute 
some kind of indirect evidence in favor of that nominalist position. Perhaps the most 
important is the fact that scientists and mathematicians are strikingly lighthearted when it 
comes to the introduction of novel mathematical entities. Once theorists have convinced 
themselves that some new mathematical theory is consistent (internally and with 
previously accepted mathematics), nothing further seems to be needed to persuade them to 
accept the new theory, existence claims and all, when it would suit to do so. The attitude-
hermeneuticist 
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has a partial explanation of this phenomenon: since the theorists' decision to accept the new 
existence claims is not a decision to believe them, it is not surprising that they are 
unconcerned about the possibility that the theory may not be true because the objects it 
posits do not exist.
Another phenomenon is that of the indifference of mathematicians to certain kinds of 
questions about the identity mathematical objects. Mathematicians speak of numbers and 
of sets, but never concern themselves with such as questions as which set (if any) is 
identical with, say, the number 2. Such an attitude is readily intelligible on the supposition 
that the mathematician regards number theory and set theory only as useful fictions. For 
there are no end of questions about fictional characters one is quite prepared to leave 
undecided [Field 1989].
Yet another phenomenon is the reaction##x2014;or, rather, the varied reactions##x2014;of 
mathematicians when pressed by philosophers with questions about the existence of the 
entities mentioned in their theorems. Some dismiss the question as of no interest, some 
freely concede any skeptical charge their philosophical inquisitor raises, some frankly do 
not know what to say. All this is readily intelligible if mathematicians do not regard 
themselves as committed to the truth of their theorems, which would presuppose the 
existence of the entities those theorems are about, in a way the mere utility of the theorems 
would not.
But considerations of these kinds lend only rather weak support to attitude-
hermeneuticism, because there are many alternative explanations of the cited phenomena 
available. Thus the lightheartedness about new existence assumptions may be accounted 
for by the fact that assurance of consistency##x2014;and mathematicians are seldom quite 
so lighthearted as to accept new existence assumptions without such assurance##x2014;is 
generally provided by describing models consisting of objects already recognized. But then 



the new entities, being identifiable with those already recognized objects, may not really be 
"new" after all. Again, the indifference to questions of identity may be accounted for by the 
fact that pure mathematicians are generally interested only in properties that structures 
share with all isomorphic structures. If statements ostensibly about 2 are really general 
statements about the two-element in any structure of a certain kind, then there can be no 
meaningful question about which set 2 is identical with, because the two-elements of 
different structures may be identical with different sets. Many other alternative 
explanations##x2014;more than there is space for here##x2014;will occur to readers of the 
literature in philosophy of mathematics.
As for mathematicians becoming flustered when grilled by skeptical philosophers, don't 
ordinary people become flustered when pressed by skeptical philosophers to defend the 
statement "I am awake"? And does this fact in any way suggest they don't "believe" they're 
awake, but only "accept" it? The indirect evidence for attitude-hermeneuticism is thus 
weak, and seems insufficient to overcome the presumption against the view established by 
the lack of direct evidence##x2014;by the absence of self-conscious disavowal among 
working mathematicians and scientists. 
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Moreover, it strains credulity to suggest that the internal norms governing scientific inquiry 
somehow demand such disavowal nonetheless. We conclude that attitude-hermeneutic 
nominalism is untenable. A philosopher may advocate the adoption of some attitude 
toward mathematics weaker than belief, considering that only this weaker attitude is ever 
justified. But such a philosopher is an alienated revolutionary nominalist, and subject to the 
doubts raised in the section above on that type of position.

6.  Yablo's Figuralism

The most developed hermeneutic position in recent years has been that of Stephen Yablo 
[1998, 2000a, 2000b, 2001, forthcoming]. Yablo distinguishes figurative from literal 
statements or uses of statements. His position will be treated here as a form of content-
hermeneuticism, though different from those considered two sections back, in that it is a 
form according to which an existence theorem is ambiguous between a literal and a 
figurative sense, which latter sense need not coincide with the literal sense of any form of  
words. Arguably his position could also be considered a form of attitude-hermeneuticism, a 
form according to which a verbal affirmation of an existence theorem may be an act of 
putting it forward as a literal truth, or putting it forward as a useful pretense. But regardless 
of how it is classified, Yablo's position deserves a section to itself.



Yablo's claim is that existence theorems are false when taken literally but true when taken 
figuratively. He makes the hermeneutic claim that ordinary uses of existential idioms in 
mathematics are mostly figurative, whereas in philosophy we are concerned with the 
literal. Thus the nominalists' philosophical claim##x2014;mathematical objects do not 
literally exist##x2014;is supposed to be compatible with the immersed practitioner's 
commitment to their figurative existence.
Here is a rough sketch of Yablo's account, in the case of arithmetic. Suppose, to begin 
with, we speak a language in which number-words are not used as nouns. We can use them 
as adjectives and say, "There are two cats in the yard," which can be explained without 
number-words as meaning simply, "There is a cat and another cat distinct from it, and the 
former is in the yard and so is the latter." What we cannot say is "The number of cats in the 
yard is the number two."
Now suppose that we begin to notice a regularity: there were two cats in the yard on 
Monday, three cats in the yard on Tuesday, four cats in the yard on Wednesday, and so on. 
We lack the resources to describe the pattern. These resources are ultimately provided by 
indulgence in a certain game of make-believe or "let's pretend" which we next describe.
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We pretend there are some objects called numbers##x2014;zero, one, two, and so 
on##x2014;and there are some operations on them: successor, addition, multiplication, and 
so on. We pretend these objects satisfy certain laws, including those known as the Peano 
postulates and, more important in the present context, the following laws: 
The number of Fs is zero if and only if there are no Fs. 
The number of Fs is the successor of n if and only if for some y, 
y is an F and the number of Fs other than y is n. 
Having adopted the pretense just described, it becomes appropriate, given certain facts 
about the world, to assent to yet further statements about numbers beyond those listed. 
Notably, if there are two cats in the yard, it is appropriate to say, while playing the game, 
that the number of cats in the yard is two. But this is only a pretense kept up while playing 
the game: we aren't really committing ourselves to there being such things as numbers.
We have here an instance of the general phenomenon, described by Kendall Walton, that in 
general what is true under a pretense depends in part on the content of pretense and in part 
on the way the world is [Walton 1990]. If we are playing a game in which we pretend tree 
stumps are bears, and you run toward a tree stump, then it is "true in the game" that you are 
running toward a bear. But of course we aren't really committed to the existence of a bear 
that you are running toward.
As Walton observes in his discussion of "prop-oriented make-believe," it may be difficult 
or impossible to say in sober, literal terms just how the world has to be in order for a claim 
to be true in a given game of make-believe [Walton 1993]. Suppose someone asks where 



Woods Hole is located on Cape Cod. The easiest thing for me to do may be to say, 
"Pretend Cape Cod is a human arm bent like this. Woods Hole is at the elbow." In this 
process, I convey the requested geographical information by invoking a pretense. And it 
may well be that this is the only way I'm in a position to supply that information. Of 
course, in supplying the information in the way I do, I am in no way committing myself to 
Cape Cod's being really anyone's arm, Woods Hole's being really at anyone's elbow, or 
anything of the sort.
The case is similar with arithmetic, according to Yablo. In the case of our number-game, 
we can say that the figurative meaning of "The number of cats in the yard on Monday was 
two" is the same as the literal meaning of "There were two cats in the yard on Monday" 
(which we have seen how to express without using number-words at all). But with "The 
number of cats in the yard on the nth day is n," the fictional meaning does not coincide 
with the literal meaning of any statement in our original language. Indulging in the 
pretense extends our descriptive resources. Indeed, that is precisely the point of indulging 
in it.
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In general, even statements normally taken figuratively do have a literal meaning which 
may exceptionally be the appropriate one to consider. Thus "She has butterflies in her 
stomach" is normally taken figuratively, as meaning that she is nervous. But a doctor 
reading an X-ray of a patient with a gastric complaint might say, "Incredible! She has 
butterflies in her stomach!" and literally mean that there are insects of a certain kind in a 
certain portion of her digestive tract.
Similarly, according to Yablo, number-talk is normally meant figuratively by 
mathematicians, but it does have a literal meaning, and that is the meaning at issue in 
philosophical discussions. When Yablo says there are no numbers, he means that the 
assertion of the existence of numbers is false taken literally; he does not mean it is false 
when made by mathematicians, for he claims that they mean it only figuratively. This is 
how he reconciles his nominalism with ordinary mathematical practice, and this is why we 
have classified his nominalism as being of the hermeneutic variety.
Some questions of detail can be raised about this hermeneutic view, but let us focus on the 
fundamental issue. Yablo's claim that number-talk is systematically ambiguous is 
presumably an empirical hypothesis in semantics. What evidence is there for it?
Yablo's main argument is a version of the argument from lightheartedness considered in 
the preceding section.2 Mathematicians and scientists pass unhesitatingly from statements 
about ordinary things to statements in the mathematical idiom, and back again: 
There are n Fs  The number of Fs is n 
There are just as many Fs as Gs.  There is a one-one correspondence between the Fs and 
the Gs. 



The argument from P to Q is invalid.  There is a model in which P is true but Q is false. 
Line a is to line b as the circumference of a circle is to its diameter.  The ratio of the length 
of line a to the length of line b is the ratio of the circumference of a circle to its diameter. 
Taken literally, the item in the right column in each case entails the existence of some 
mathematical object, while the corresponding item in the left column does not. But 
ordinary practitioners treat the claims as equivalent. Not only do they freely pass back and 
forth between the two columns, but as they do so, it may be with a palpable sense that 
nothing more is at stake with the one formulation than 
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with the other. This is readily explicable if the ordinary practitioner is concerned only with 
what, according to Yablo, is figurative content of the mathematical claim. For the 
figurative content of each item in the right column, according to Yablo, is simply the literal 
content of the corresponding item on the left.
A subsidiary argument involves appeal to intuitions as to what statements "are about." 
When someone says the number of cats in the yard today is greater than the number of cats 
in the yard yesterday, the speaker feels the statement to be about the cats, and not about 
anything over and above. When someone says the number of starving people is enormous, 
the speaker feels the statement is about a matter of great moral importance, and that the 
same matter of great moral importance could be equally well spoken of by saying instead 
that there are enormously many starving people.
Another subsidiary argument turns on a fantasy. Suppose the Oracle of Philosophy tells 
you that everything is concrete and nothing is abstract, and suppose that you believe her. 
Impressed by what the Oracle has told you, you return to civilization to spread the concrete 
gospel. Your first stop is [your school here], where researchers are confidently reckoning 
validity by calculations on models, equinumerosity by calculations on 1-1 functions, and so 
on. You demand that the practice be stopped at once. Given that models and functions 
don't really exist, all theoretical reliance on them should cease. They of course tell you to 
bug off and am-scray. Which, come to think of it, is exactly what you yourself would do if 
the situation were reversed. [Yablo, forthcoming] 
The suggestion is that since working mathematicians would be utterly unfazed by the 
philosophical discovery that, literally speaking, there are no mathematical objects, it must 
be that their ordinary uses of existential idiom do not involve a commitment to the literal 
truth of the existence theorems.
Needless to say, none of these arguments is decisive. We have already discussed the first 
of them, and said that the phenomenon of lightheartedness admits of other explanations. 
The specific case cited by Yablo could in fact by explained by any assumption implying 
that for whatever reason, mathematicians don't regard the existence of numbers as 
problematic. They treat "There are n Fs" and "The number of Fs is n" as equivalent 



because they are equivalent modulo a background theory whose truth is not for them in 
question.
The second argument can be met by observing that the intuitions of aboutness are unstable 
and context-dependant. If someone says "The number of cats in the yard is two," and you 
ask what his statement is about, he may indeed say "cats." But suppose you then point out 
to him that his statement implies that the number of cats in the yard is a prime number, and 
ask him what this claim is about. At least after helpful prompting##x2014;"We're talking 
about a number here, aren't we?"##x2014;it is immensely likely that he will say, "Yes, I 
suppose we are." Think 
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how bizarre it would be for him to say, "Certainly not; we're still just talking about cats." 
Now return to the original claim with this dialogue fresh in mind and ask, "Are you sure 
your original claim wasn't also about a number?" Who knows what he will say? But it 
seems well within reason that he will now report that his original claim was in part about 
the number 2, and not just about the cats.
The third argument can be met in a number of ways. Perhaps the mathematicians don't 
share your faith in the Oracle of Philosophy, and put zero value on her pronouncements. 
Perhaps they will quite naturally adjust to the striking philosophical discovery that the 
objects they had thought of themselves as studying do not exist, given that this revelation 
comes accompanied by an assurance that the pretense that they do, may still be relied on in 
all practical deliberations. To use hackneyed examples, people adjusted to Copernican 
astronomy, but went right on speaking of sunrise and sunset. People adjusted to special 
relativity, but went right on speaking of events that are simultaneous within the limits of 
observation in the most salient local frame of reference as being simultaneous sans phrase.
Against these three far-from-conclusive indirect arguments for Yablo's position and the 
many others he adduces must be set arguments opposing it, of which the most important is, 
as in our earlier discussion of attitude-hermeneuticism, the lack of direct evidence for it 
where one would expect to find it.
We fully grant that someone speaking figuratively may lack the ability to express in literal 
language just what is meant by the figurative speech. Even "She has butterflies in her 
stomach," which we earlier parsed as "She is nervous," really means that she is 
experiencing a certain physiological accompaniment of nervousness for which there may 
be no better description than the metaphorical "butterflies in the stomach." Likewise, we 
fully concede that someone speaking figuratively need not be consciously aware of doing 
so. Again, "butterflies in the stomach" is such a cliché that most users of it probably do not 
have a recognition of its metaphorical character present to consciousness in the act of 
uttering it. But it seems that in all uncontroversial cases of nonliteral language, the 
competent speaker can promptly recognize that the language was meant nonliterally if the 



question arises. If a child or a foreigner responded to "She has butterflies in her stomach" 
by asking, "Are you sure they're not moths?" would not the explanation "Oh, it's just a 
figure of speech" be immediately forthcoming?
Or consider the following exchange: 
"Where's Woods Hole?" 
"Cape Cod is an arm extending eastward into the Atlantic Ocean, and bent like this. 
[Demonstrates.] Woods Hole is at the elbow." 
"It must be an enormous arm! Whose is it, King Kong's? Is it very hairy? Will I have 
trouble finding my way through the hair?" 
"Hold on; you've got me wrong. It's not literally an arm. That was just a figure of speech. 
Cape Cod is a spit of land that is roughly shaped like an arm." 
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We submit that whenever a bit of language is used nonliterally, it is possible for an 
interlocutor to misconstrue it by taking it literally, and for the competent speaker to 
recognize this misunderstanding and correct it by pointing out that the remark was not 
meant literally. Certainly in all clear cases of figurative language##x2014;and it is worth 
stressing that the boundary between figurative and literal is as fuzzy as can be##x2014;the 
nonliteral character of the linguistic performance will be perfectly obvious as soon as the 
speaker is forced to turn attention to the question of whether the remark was meant 
literally.
We further submit that mathematical discourse fails this test for nonliteralness. What 
would it be to misunderstand a mathematical remark like "There are two abstract groups of 
order four" by taking literally what is meant only figuratively? What would be the 
analogue of the risible misunderstanding of the directions to Woods Hole? The best we can 
do is the following: 
Mathematician: There are two abstract groups of order four. 
Interlocutor: Fascinating. Where are these groups? What are they like intrinsically? How 
do you know that they exist? 
And what would be the analogue of the original speaker's reply to the obvious 
misconstrual? Yablo himself no doubt would say something like this: 
Hold on; you've got me wrong. I didn't mean to say literally that any abstract groups exist. 
I was just speaking figuratively. It's hard to say in strictly literal terms what I did mean, but 
I only meant to commit myself to the view that assuming standard mathematics, there are 
two abstract groups of order four. 
But we submit that an actual mathematician would be much more likely to say something 
like this: 
Groups don't exist in some special location. They're abstract. Abstract groups are 
equivalence classes of ordinary groups under isomorphism. I know abstract groups exist 



because I can describe concrete instances of them##x2014;for instance, the integers 
modulo 4 (and because I can always define an equivalence class, given a suitable 
equivalence relation). 
These answers may not be satisfactory##x2014;no nominalist will be satisfied with them, 
obviously##x2014;but the fact that the ordinary practitioner would be disposed to reach for 
answers of this sort suggests that the questions do not constitute a "literalistic" 
misconstrual of remarks meant figuratively. And if there can be no literalistic misconstrual, 
then the language was not figurative in the first place.
In SWNO we were concerned with ambitious programs for nominalistic reconstruction or 
reconstrual of mathematics and mathematically formulated scientific theories. We argued 
that these nominalist theories were neither clearly better than standard theories by 
recognizably scientific criteria, nor at all plausible as hypotheses about what the standard 
theories had "really meant all along." In the present work we have been especially 
concerned with nominalist positions 
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turning on some distinction between literal and figurative belief, between belief and 
acceptance, or something of the sort, since that kind of nominalism is the one that has been 
most actively pursued in recent years. We have just been expressing doubts about whether 
the actual attitude of working mathematicians and scientists is weaker than literal belief, 
having earlier expressed doubts about nominalist epistemological arguments that, if cogent, 
would show that anyone who does have a literal belief in mathematics ought to retreat to 
some weaker attitude.
As matters stand, the recommended attitude seems to be one that is adopted only by certain 
philosophers, who on account of worries engendered by a certain picture##x2014;us on 
one side of a wall or gulf, mathematical objects on the other##x2014;feel impelled to take 
back in their philosophical moments what they say at other times. We have to admit, 
however, that the picture is a perennially powerful one, and that until it can be 
exorcised##x2014;something we do not claim to have done##x2014;critics of existing 
varieties of nominalism can hardly hope to accomplish more than to inspire the 
development of new ones. We therefore expect the topic of nominalism to remain a lively 
one for years to come.
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17. Structuralism
Geoffrey Hellman 

1.  Introduction

With the rise of multiple geometries in the nineteenth century, and the rise of abstract 
algebra in the twentieth century, the axiomatic method, the set-theoretic foundations of 
mathematics, and the influential work of the Bourbaki, certain views called "structuralist" 
have become commonplace. Mathematics is seen as the investigation, by more or less 
rigorous deductive means, of "abstract structures," systems of objects fulfilling certain 
structural relations among themselves and in relation to other systems, without regard to 
the particular nature of the objects themselves. Geometric spaces need not be made up of 
spatial or temporal points or other intrinsically geometric objects; as Hilbert famously put 
it, items of furniture suitably interrelated could satisfy all the relevant axiomatic conditions 
as far as pure mathematics is concerned. A group, for instance, can be any multiplicity of 
objects with operations fulfilling the basic requirements of the binary group operation; 
indeed, the very abstractness of the group concept allows for its remarkably wide 
applicability in pure and applied mathematics. Similar remarks can be made regarding 
other algebraic structures, and the many spaces of analysis, differential geometry, 
topology, and so on. Of course, mathematicians distinguish between "abstract structures" 
and "concrete ones" (e.g., made up of familiar, basic items such as real or complex 
numbers or functions of such, or rationals, or integers, etc.). (For example, the space L2 of 
square-integrable functions from (or n) to , with inner product (f,g) = ∫ f*g dμ, where μ 
is Lebesgue measure, is a "concrete" example of a Hilbert space.) But it is characteristic of 
a thoroughgoing structuralism to treat even these systems as like the more "abstract" ones, 
in that the "objects" 
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involved serve only to mark "positions" in a relational system; and the "axioms" governing 
these objects are thought of not as asserting definite truths, but as defining a type of 
structure of mathematical interest. In some sense to be clarified, the objects serve only as 
relata of key relations, and their "individual nature" is of no mathematical concern, if one 
can even speak of such a nature. Sometimes it is even said that such objects—"structural 
objects"—have only the properties and bear only the relations to other such objects as 



required by the relevant axioms or defining conditions laid down in the branch of 
mathematics in question.
Now in the course of one paragraph, we have gone from a commonplace of the modern 
mathematical point of view to some pretty deep-sounding issues that will require some 
sorting out. We have various notions of "abstract" and "concrete" to contend with. 
Moreover, we have the tantalizing suggestion that perhaps mathematical objects "have no 
nature" at all, beyond their "structural roles." Does this make sense? And we confront the 
question of whether structuralist tenets apply at the most fundamental levels at which we 
speak of mathematical objects: numbers, sets, functions, even relations themselves; and if 
they do apply, how so? It is one thing to study algebraic, geometric, or topological 
structures independently of any particular objects making them up, in the sense that none 
are preferred, except for special purposes in particular contexts. But are we to understand 
talk of the natural numbers in the same way? And what about collections and operations, 
or more generally relations (which can include collections as unary relations)? In short, 
where does structuralism start? And then, where does it take us? Does it provide novel 
insights, perhaps even answers to, or dissolutions of, any long-standing metaphysical and 
epistemological problems concerning mathematics, or does it just shift these with some 
new terminology?
As we shall see, there are some strikingly different ways of developing the informal, 
intuitive ideas associated with structuralism, and a large part of our task in this chapter will 
be to delineate and compare these alternatives along several important dimensions. As will 
emerge, there are a number of interesting trade-offs, and it is surprisingly difficult—
perhaps impossible—to formulate a version that combines all the advantages exhibited by 
some version or other while avoiding the pitfalls. At this stage, it will help guide our 
investigation to formulate a number of central questions which any developed version of 
structuralism ought to answer. Here are five such: 

(1) 
 
What primitive notions are assumed and, in particular, what is the background logic? 
Does it go beyond first-order logic? If higher-order logic is presupposed, what is the 
status of relations and functions as objects? What limitation does this imply on the 
structuralist approach in question? 

(2) 
 
Already we have hinted that the term "axiom" is ambiguous, meaning either "defining  
condition" on a type of structure, in which case nothing is being asserted, or meaning 
"basic or initial assumption," as an assertion that can be true or false, rationally 
credible to some degree or not, and so forth. It is characteristic 
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 of a "structuralist" approach to a branch of mathematics to appeal to "axioms" in the 
former sense, and this is precisely what Dedekind did in his treatment of arithmetic 
[9], which justifies calling his approach "structuralist" at least in a minimal 
sense.(Similarly, this was Hilbert's conception in his famous correspondence with 
Frege [13].) But then what are the assertory axioms of the framework in question? (To 
modify a good saying, "Not by definition alone!") 

(3) 
 
Is there a thoroughgoing elimination of structures-as-objects? If not, what is a 
structure? Moreover, what is a mathematical structure? [21] 

(4) 
 
As a special case of (2), what assumptions are made governing the mathematical  
existence of structures, and how is this understood? In particular, how, if at all, is the 
indefinite extendability of the realm of mathematical structures accounted for? 

(5) 
 
How is reference to structures understood, and what account can be provided of our 
epistemic access to structures? 

The main types of mathematical structuralism that have been proposed and developed to 
the point of permitting systematic and instructive comparison are four: structuralism based 
on model theory, carried out formally in set theory (e.g., first- or second-order Zermelo-
Fraenkel set theory), referred to as STS (for set-theoretic structuralism); the approach of 
philosophers such as Shapiro and Resnik of taking structures to be sui generis universals, 
patterns, or structures in an ante rem sense (to be explained below), referred to as SGS (for 
sui generis structuralism); an approach based on category and topos theory, proposed as an 
alternative to set theory as an overarching mathematical framework, referred to as CTS (for 
category-theoretic structuralism); and a kind of eliminative, quasi-nominalist structuralism 
employing modal logic, referred to as MS (for modal-structuralism).1 Let us take these up 
in turn, guided by questions (1)-(5), with the aim of understanding their relative merits and 
the choices they present.

2.  Structuralism in Set Theory

This approach has, of course, arisen within mathematics itself and is the standard way of 
articulating a kind of structuralism. Mathematical structures are certain sets, ordered tuples 
of a domain together with distinguished relations, functions, and possibly individuals 
(members of the domain). (We take as familiar the 
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interdefinability of functions and relations.) Structures can be models of certain theories, 
satisfying their theorems. Such theories would include all the ones normally encountered in 



mathematics. Furthermore, structures may be related by isomorphisms, relation-preserving 
bijections, or embeddings, homomorphisms, and so on, all defined in set theory in familiar 
ways. Various important properties of theories, such as consistency, completeness, 
categoricity, and so on, correspond to or are defined by conditions on their models, a 
central concern of model theory.
In order to answer questions (1)-(5), framed above, it is necessary to identify a particular 
set theory in which model theory is carried out. The standard choice is Zermelo-Fraenkel 
set theory, usually with the Axiom of Choice (ZFC). But various other choices present 
themselves (e.g., are there to be Urelemente (in addition to the empty set) and—of greater 
significance—is the background logic to be first-order logic, or is it (an axiomatic part of) 
second-order logic? If proper classes are admitted, are they done so conservatively with 
respect to set theory proper, as is the case in the (two-sorted, first-order) system NBG, or 
as an essential enrichment of set theory, as in the second-order system of Morse-Kelly 
(with impredicative class comprehension)? To some extent, the answers to questions (1)-
(5) depend on these, and perhaps other, choices. But let us approach them with first-order 
ZFC in mind, as the central and most common case.
Concerning (1) and (2), then, the logic is first-order with equality; the sole nonlogical 
primitive is set membership, and the nonlogical axioms, in the assertory sense, are those of 
ZFC. (3), the nature of mathematical structures according to STS, has already been 
described. Structures-as-objects are just certain sets, and so they are not eliminated. There 
is, however, elimination of any non-set-theoretic structures (e.g., for the natural numbers, 
or the reals, etc., as sui generis objects, as Dedekind, e.g., viewed them). [10] On STS, one 
identifies such objects in a particular way, but this is for convenience (e.g., for a smooth 
development of ordinal number theory, etc.). But it is recognized that the branch of 
mathematics in question (number theory, real analysis, etc.) concerns any structures of the 
relevant isomorphism type.2 On this view, a question such as "What are the natural 
numbers, really?" is dismissed as misguided. As to the question of what distinguishes 
"mathematical" from other structures, a natural answer is forthcoming: that, typically, there 
is vocabulary (predicates, functional expressions) underlying given structures and that the 
source of that vocabulary indicates the 
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field of inquiry (e.g., space-time physics, as opposed to purely mathematical geometry, 
although in a field such as mathematical mechanics, the line may not be sharp, especially if 
the theory in question is being explored not as an actual description but as merely a 
theoretical possibility).
Turning to question (4), one virtue of STS is the clarity of its standard of mathematical 
existence of structures, as this just means existence as sets in ZFC. Of course, many 
questions are not answered by these axioms, but for the most part these concern 



extraordinary mathematics (e.g., large cardinals, not the structures and spaces of ordinary 
mathematics, for which a system such as ZFC is more than adequate). What about the issue 
of extendability? While there is a built-in indefinite extendability of structures in the strict, 
set-theoretic sense (since the ordinals "go on and on"), there is a certain crucial limitation 
when it comes to structures for set theory itself. Here we encounter a massive exception to 
the structuralist point of view, in that, on its face-value interpretation, set theory itself is 
not treated structurally: its axioms are not understood as defining conditions on structures 
of interest but are taken as assertions of truths in an absolute sense. One speaks of "the 
cumulative hierarchy," or even "the real world of sets." In first-order ZFC, of course, no 
such thing is officially recognized, although in NBG or in second-order ZFC, one has "the 
universe" as a proper class. Clearly these latter theories explicitly violate extendability as a 
general principle, but first-order set theory as practiced violates it as well, for it implicitly 
recognizes "the sets," if only in a plural sense, as the very subject matter of the theory. 
Why should such higher-type totalities not be a subject of mathematical investigation? 
Why should not higher-order "collections" be recognized (i.e., what prevents the 
"collectibility" of "all sets," in a logical sense inherent in set theory itself)? And why aren't 
such collections subject to operations analogous to those of set theory itself, including 
formation of singletons, power collections, and so on? (Of course, this latter question 
applies to theories of proper classes as well, which is one of the reasons they are an 
embarrassment to set theory.)
As to question (5), reference to structures is just a special case of reference to sets, and this 
is usually just taken for granted. Once given a starting point, the null set, we know what its 
singleton is, what the pair of it and its singleton is, what the finite von Neumann or 
Zermelo ordinals are, what the hereditarily finite sets built on the null set are, what the 
power set of this is, and so on. Whether all these things, as intended—and this includes full 
power sets (containing all subsets of given sets) and enough ordinal levels to satisfy the 
Replacement Axiom—actually occur in "the real world of sets," and how we can know, are 
esoteric questions that surely no mathematician qua mathematician would bother about.
As this brief overview indicates, STS, despite its clarity and definiteness, is not without its 
problems. Three in particular stand out: 

(i) 
 
As already indicated, set theory itself is not treated structurally, and this despite the 
fact that there are multiple set theories around, all legitimate as avenues 
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 of mathematical investigation. Thus, STS is deprived of one of the most natural ways 
of "justifying axioms" from a mathematical point of view, that is, by appeal to our 
interests in a particular kind of structure. For example, consider well-foundedness 
(Axiom of Regularity): rather than "defend" this as true in some absolute sense, a 
structuralist would simply cite our interest in exploring well-founded sets, without 
denying that non-well-founded sets "exist" or are a fit mathematical subject. Similar 
remarks can be made about the axiom of Replacement. It need not be guaranteed by 
"the meaning of 'set' " or by some a priori insight into "set-theoretic reality;" it is 
sufficient as a coherent condition on domains or universes of sets, guaranteeing their 
largeness relative to any of the members. But such an answer is not available to STS 
(for why should the real world of sets be large?). In short, this view fails to block bad 
questions about set theory. 

(ii) 
 
STS is saddled with a maximal totality (or plurality) of sets, hence of structures, in 
conflict with intuition and with mathematical practice, which always has the potential 
of transcending any domain proposed as a limit. It violates a truly general 
extendability principle. 

(iii) 
 
It confronts mathematically esoteric and seemingly intractable ontological and 
epistemological questions (e.g., in connection with the null set, with "full power 
sets," with "the order type of the universe," and so forth). 

Thus, despite the great successes of model theory, considerations such as these have 
motivated some mathematicians, logicians, and philosophers to seek alternative ways of 
articulating structuralist ideas.

3.  Structures as Sui Generis Universals

Like STS, this approach conceives of structures as absolute objects, but not as abstract 
particulars—rather, as universals, patterns in Resnik's terminology, answering to "what all 
particular systems of a given type—whether made up of concreta or abstracta such as sets
—have in common." Patterns are thus reified; they are the types. One thus speaks literally 
of "the natural number structure": its constituents, the numbers, are not sets but are 
conceived as mere "places" or "positions" defined by the structural relations, themselves 
determined by mathematical axioms or conditions. To be the number two, for instance, is 
just to be the third place in this natural number structure (if we begin, with Frege, with 0). 
Since places are here treated as objects in their own right, rather than as "offices" to be 
filled by particulars, Shapiro uses the term "ante rem" for these structure types, in contrast 
to the usual in re structures of set theory or concrete realizations. 
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Many of the latter are instances of a unique one of the former.3 Thus, SGS is not 
eliminativist at all. So long as some mathematical conditions—normally given as 
statements in second-order logic—are coherent, there will be an ante rem structure which 
they automatically describe. The various number systems, for instance, can be instantiated 
multiply by sets, but—in answer to Benacerraf's puzzle—no such instantiation is the true 
ante rem number structure. It is to such a structure that our ordinary designators actually 
refer, and set-theoretic reductions are merely convenient representations. Since ante rem 
structures are conceived as abstract types standing "above" already abstract instances (e.g., 
of sets) and moreover as instantiating themselves (i.e., as made up of objects fulfilling the 
structural defining conditions), the term "hyperplatonist" seems apt for this view.
In addressing questions (1)-(5), we will follow Shapiro's presentation which outlines a 
formal framework.4 Concerning (1) and (2), Shapiro assumes a second-order background 
language, assumed "to include a rudimentary theory of collections" and the machinery for 
speaking of functions and relations among places in structures. It is natural to understand 
by this an axiomatic second-order logic including the usual unrestricted (impredicative) 
comprehension scheme for collections and relations. A system of axioms—structure theory
—governing the primitives, structure and places, is presented: these include axioms very 
much like those of second-order ZF, including axioms of Infinity, Power Structure, and 
Replacement. In addition, there is a Coherence Axiom: "If Φ is a coherent formula in a 
second-order language, then there is a structure that satisfies Φ." Here "coherent" is a 
further primitive, corresponding to model theory's notion of satisfiability. (As Shapiro 
points out, it is not reducible to a formal condition such as consistency or even ω-
consistency.) As a direct consequence of this axiom, the basic distinction introduced above  
between axioms-as-defining-conditions and axioms-as-assertions collapses: any conditions  
that might possibly be satisfied are in fact satisfied (i.e., are true of an ante rem structure), 
but since the axioms are understood to be about such a structure, according to SGS, they 
are true simpliciter.
In addition to these axioms, a (second-order) Reflection Principle can be assumed, 
guaranteeing large structures (corresponding to strongly inaccessible cardinals).
Turning to (3), its main part on the conception of structures as objects has already been 
addressed. And presumably we have also addressed the subsidiary question of 
distinguishing mathematical structures from others: it is natural to take these to be 
structures specified by coherent second-order conditions in the language of structure 
theory. Of course, only a very special subcollection of these 
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would be of genuine mathematical interest, and it would surely be misguided to attempt 
any general characterization of these; but physical and other nonmathematical structures 
would presumably not be found, insofar as their description requires vocabulary beyond 
that of pure structure theory (second-order logic plus the primitives "structure" and 
"place").
As to (4), existence of structures is of course spelled out in the axioms of structure theory. 
What about extendability? Clearly SGS improves on STS in applying to set theories 
without having to recognize any one as "the one true one," and so it avoids any maximal 
plurality or collection of sets. Still, there is a maximal collection of places in structures as 
a consequence of the second-order comprehension principle which structure theory 
presupposes. And while there is no collection of all structures, since this would be a third-
order object, still there are, speaking plurally, all the structures (i.e., an inextendable 
"universe of structures"), informally speaking, whether or not the formalism allows talk of 
such a collection.
Finally, regarding (5), as indicated, reference to ante rem structures and their places is just 
supposed to occur when we gain mastery over the relevant mathematical vocabulary. Just 
as in learning the English alphabet, we learn to refer to the letters as types, so we learn to 
refer to the natural numbers, and then, somewhat later, to the rationals, the reals, and 
maybe even the complexes.
How does SGS fare with respect to the problems (i)-(iii) affecting STS, described above? 
(i) is overcome in SGS, as it treats set theory (theories) structurally like other mathematical 
theories. Sets are not conceived of as abstract particulars, existing in their own right and 
forming the subject matter of mathematics. Rather, like numbers or elements of algebraic 
structures, they are conceived merely as places in an abstract structure. The multiplicity of 
set theories fits nicely into the view; for instance, well-founded sets are realized in one 
ante rem structure (actually in many such), but there are others realizing non-well-founded 
sets. The "membership relation" of the latter simply behaves differently. Likewise with 
regard to other structure-characterizing axioms such as Replacement. In sum, SGS 
succeeds in blocking a number of bad questions about set theory where STS only 
encouraged them. Similarly, the puzzles for STS under (iii) do not arise for SGS. There is 
no mystery about the null set, for example. This is just a structural "starting point" in an 
ante rem structure for set theory, an object to which no other place bears the relevant two-
place relation (ordinarily called "membership"). Moreover, there is no question about 
"real-world power sets," for such are not distinguished. So long as "full power set" (of a 
given infinite set) is coherent, an ante rem structure will have a place for such (as places). 
Of course, there are also many structures with less-than-full power sets, but that does not 
matter. The question of coherence can certainly be raised (and typically is by 
predicativists), but the issue is not an ontological one, according to SGS. This seems right. 
Similarly, there is no problem about "the order type of the universe," since no "universe" of 
all sets need be recognized. Many universes are possible; hence 
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actual as ante rem structures. If power sets are full and second-order Replacement holds, 
the order type of such a universe will be a strongly inaccessible cardinal but, presumably, 
there are boundlessly many of these.
At first blush, it seems that SGS also handles problem (ii) quite deftly, for there simply is 
no maximal totality of sets forming an ante rem structure. As far as these structures for set 
theory go, the extendability principle is respected. However, as already pointed out in 
connection with point (4) above, SGS is still saddled with maximal totalities of its own, 
namely, the class of all places (explicitly delivered by second-order logical comprehension 
in structure theory) and the plurality of all ante rem structures, implicit in the overall 
system with the Coherence Axiom. In effect, SGS has merely traded "the totality of sets" 
for "the totality of structures," and so does not endorse the general extendability principle.
There are, moreover, further problems that have been raised against SGS, problems that do 
not confront STS. Two interrelated such problems should be mentioned here. (Our 
numbering continues that of the list of problems begun above.) 

(iv) 
 
Places as objects in ante rem structures raise questions concerning their very 
identity.5 It seems, from a structuralist perspective, that intrastructural relations alone 
should suffice to distinguish these objects, without appeal to external relations or 
individual constants. But then places in a structure should satisfy a Leibnizian 
principle of identity of structural indiscernibles: any items bearing exactly the same 
intrastructural relations to other items should be not many but one.6 But this 
immediately implies that the structure in question must be rigid (i.e., admitting no 
nontrivial automorphisms). While that is true of some key mathematical structures 
(e.g., the natural numbers, the field of real numbers, segments of the cumulative 
hierarchy of sets, etc.), nonrigid structures nevertheless abound in mathematics (e.g., 
the complex numbers [interchanging i and -i], the additive group of integers 
[interchanging +1 and −1], geometric figures with reflectional symmetry, 
homogeneous Euclidean n-space, etc.). While it is true that all these nonrigid 
structures can be recovered inside rigid ones (via reduction to sets), that seems 
counter to the whole thrust of SGS. Another reply suggests simply not seeking any 
criterion of identity for places. The debate over this continues.7 
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(v) 
 
Are purely structural relations intelligible in the context of putatively structural 
objects—places—as relata? This objection challenges the very notion of ante rem 
structure, whether rigid or not. If we do not appeal to the relata of a structure as 
somehow independently given (e.g. invoking reference by singular terms in our 
background language as standard Platonism does), but as determined by structural 
relations—which is surely part and parcel of the SG view—what have we to go on in 
specifying structural relations other than the axioms (defining conditions) 
themselves?8 But, as Russell pointed out in his criticism of Dedekind's early 
expression of SGS [9], [10], the axioms don't distinguish any particular realization 
from among the many systems that satisfy them.9 What, for example, can it mean to 
speak of "the ordering" of "the natural numbers" as objects of an ante rem structure 
unless we already understand what these numbers are apart from their mere position  
in that ordering? Surely the notion of "next" makes no sense except relative to an  
ordering or function or arrangement of some sort, something Dedekind was careful to 
take into account when describing simply infinite systems, which always involve 
objects "set in order by transformation φ." (Clearly, anything whatever can be "next 
after" anything else in some system or other.) Thus the notion of an ante rem structure 
seems to involve a vicious circularity: such a structure is supposed to consist of purely  
structural relations among purely structural objects, but understanding either of these  
requires already understanding the other. Whereas the Keränen-Burgess objection 
granted the relations and raised questions about how these alone could determine the 
objects (unless the structures are rigid), this objection questions such talk of relations 
in the first place, and thereby the very notion of "Dedekind abstraction," which is 
supposed to lead to them.10 
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In fact, SGS seems ultimately subject to the very objection of Benacerraf [4] that helped 
inspire recent structuralist approaches to number systems in the first place. Suppose we 
had the ante rem structure for the natural numbers, call it < , φ, 1>, where φ is the 
privileged successor function and 1 the initial place. Obviously, there are indefinitely many 
other progressions, explicitly definable in terms of this one, which qualify equally well as 
referents for our numerals and are just as "free from irrelevant features"; simply permute 
any (for simplicity, say finite) number of places, obtaining a system < , φ′, 1′>, made up 
of the same items but "set in order" by an adjusted transformation, φ′. Why should this not 
have been called "the archetypical ante rem progression," or "the result of Dedekind 
abstraction?" We cannot say, for instance, "because 1 is really first," since the very notion 
"first" is relative to an ordering; relative to φ′, 1′, not 1, is "first." Indeed, Benacerraf, in his 
original paper, generalized his argument that numbers cannot really be sets to the 
conclusion that they cannot really be objects at all, and here, with purported ante rem 



structures, we can see again why not, since multiple, equally valid identifications compete 
with one another as "uniquely correct." Hyperplatonist abstraction, far from transcending 
the problem, leads straight back to it.
Other problems can be raised for SGS, in particular problems concerning the Coherence 
Axiom and the primitive "coherent." It can be thought of as a post-Gödelian substitute for 
formal consistency: the axiom mimics Hilbert's idea that consistency suffices for 
mathematical existence. But of course it is not a formal notion and seems no clearer than a 
primitive notion of (second-order) logical possibility—indeed, perhaps less so, for do we 
have anything as developed as modal logic governing "coherent"? And if we identify these 
notions, then the Coherence Axiom appears even more problematic, for why should mere 
logical possibility suffice for existence? Indeed, why not just rest with the former, which, 
as we shall see below, enables avoidance of the very maximality problems that plague both 
STS and SGS?
For all these reasons, then, we are motivated to look at some alternative, nonabsolutist 
approaches to structuralism.

4.  Structuralism in Category Theory

Like set theory, category theory (CT) has arisen within mathematics both as a branch of 
mathematics making its own special contributions (in the case of 
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category theory, to algebraic topology and algebraic geometry) and also as a general 
framework or setting for vast amounts of mathematics. Mac Lane and others have taken 
the further step of proposing topos theory as providing an alternative foundation for 
mathematics, comparable to and in some ways superior to set theory, and, more recently, 
Awodey has explicitly suggested that category theory provides a natural framework for 
realizing structuralism, one that philosophy of mathematics should employ and pursue.11 
The basic idea behind Awodey's suggestion is that category theory provides an effective 
way of codifying and illuminating mathematical structure through its focus on families of 
structure-preserving mappings between objects having the relevant kind of structure and 
through functorial relations between different categories, which exhibit important 
relationships among different kinds of structures, of special interest in advanced 
mathematics. Moreover, the CT approach to mathematical structure has advantages over 
the Bourbaki (set-theoretic) approach, in that descriptions via mappings (morphisms, also 
functors) abstract from the initial means by which structures of a given type may have been 
introduced. Topological structure, for example, is determined via continuous maps to and 



from other spaces regardless of the details of their original introduction, via open sets, limit 
points, closure operations, and so on. Indeed, it is remarkable how much of what are 
normally thought of as operations and relations internal to a structure can be recovered via 
morphisms to and from other "objects" (what would normally be called "structures," 
formally treated as pointlike in CT). It is even possible, for example, to get the effect of 
elementhood itself, via morphisms between a terminal object and a given object (where an 
object 1 is terminal just in case, for any object C in the category there is a unique 
morphism from C to 1). Moreover, CT constructions exhibit in a precise way how 
mathematical structure is significant only "up to isomorphism," and they bring out "shared 
structure" through novel methods of generalization (e.g., via universal mapping properties 
of, for instance, products, generalizing the notion of Cartesian product in set theory).
Clearly, CT provides important insights into various kinds of mathematical structures and 
into "mathematical structure" in a general sense. But does it provide a genuine structuralist 
framework for mathematics on a par with STS or SGS? In assessing this, some basic 
distinctions must be borne in mind. First, it is essential to distinguish between CT as  
mathematics in its own right and CT as a foundational framework. Texts on CT as 
mathematics typically make reference to a background set theory or universe of sets 
relative to which CT is to be understood and carried out.12 If generally enforced, this would 
make CT dependent on set 
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theory, and it could not be considered to provide an autonomous framework. Thus, the 
issue of autonomy vis-à-vis set theory must be addressed. In particular, Mac Lane has 
proposed that mathematics generally can be developed in a certain kind of topos (satisfying 
a condition called "well-pointedness," leading to extensional discrimination of morphisms 
as in classical mathematics), and that this is an alternative to set-theoretic foundations. But 
then it must be possible to make sense of such topoi without falling back on set theory, 
either conceptually or ontologically. Similarly, Bell has proposed that any topos with a 
natural number object can serve as a background universe for (ordinary) mathematics, and 
that this results in an interesting relativity of ordinary mathematical concepts (e.g., "real 
number," "continuous function on reals," etc.) to background topos (whose internal logic is 
in general intuitionistic, but which may be classical if stronger conditions, such as well-
pointedness, are built in). Some core mathematics turns out to be invariant over the 
relevant totality of topoi, but many things are not. To sustain this local, relativist view, 
again it must be possible to carry out the mathematics and metamathematics of topoi 
without falling back on set theory.
A second important distinction concerns the term "category theory" itself. On the one hand, 
there are the "first-order axioms on categories," the standard conditions interrelating the 



domains and codomains of morphisms with the binary "composition" operator and 
governing identity morphisms. To these may be added a variety of further conditions 
defining various kinds of topoi: for "elementary topoi," the basic requirements generalizing 
Cartesian products, functional exponentiation, and set theory's apparatus for (Boolean) 
propositional functions ("subobject classification"); for foundational purposes, further 
conditions guaranteeing a natural number object; and stronger principles such as an axiom 
of choice, well-pointedness, and so on. It is clear, however, that these are not "theories" in 
the sense in which ZFC is a theory, for these "axioms" on categories and topoi are merely 
defining conditions, simply telling us what first-order conditions must be satisfied by 
anything to qualify as a category or a topos. Thus, the primitives ("domain," "codomain," 
"composition") need not have any particular meanings, and these axioms assert nothing by 
themselves. As Awodey himself puts it: 
A category is anything satisfying these axioms. The objects need not have "elements," nor 
need the morphisms be "functions," although this is the case in some motivating 
examples. … We do not really care what non-categorical properties the objects and 
morphisms of a given category may have. … ([1], 213) 
Thus, categories and topoi are conceived in the manner of algebraic structures such as 
groups, rings, and so on, and the informal "theory of categories," which of course contains 
genuine assertions including foundational ones about categories and topoi, must not be 
identified with these first-order "axiom systems," but must 
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somehow be rich enough to express substantive claims about structures satisfying these 
axioms. This is essential in assessing the status of CT vis-à-vis set theory. For example, 
just because notions of "collection" and "operation" are not used in the first-order defining 
conditions does not mean that they are really bypassed in theorizing about categories in the 
relevant sense.
This is an appropriate place to recall an early critique by Feferman of Mac Lane's claims 
on behalf of CT as providing a foundational alternative to set theory [11]. In essence, 
Feferman argued that category theory presupposes and uses, informally, notions of 
collection and operation, both in saying what a category (or topos) is, and in relating 
categories to one another through homomorphisms or functors. Moreover, a foundational 
framework for mathematics must provide some systematic account of these notions, 
something set theory does but category theory does not. It was explicitly recognized that 
alternatives to standard set theory might also provide this, so that the claim was not that CT 
depends on set theory per se, but rather that, as it stands, it is inadequate.
Now there is a temptation to respond to this by taking CT to be a theory of families of 
functions related by composition, and to claim that this in principle is no different from set 
theory as a theory of sets (and possibly individuals) related by membership. The notion of 



"function" is one that mathematicians use all the time, and even set theory can be derived 
from an analogous theory of functions, as was originally carried out by von Neumann [34]. 
CT could be viewed as an alternative, perhaps more interesting, systematic approach based 
on the familiar notion of function. What's wrong with that?
The problem is that this depends on a special, privileged interpretation of "composition," 
hence of "morphism," in diametric opposition to the algebraico-structuralist reading that 
category theorists apply to their own systems (cf. the quotation from Awodey, above). 
Moreover, the "axioms" defining categories and topoi are silent on the matter of 
mathematical existence of these structures, leaving unresolved basic questions concerning 
their sizes and their scope. (E.g., is there really a category of all categories? If so, how is 
Russell's paradox avoided?, and so forth.)
Thus we see that an algebraico-structuralist reading of the CT axioms actually underlay 
Feferman's critique;13 moreover, it simply vitiates the above response, which in any case is 
inadequate, as just indicated.
Turning back to questions (1)-(5) we have been putting to each version of structuralism, 
we find ourselves now in the awkward position of being unable to 
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answer any of them with any definiteness, save perhaps (3), concerning elimination of 
structures as objects. (For future reference, let us number this problem of 
underspecification (vi).) Consider (1) on primitives and background logic. Of course we 
know what the primitives of the first-order CT axioms are; however, the question is not 
about the definition of "category," but rather about the primitives of the background 
(informal) substantive mathematical-foundational (meta-) theory, which, as Feferman 
observed, employs notions of collection and operation and functor. The fact that these are 
not among the primitives of the definitional CT or topos-theoretic axioms is irrelevant. We 
cannot even say that the background logic is to be first-order, nor that it is intuitionistic, 
like the internal logic of a topos. Almost certainly classical logic is required for some of 
the results of category theory as substantive mathematics. Bell's approach, for example, 
which treats topoi as models of "local set theories," requires some substantial metalogic. 
The languages of local set theories are type-theoretic, but with no cardinality restrictions 
on the type symbols that may occur. (Bell even acknowledges at the outset that for some 
purposes, a background set theory such as NBG may be needed.)
The situation regarding (2) is no better. We are simply not in a position to identify agreed-
upon substantive (assertory) axioms explicitly or implicitly assumed in category and topos 
theory qua genuine mathematics or metamathematics, without falling back on set theory.
Presumably, structures-as-objects are not eliminated in CT structuralism, for they make up 
one of the sorts (the objects) of typical categories (e.g., of groups, of vector spaces, of 
topological spaces, etc.).14 This is a short answer to the first part of (3), but what about the 



second and third parts, concerning the nature of structures and what distinguishes 
mathematical from other structures? As objects inside categories, structures are treated as 
"pointlike," and everything is expressed in terms of morphisms and functorial relations, 
leaving the nature of structures themselves up in the air. While it is true that CT has the 
resources to express its own account of various spaces (e.g., topological), one wonders 
whether such an account would be intelligible without prior acquaintance with ordinary 
set-theoretic constructions (e.g., via open sets).
The first part of (4), of course, as a special case of (2), remains unanswered. Questions of 
mathematical existence of structures, including categories and topoi, are usually deferred 
to an unspecified background set theory or model thereof, but, as already said, this is 
appropriate only when pursuing CT as pure mathematics, but surely not when proposing it 
as a foundation or structuralist framework. Concerning the second part of (4), 
extendability, this principle is certainly in the spirit 
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of CTS, as Mac Lane's remarks on the open-endedness of mathematics attest.15 But we saw 
above that SGS, while critical of "the real world of sets," nevertheless runs into violations 
due to second-order logic, and it remains to be seen how CTS can avoid such problems. As 
to (5), how CTS contributes to our understanding reference and epistemic access to 
structures, we remain quite in the dark.
Even without enough development to answer these questions, CTS does appear to escape 
the problems (i)-(iii) affecting STS and (iv) and (v) affecting SGS, on the proviso that it 
can avoid commitment to maximal totalities. Clearly it treats set theories structurally along 
with other branches of mathematics. The null set, for example, is treated simply as an 
initial object of a category, not as a mysterious empty abstract container. And there need be 
no commitment to any unique set-theoretic reality. Nor is CTS plagued by the special 
objects and relations of ante rem structures.
On the positive side, category theory has much to offer by way of insights into 
mathematical structure and through its novel approach to generalization via morphisms and 
functors. Equally clearly, however, in light of the foregoing discussion, it is inadequate as a 
foundational framework as it stands. If it is not to fall prey to a dependence on set theory 
after all, some alternative way of developing it which is responsive to the above basic 
questions must be found. In the final section below, we will mention one such alternative.

5.  Modal-Structuralism



A good way into this approach (developed in [17] and [18]) is via Russell, who wrote early 
on in [32]: 
It might be suggested that, instead of setting up "0," "number," and "successor" as terms of 
which we know the meaning … , we might let them stand for any three terms that verify 
Peano's five axioms. They will then no longer be terms 
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which have a meaning that is definite though undefined: they will be "variables," terms 
concerning which we make certain hypotheses, namely, those stated in the five axioms, but 
which are otherwise undetermined. … our theorems … will concern all sets of terms 
having certain properties. (p. 10) 
No sooner had Russell offered this suggestion than he retracted it for what we today would 
regard as quite spurious reasons (the definition did not provide for the existence of models
—this from a critic of the ontological argument!—and you could not account for ordinary 
counting on the proposed interpretation),16 and pursued the Fregean absolutist line 
(cardinal numbers as definite classes of equinumerous concepts or classes), only to 
encounter various problems and paradoxes leading to the abandonment of classes. In the 
end, we find this remarkable suggestion concerning logical and mathematical propositions 
generally: 
We may thus lay down, as a necessary (though not sufficient) characteristic of logical or 
mathematical propositions, that they are to be such as can be obtained from a proposition 
containing no variables … by turning every constituent into a variable and asserting that 
the result is always true or sometimes true. … logic (or mathematics) is concerned only 
with forms. …" ([32], p. 199) 
When we consider that relations (propositional functions) as well as individuals count as 
"constituents" of propositions, then we realize that this criterion is met by formulating 
mathematics in higher-order logic without constants. In fact, second-order logic suffices. In 
the case of number theory, for example, an ordinary statement A naturally goes over to a 
conditional of the form 

 R [ PA2 → A] (S/R), 

in which "PA2" stands for the conjunction of the (Dedekind-) Peano axioms and "S/R" 
indicates systematic replacement of the successor constant with the relation variable "R" 
throughout. (Here "0" can be dropped because it is definable from successor.) If A is 
logically implied by the axioms, this is a truth of second-order logic; if not the result of 
replacing "A" with "¬A" is, in light of Dedekind's 
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categoricity theorem.17 Even better, taking the predicate "number" into account as 
suggested, and generalizing, we obtain 

 X  R [PA2 → A]X (S/R), 

where the superscript indicates relativization of all quantifiers to domain X. Thus, Russell 
has come full circle (at least "up to negation!"), for this is just the general interpretation 
"through variables" that he had suggested and dismissed at the outset. (But no matter. 
Russell eventually got there.) It is already a kind of structuralist interpretation, expressing 
that truths of arithmetic are what hold in any progression whatever. Formulated as it 
stands, however, it is inadequate, for suppose there are no progressions; then all such 
conditionals are vacuously true, regardless of the content of A. A better plan is to construe 
the generalization "always true" modally (i.e., as meaning "in any progression there might 
be, logically speaking"), prefixing the last displayed formula with a necessity operator 
("□"). Then, to avoid vacuity, we may categorically lay down 

  X  R [PA2]X (S/R), 

affirming the logical possibility of a progression, which of course is compatible with the 
actual absence of any. The same plan works for the real number system, for the complexes, 
for cumulative hierarchies of sets (characterized by cardinality of Urelemente and ordinal 
height), and, indeed, for any mathematical structure categorically characterized by second-
order axioms. (For noncategorical theories—as, for instance, in abstract algebra—the result 
is incompleteness, but that is as it should be. Of course, more specific types of structures—
e.g., transitive permutation groups of a given order, and so on—can be treated.) So far we 
have the basic plan of modal-structural interpretations of mathematical theories (the 
conditionals forming the "hypothetical component," the possible existence claims forming 
the "categorical component").
The background logic is second-order, with quantified S-5 modal logic, without the Barcan 
formula.18 However, care must be taken in formulating second-order logical 
comprehension. In a modal context, unrestricted comprehension leads to intensions, 
transworld classes and relations. For example, suppose 
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the predicate "planet" is available; then we would generate a class not merely of existing 
planets, but also of those together with "any that might have existed." That is, we would be 
recognizing possibilia. (Notice that this follows even if the class quantifier is understood as 
a plural quantifier.) In general, we would be quantifying over relations, not merely relating 



objects in the actual world or in any hypothetical one being entertained, but across 
worlds.19 In particular, we would generate a universal class of all possible objects, and 
corresponding universal relations among possibilia, directly violating the extendability 
principle (modally understood, appropriately, as "Any totality there might be, might be 
extended"). Ordinary mathematical abstracta seem tame compared to such extravagances; 
indulging them would deprive MS of much of its interest as a distinctive program. To 
avoid such commitments, therefore, an extensional version of comprehension is chosen: 

(Logical Comp) □  R  x 1  … x n  (R(x 1  … x n ) ↔ Φ), 

where Φ lacks free "R" and is also modal-free. Note that the universal quantifiers are not 
boxed. In effect, (n-tuples of) individuals form collections and relations only within a 
world, not across worlds. (Officially, of course, neither worlds nor possibilia are 
recognized.)
This leaves us, however, with a level of abstract classes and relations or Fregean concepts 
as second-order entities. This can be dispensed with, however, by appealing to a 
combination of mereology and plural quantification, provided (the possibility of) an 
infinity of individuals is assumed. This itself can be expressed using mereology and plural 
quantifiers, for example, by 
(Ax ∞) There are some individuals one of which is an atom and each of which, combined 
with an atom not part of it, is also one of them, 
where an atom is an individual without proper parts. Given this, one can get the effect of 
ordered pairing of arbitrary individuals,20 and this effects a reduction of polyadic second-
order quantification to monadic, which itself can be interpreted plurally. Thus, the relation  
quantifier in the above second-order comprehension scheme can be replaced with a class  
quantifier. Also, Φ can contain the part-whole relation of mereology.
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Completing the core system is a "comprehension" scheme of mereology itself, 
guaranteeing the whole ("sum," or "fusion") of any individuals satisfying a given (non-
null) predicate: 

(∑ Comp)  x Ψ(x) →  y z [ y ∘ z ↔ u (z ∘ u & Ψ (u))], 

where "∘" "overlaps" is defined via "part of", <, as x ∘ y ↔ v(v < x & v < y); and, in Ψ, 

monadic second-order variables are allowed, free or bound. Thus formulated, MS is 
ontologically neutral to this extent: any objects whatever may stand in relevant structural 
relationships so long as it makes sense to speak of wholes, or of pluralities, of them, which 



is all that this machinery requires. In particular, a physical or spatiotemporal interpretation 
of "part-whole" is not required.21 
This framework turns out to be surprisingly powerful. On the assumption of (the possibility 
of) just a countable infinity of atoms, not only can the modal existence of progressions (or 

-structures) be derived, but by repeated use of plurals and mereology, full, polyadic 
classical third-order number theory, equivalently second-order analysis, can be recovered. 
If one postulates the possibility of a continuum of atoms, this can be pushed up to fourth-
order number theory. Even second-order is already rich enough to represent vast amounts 
of ordinary mathematics, yet there is no use of set-membership or even an abstract 
ontology of classes and relations. Structures and structural relations are gotten at indirectly; 
set-theoretic and higher-order logical constructions can be encoded by talk of pluralities 
(invoking pairing for relations), but without actually reifying structures or relations. We 
have a "structuralism without structures."
We have now provided answers to the questions under (1) for MS in some detail. 
Concerning (2), assertory axioms, the initial Axiom of Infinity (Ax ∞) and the displayed 
comprehension schemata form the core system, to which can be added more specific 
modal-existence claims for particular kinds of structures. That for -structures is already 
derivable from (Ax ∞) and instances of comprehension, as can even the modal-existence of 
continua or -structures, obtained by following well-known classical constructions (e.g., 
via Dedekind cuts). For atomic -structures, with reals as atoms, however, further 
postulation is necessary. Similarly, further postulates are needed for structures of higher 
cardinality (e.g., for Zermelo set theory and beyond). It should also be mentioned that the 
unicity (uniqueness up to isomorphism) of - and -structures is also derivable in the core 
system.
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As to (3), this version of structuralism is thoroughly eliminativist, as already described.22 

Concerning what distinguishes mathematical from other structures, the same second-order 
logical criterion mentioned in connection with SGS is available (appealing to translation 
via plurals).
Concerning (4), MS is uniquely explicit in distinguishing mathematical existence from 
ordinary existence. Zermelo spoke of the former as "ideal existence," an idea similar to the 
notion of logical possibility. By bringing this to the fore, however, MS permits explicit 
principles of extendability of (pluralities of) structures (which Zermelo [35] articulated for 
models of set theory), but without generating any universal classes of structures or 
structural objects (as arise in SGS and in a straightforward second-order logical 
formalization of Zermelo [35] as well), due to the natural limitations set by extensional 
second-order comprehension. It simply makes no sense to speak of a collection or plurality 
of all structures or items in structures that there might be. (This builds on the more 



mundane fact that, on an ordinary understanding of "collecting," you cannot actually 
collect anything which only might have existed.)
As to (5), MS is distinguished from other versions in eliminating the need for reference to 
mathematical structures, since it is only possibilities of structurally interrelated objects that 
are entertained, and these are given by general descriptions. Ordinary designators (e.g., 
numerals) occurring in everyday use can be accounted for in various ways, (e.g., as 
indicating relevant places in structures; as convenient devices in counting, measuring, and 
computing); as introduced in mathematical reasoning modulo the assumption of (the 
possibility of) a structure of a given type (e.g., -structures), following the logical move of 
existential instantiation, and so forth. But the usual puzzles (and "bad questions") 
concerning Platonistic reference to abstracta do not arise.
The real challenge for MS lies in the last question, concerning epistemic access, not in this 
case to structures themselves—since these are eliminated on this interpretation—but with 
respect to the possibilities of structures. What sort of evidence can we have for the various 
modal-existence postulates arising in mathematics, as illustrated above? Of course, we may 
gain evidence of formal consistency of the associated axiomatic systems (including various 
strong forms of consistency, such as ω-consistency), even if we cannot have a finitistic 
proof in the central cases of interest. But the second-order machinery of MS is adopted so 
that standard models of theories (e.g., number theory, analysis, set theories) will be 
describable, and the possibility of these is not guaranteed by formal consistency claims. It 
seems that we must fall back on indirect evidence pertaining to our successful practice 
internally and in applications, and, perhaps, the intuitive pictures and ideas we have of 
various structures as supporting the coherence of 
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our concepts of them. Perhaps that is the best that any version of structuralism can hope 
for. We will return to this below, when we come to address some specific challenges that 
have been raised for MS.
Turning briefly to the problems (i)-(v) raised above, it should be clear that none of them 
affects MS. Set theories are interpreted structurally, and questions about "the real world of 
sets" do not arise. Multiple structural possibilities are allowed for, including full "power 
sets"; less-than-full-power sets; well-founded domains; non-well-founded; and so on. 
Extendability principles are explicitly part of the interpretation of set theory, leading to the 
"small" large cardinals (inaccessible, hyper-inaccessible of all orders, Mahlo, n-Mahlo, 
etc.). And, as explained, extensional comprehension does not permit recognition of 
maximal totalities such as that of "all possible structures." Finally, the whole thrust of MS 
is to avoid postulating special abstract objects, so the puzzles concerning "places" and 
"purely structural relations" do not arise. The MS route to "abstractness" consists not in 
attempting to introduce "featureless objects," but in simply not building into the 



descriptions of hypothetical structures anything beyond what is of mathematical interest. 
Benacerraf's puzzle is solved by accepting his conclusion: numbers as objects are officially 
eliminated, although number-words can be introduced as aids in computation and 
reasoning. Finally, regarding (vi), MS is as explicit as any version regarding its 
assumptions.
The main new problem for MS is reliance on primitive modality (call this (vii)), analogous 
to SGS's reliance on the primitive "coherent." One would like a formal criterion for these 
notions, but that is not to be hoped for, and the approach confronts the epistemological 
questions broached above.
Space permits us to consider, briefly, only the core Axiom of Infinity (Ax ∞), which, with 
the MS machinery (as already explained), suffices for the vast bulk of ordinary 
mathematics.
The possibility of a countable infinity of objects seems so entrenched in, and indispensable 
to, our scientific and mathematical thinking that it is difficult to argue against the skeptic. 
Intuitionists who insist on human mental constructions of course cannot be satisfied 
because, of course, we have only finite resources to work with and can work only so fast. 
From the classical MS perspective, the issue of supertasks is entirely beside the point. As 
Hale recognized [16], it is the ready conceivability of situations in which infinitely many 
mind-independent objects exist that we naturally appeal to if pressed. Of course, the 
Platonist can claim, in a variety of ways, that our present situation is such, since, for 
instance, a proposition p exists and, for every proposition q, the statement "It is true that  
q" expresses a proposition, distinct from q (Bolzano); or that some object o is given, and 
that for any object a, the singleton of a exists and is distinct from a (Zermelo), and so on.
But nominalists are not deprived of the possibility of infinities just for not going along with 
propositions, sets, and such. It is sufficient if, for example, it could be the case that there is 
a moment of time and that for every moment of time there is a later one (perhaps forming a 
convergent series), or—as Dummett concedes to 
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be perfectly intelligible—that there be stars such that, for any one of them, another one 
exists some further distance away, and so on. Now, in examining the move from 
conceivability to possibility, Hale [16] explicitly distinguishes between requiring that the 
conceived situation be one in which it could be verified that there are infinitely many 
things—a condition he (rightly) regards as too strongly verificationist—and requiring 
rather that the conceived situation be one of which it can be recognized that, were it to  
obtain, there would indeed be an infinity of things. The latter can be satisfied if a 
sufficiently detailed description is available from which it can (here, in our world) be 
inferred that an infinity exists wherever the description holds whereas the former might be 



quite impossible without supertasks. And it is the latter requirement that is to govern, 
according to Hale ([16], 137-138).
So what, then, is wrong with the appeal to moments of time, stars, and such, as above? Our 
descriptions straightforwardly entail the existence of infinitely many things in those 
situations, and Hale seems to grant the possibility that those descriptions could hold. We 
certainly can see the entailment of infinity, right here and now. It appears that, several 
pages later, however, there is a slide in Hale's discussion back to a verificationist 
requirement, for he writes that "the imagined situation would have to be given by a 
description of which we could tell … that, were it to be satisfied, this would mandate 
acceptance of a theory which entails the existence of a completed concrete ω-sequence" 
([16], 145, my emphasis), and just prior to this he writes that only ordinary tasks are 
relevant in assessing an imagined situation "as being one of which we could recognize that, 
were it to obtain, a concrete ω-sequence would exist" (ibid., my emphasis).23 Then, not 
surprisingly, the MS appeal to situations in which there is always a later moment of time or 
another star further away, and so on, will be found wanting. It seems that, after all, we 
would have to be able to determine such things in the imagined situations, in a strong sense 
(e.g., have evidence that could not be explained on a strictly finitistic basis). It seems that 
the red herring of supertasks is again out of the jar.
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A further criticism sometimes leveled against MS concerns its use of second-order logic. 
There are two interrelated parts to this: first, second-order logic, in its intended sense, is 
not formalizable; and, second, this reflects the fact that a substantial amount of 
mathematics is thus presupposed, raising the specter of circularity. In reply, the first point 
is correct and is a corollary of Gödel's incompleteness theorems (in the context of 
Dedekind's categoricity of the Dedekind-Peano axioms). It is the price paid for the gain in 
expressive power along with the failure of logical compactness. In seeking a systematic  
formulation of structuralism, however, one is not attempting to formalize all of  
mathematics. The advantages of explicitness and clarity concerning one's assumptions 
speak for themselves, despite the unattainability of completeness. Indeed, the open-
endedness and extendability of mathematics are reasons enough to forgo the latter aim. 
Moreover, concerning the second part of the criticisim, there is no need to insist on an 
absolute distinction between logic and mathematics, for MS does not seek a reduction of  
mathematics to logic in anything like the traditional sense(s) (e.g., to demonstrate the 
"analyticity" of mathematics). It should be granted that some core mathematical content 
must be built into one's primitive notions if structuralism is to be articulated at all. Indeed, 
the notions of "arbitrary plurality" of infinitely many objects and "arbitrary part" of an 
infinitude of atoms are inherently mathematical, as the work they can do in the detailed 
development of MS makes clear. Nevertheless, it should be emphasized that no primitive 



notion of "relation" or "function" is needed: as noted above, monadic plural quantification, 
combined with mereology, enables a reduction of polyadic second-order quantification 
(i.e., of a full theory of relations). This is a nontrivial gain vis-à-vis versions of 
structuralism which presuppose "set-membership" or "function" or "relation." The claim 
would be that while far-reaching in their mathematical import, the notion "some of these 
things," in the plural sense, and that of "part of a whole" of pairwise discrete things, are 
accessible to us in ordinary contexts and not special to mathematics. Moreover, surely 
plural quantifiers belong to logic in a general sense, even if mereology's status remains 
moot. Thus, MS could be said to establish a partial logicism, less ambitious than the full 
program, to be sure, but significant nonetheless.
Other criticisms of MS have been offered, especially in connection with applications of 
mathematics, an issue that space has not permitted us to deal with in this chapter.24 In 
general, structuralists are well-positioned to treat applications because these are naturally 
understood in terms of full or partial instantiation of 
end p.559

mathematical structures by material systems, or, in some cases, just via mappings between 
these. As an eliminativist version, MS does require some artful maneuvering to express 
relevant relationships between material systems and hypothetical objects that merely might 
form mathematical structures (e.g., -structures, -structures, the various spaces of 
analysis, etc.). But the methods worked out in ([17], ch. 3), together with improvements 
from [7], I believe, essentially solve this problem.

6.  Summation

Our comparative investigation thus far can be summarized in the following table, most of 
which should now be self-explanatory (a check means that the objection applies; the goal is 
to "draw a blank"):

 STS SGSCTSMS
(i) Sets exceptional √ — — —
(ii) Maximal totalities √ √ ? —
(iii) Possibility of gross error √ — — —
(iv) "Places" as objects — √ — —
(v) Purely structural relations?— √ — —
(vi) Underspecification — — √ —
(vii) Primitive modality ? (informal)√ ? √



The reason for the "?" in the last row under STS has to do with various informal appeals to 
possibility in motivating certain points of the theory (e.g., starting with the null set; 
explaining power sets, via all possible ways of selecting; and motivating largeness 
conditions, "… the hierarchy go[es] on as long as possible").25 
As anticipated, none of the approaches is free of problems. But the paucity of checks in the 
last two columns encourages us to seek some kind of synthesis of CTS and MS. This is in 
fact achievable, with the effect of removing the check under CTS (vi) while replacing the 
"?" under (ii) with a blank and replacing that under (vii) 
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with a check. Instead of relativizing CT to background universes of sets, one can introduce 
hypothetical large domains (corresponding to inaccessible cardinalities) merely by 
employing the language of mereology and plurals, as in MS; CT can be carried out relative 
to such domains, any one of which will also support many topoi, incorporating the 
relativity that Bell has described as well (resulting in an overall double relativity).26 At the 
same time, set theory itself can be developed structurally, relative to such domains. 
Extendability principles can readily be formulated and adopted applying to these domains, 
and the same considerations that ensure a blank under (ii) for MS carry over. Puzzles about 
proper classes in set theory and large categories in category theory are handled in parallel 
fashion, by relativization to large domains (recovering, for set theory, Zermelo's method, 
and for CT, the Grothendieck method of universes). If we are right, use of modal notions is 
the price we must pay if we are to have a well-specified structuralism which respects the 
indefinite extendability of universes of discourse for mathematics.
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18. Structuralism Reconsidered
Fraser MacBride 

1. Introduction

The properties and relations that perform a role in mathematical reasoning arise from the 
basic relations that obtain among mathematical objects. It is in terms of these basic 
relations that mathematicians identify the objects they intend to study. The way in which 
mathematicians identify these objects has led some philosophers to draw metaphysical 
conclusions about their nature. These philosophers have been led to claim that 
mathematical objects are positions in structures or akin to positions in patterns.
Let us retrace their route from (relatively uncontroversial) facts about the identification of 
mathematical objects to high metaphysical conclusions. Begin with the natural numbers. 
How are they identified? The mathematically significant properties and relations of natural 
numbers arise from the successor function that orders them; the natural numbers are 
identified simply as the objects that answer to this basic function. But the relations (or 



functions) that are used to identify a class of mathematical objects may often be defined 
over what appear to be different kinds 
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of objects. The successor function, for example, may be defined over real numbers, 
Zermelo ordinals (etc.). It follows that the identification of mathematical objects in terms 
of their basic relations fails to settle whether mathematical objects of one kind (natural 
numbers) are identical to or distinct from objects of an apparently different kind (real 
numbers, Zermelo ordinals). The identification of mathematical objects in terms of their 
basic relations also fails to establish what, if any, intrinsic features mathematical objects 
possess. The natural number 2 is not picked out by any intrinsic features it may have. 2 is 
identified only by its relation to other natural numbers—the fact that it is the successor of 1 
and succeeded by 3 (etc.).1 
The fact that mathematical objects are identified in terms of their basic relations leaves the 
mathematician unable to answer certain questions: whether mathematical objects of one 
kind are identical to objects of a different kind, or what intrinsic features mathematical 
objects possess. This suggests that the mathematician's knowledge of mathematical objects 
is essentially incomplete, that there are aspects of mathematical reality—the identity of its 
objects, their intrinsic features—that lie ineluctably beyond the bounds of mathematical 
inquiry. But this is not the only way to interpret the mathematician's inability to answer 
certain questions. For perhaps it is not the mathematician's knowledge that is incomplete 
but the mathematical objects themselves: it is not ignorance that hinders the mathematician 
from settling whether 2 is {{Ø}}; it is the very absence of answers to such questions. It is 
to make sense of this idea—the idea that mathematical objects are incomplete in re—that 
some philosophers identify (or compare) these objects with positions in patterns or 
structures.
The most extended and influential elaborations of the claim that mathematical objects may 
be fruitfully compared or identified with positions in patterns or structures are to be found 
in Michael Resnik's Mathematics as a Science of Patterns and Stewart Shapiro's 
Philosophy of Mathematics: Structure and Ontology (hereafter MSP and PMSO, 
respectively).2 For the purpose of assessing whether 
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such conceptions of mathematical objects may be sustained, the (incompatible) views of 
Resnik and Shapiro will be explored and evaluated in turn.

2. Resnik on Ontology and Incompleteness



According to Resnik, the incompleteness of mathematical objects is to be enthusiastically 
embraced, simply a predictable and intelligible consequence of the fact that mathematical 
objects are akin to positions in patterns. He offers two complementary considerations in 
favor of this view.
Here is the first. Take an equilateral triangle ABC (MSP, pp. 202-203). Relative to this 
triangle, the points A, B, and C may be distinguished. But now ask yourself, Do these 
points—conceived in isolation from the triangle—enjoy any features that distinguish them 
from one another or, indeed, from any other points? Resnik recommends the answer: no: 
our intuitions speak in favor of the view that geometrical positions lack any features other 
than those that relate them to the other positions in the patterns they inhabit. Now take the 
corner A of a right triangle and the corner A* of a rectangle (MSP, pp. 210-211). Ask 
yourself, Is A identical to A*? Again Resnik answers: no: our intuitions simply deliver no 
verdict on this question. He surmises that positions (points) in geometrical patterns are 
incomplete objects—they lack intrinsic features and there is no "fact of the matter" 
concerning whether they are identical to or distinct from positions drawn from different 
patterns (or, indeed, any other kind of object). Resnik then proposes that mathematical 
objects themselves be conceived as positions in patterns—the natural numbers, for 
example, as positions in the natural number sequence. From this perspective it then appears 
that there is no more mystery to mathematical objects being incomplete than there is a 
puzzle concerning the incompleteness of geometrical points: 
But what would strike one as a problematic oversight if one thought of mathematical 
objects along the lines of ordinary objects, seems quite natural when it comes to positions 
in patterns. For restricting identity in the same pattern goes hand in hand with their failure 
to have any identifying features independently of a pattern. (MSP, p. 211) 
Here is the second consideration that Resnik offers in favor of the incompleteness of 
mathematical objects. Is there is any mathematical evidence that speaks for or against the 
identity of (e.g.) the natural number 1 and the real number e? According to Resnik, there is 
no (local) mathematical evidence that could be adduced in favor of identifying or 
distinguishing between objects drawn from 
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different mathematical structures, no novel theorem that could finally settle whether the 
natural numbers are real numbers, whether the real numbers are sets, and so on (MSP, pp. 
219, 246, 269-70). It is out of respect for this feature of mathematical practice that Resnik 
disavows facts of the matter concerning the identity or character of mathematical objects 
that transcend the capacity of mathematics to settle. Resnik describes his "epistemic turn" 
in the following terms: 



Epistemology enters the picture through motivating my disclaiming these facts: since 
nothing mathematics countenances would fix these facts if we countenanced them, I have 
opted for denying that there is anything to be decided, instead of enlarging the notion of 
evidence applicable to the putative facts. (MSP, p. 270) 
Resnik, then, is unwilling to countenance the possibility that the truth-values of sentences 
that affirm the identity of objects drawn from different structures (or ascribe extrastructural 
features to them) are irresolvable and inscrutable, in principle inaccessible to the best 
techniques of mathematical research (MSP, pp. 89, 219, 244, 248). So to avoid this kind of 
transcendental realism Resnik denies such sentences are either true or false, and modifies 
his logic to embrace the possibility that these sentences may be neither true nor false. Any 
impression we may have to the contrary is generated, Resnik suggests, by the fact that 
other sentences of the same grammatical form that identify positions drawn from the same 
pattern are either true or false. The view that emerges from these reflections has it that 
within a mathematical theory, classical logic obtains, each sentence being either true or 
false. But if attempts are made to frame identities between objects that are described by 
different theories, or to employ predicates from one theory to describe objects drawn from 
another theory, then excluded middle fails (MSP, pp. 245-246, 257).3 
Resnik endeavors in this way to place the incompleteness of mathematical objects in 
perspective, a perspective from which it no longer appears troublesome that these objects 
lack internal features or determinate identity conditions. It is tempting to conceive Resnik's 
project as an attempt to provide thereby a novel ontological foundation for mathematics, a 
foundation in positions and patterns. To feel the pull of this interpretation, just read the title 
of his book. Or consider the declaration "Mathematics is a science of patterns with 
mathematical objects being positions in patterns" (MSP, p. 199; see also p. 9). But it would 
be a mistake to fall prey to the temptation. Resnik resists any ontological foundationalist 
reading of his structuralism (MSP, pp. 222-223, 258, 272-273). He seeks only to 
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provide "another way of viewing numbers and number theory" that places the problems 
that confront the understanding of numbers and number theory "in a clearer light." The 
idea that mathematical objects are positions in patterns may even be "a ladder ultimately to 
be kicked away," part of an "analogy" that—for one reason or another—"must be given 
up" (MSP, p. 261).
It is critical to a proper appreciation of Resnik's philosophy of mathematics that these 
remarks not be dismissed as coy disclaimers. They reflect the deep character of Resnik's 
enterprise and his conception of mathematical practice. To make progress toward a proper 
appreciation of this somewhat surprising fact, consider again the geometrical examples that 
Resnik employs to convince us that there is nothing intrinsically problematical about 
incomplete objects (whether they be points or numbers). Your responses may well have 



been different from those that Resnik predicted. You might have responded to the 
questions raised that the geometrical examples given are underdescribed, that we have yet 
to be supplied with sufficient information to determine whether, for example, A = A* or 
not. You might have said, It's not indeterminate whether A = A*, it's epistemologically 
underdetermined; we just don't know whether A = A* or not, so there's no reason to think 
that geometrical points are ontologically incomplete in some way that is credible or 
intelligible to the understanding. The way in which Resnik responds to this concern is 
highly revealing.
The counterintuition that the identity of A and A* is left epistemologically underdetermined
—rather than indeterminate—presupposes that geometry is the theory of a single space, a 
space where each point enjoys a unique location and consequently there is a determinate 
fact of the matter concerning the identity of each point (MSP, p. 210). But geometry might 
have developed differently without commitment to a single space that brings each point 
into a determinate relation with every other. Instead, geometry might have developed as a 
collection of theories of shape without commitment to a single space of points, but only to 
a collection of spaces, a space for the positions of each shape so introduced. Then it would 
be indeterminate whether the points from one space were identical to the points drawn 
from another space. In fact, Resnik claims, this is just the situation that arises in 
mathematics. Number theory and analysis introduce, respectively, the positions in the 
natural number structure and the positions in the real number structure. But neither number 
theory nor analysis evinces a commitment to a common universe of positions such that 
there is a determinate fact of the matter concerning whether, for example, the natural 
number 1 is the real number e.
From a cursory reading one might be forgiven for thinking that Resnik's view derives from 
an act of intuitive insight into the ontological character of geometrical points. But, as we've 
just seen, this would be wrong. It is not geometrical intuitions—an intuitive appreciation of 
what it is to be a position in a geometrical pattern—that ultimately underwrites Resnik's 
view that mathematical objects are incomplete. It is, rather, an interpretation of 
mathematical theories, an interpretation 
end p.567

according to which mathematical theories are neither ontologically committed to a 
common domain of discourse nor ideologically committed to a universally applicable 
identity predicate. It is true that Resnik has avowed an epistemic turn. But it is now evident 
that he has also taken a "linguistic turn," a transposition of intellectual key that plays no 
less of a role in legitimating Resnik's conception of mathematical objects. And it is a way 
of thinking about mathematical objects that does not rely upon commitment to a favored 
ontology of positions or patterns; it results from an appreciation of the manner in which 
mathematical objects are introduced into discourse by the theories that denote them.



Unfortunately, the way in which Resnik conceives of mathematical theories threatens to 
conflict with mathematical practice. This is because the mathematical properties of a 
domain of objects d will often be graspable only when d is embedded within a larger 
domain d* (Kreisel [1967], p. 166). Therefore mathematicians are very often obliged to 
establish isomorphisms or, more generally, embeddings between the objects described by 
different mathematics theories in order to establish results that would otherwise be 
unobtainable (consider, for example, the embedding of the integers in the complex plane). 
But as we have just seen, Resnik denies that different mathematical theories enjoy a 
common universe of discourse. He also endorses the usual assumption that there cannot be 
an embedding between objects unless they belong to a common domain (MSP, p. 211). 
Consequently Resnik cannot admit any embedding between the domains of different 
theories (d, it appears, cannot be embedded in d*).
In the same way, Resnik cannot admit any significant set-theoretic or category-theoretic 
reduction of mathematical objects. In these reductions the pattern or structure of the objects 
characterized by one theory (e.g., the natural number structure) is usually identified with an 
object (e.g., ω) in another theory. But Resnik is not in a position to admit such identities. 
Not only does he deny the intelligibility of identities between the domains of different 
theories, he also denies that mathematical theories typically denote the structure their 
objects exhibit; typically they do not even "countenance" the existence of such structures 
(MSP, p. 211). For example, Peano Arithmetic refers to and quantifies over the natural 
numbers but does not name or quantify over the natural number structure itself. Similarly, 
set theory quantifies over sets but not over the set-theoretic hierarchy. Resnik therefore 
offers the following picture of existential commitment: whereas a mathematical theory is 
existentially committed to the positions (the numbers, the sets) that lie within a structure, it 
is not committed to the existence of the structure that prima facie encompasses these 
positions (the natural number structure, the set-theoretic hierarchy). But this appears to 
leave him unable to countenance the identification of the structure of the objects 
characterized by a mathematical theory with a set-theoretical object.
Resnik strives to overcome these apparent clashes with mathematical practice by 
employing what I will dub the "replacement strategy" (MSP, pp. 214-219, 222, 
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246-248). It can hardly be denied that mathematicians establish embeddings and 
isomorphisms between different collections of objects. So Resnik denies, instead, that 
mathematicians establish embeddings or isomorphisms between the domains of distinct 
theories. We are in the grip of a picture according to which the mathematician begins with 
two independent theories, t and t*, and then establishes an embedding of the domain d of 
the former theory in the domain d* of the latter. But Resnik wishes to reject this picture of 
mathematical practice, to loosen its grip upon us. According to Resnik, the embedding 



takes place not between d and d*, but between the subdomains Δ and Δ* of the larger 
domain of a novel theory θ. His idea is that the embedding of one collection of objects in 
another makes sense only because the mathematician replaces two theories between whose 
domains there is no intelligible mathematical connection with a new theory that subsumes 
collections between which such a connection can be made out. What is critical from 
Resnik's point of view is that there "would be no fact of the matter as to whether the old 
and new theories had the same ontology" (MSP, p. 219).4 The mathematician has simply 
replaced old theories with a new one and there can be no embeddings or isomorphisms 
between the domains of distinct theories.
Turning to the set-theoretic case, it can hardly be denied that mathematicians identify some 
structures with sets. But it can be denied that the structures in question are the structures of 
collections of objects characterized by theories that are developed outside the aegis of set 
theory. There can be no fact of the matter concerning whether the natural number structure 
described by number theory is an object of another theory (e.g., the set ω). Nor, indeed, can 
there be a fact of the matter concerning the identity of the objects denoted by number 
theory with the objects that pass for "natural numbers" in set theory. But, applying the 
replacement strategy, there can be a fact of the matter in the set theory that replaces (or 
supersedes) number theory concerning whether the "natural numbers" in its domain form a 
particular set.
Resnik's conception of how the domains of different theories relate not only threatens to 
conflict with mathematical practice, it also threatens to conflict with his own philosophical 
theorizing (MSP, pp. 248-250). According to Resnik, there is no fact of the matter 
concerning whether the structure or pattern a mathematical theory describes is an object or 
an entity of any other kind. Nevertheless, Resnik continually treats mathematical patterns 
as objects. He refers to them, quantifies over them, and applies predicates to them 
throughout the course of his study. Consider, for example, his definition of the subpattern 
relation: "A pattern P is a sub-pattern of another pattern Q just in case P occurs within Q 
and every position of P is a position of Q" (MSP, p. 206).
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Resnik's response to this difficulty provides further insight into his denial that patterns 
provide any kind of ontological foundation for mathematics. Resnik admits that a 
mathematically rigorous theory might be developed that would refer to and quantify over 
patterns and their positions in very much the same way that set theory quantifies over sets 
and their members (MSP, pp. 249, 254-257). But the utility of developing a mathematical 
theory of patterns would be questionable. For one thing, it is doubtful whether such a 
theory would constitute any mathematical advance over set theory or category theory. 
More significantly, no pattern theory could be foundational in the sense of revealing the 
kinds of things that mathematical theories had been talking about all along. Why? Well, 



because a mathematical theory of patterns would be just one more theory among others. So 
there would be no fact of the matter—from Resnik's point of view—concerning whether 
the patterns and positions quantified over by the envisaged theory were identical to or 
distinct from the structures and objects characterized by mathematical theories already 
established. It is for this reason that Resnik cannot accept a foundationalist reading of his 
slogan that mathematical objects are positions in patterns. It is a consequence of his own 
denial—the denial that distinct theories ever share a common domain—that Resnik is 
constrained to claim no more than an "analogy" between mathematical objects and 
positions in patterns. He can claim no more than that mathematics "treats the numbers as if 
they were positions in a pattern" (MSP, p. 250; my italics).
What assessment, then, is to be made of Resnik's "structuralism"? At first glance it may 
appear that his position admits of refutation. According to Resnik, there is no fact of the 
matter concerning whether the natural number 2 is identical to or distinct from the real 
number 2 (since these numbers are introduced by distinct theories). So, according to 
Resnik, it is indeterminate whether 2 natural  = 2 real . But it appears self-contradictory to 
assert that there are objects such that it is indeterminate of them whether they are identical 
or distinct. Here's the reason. Suppose that it is indeterminate whether 2 natural  = 2 real . Then 
2 natural and 2 real differ with respect to the property of being determinately identical to 2 natural 

(2 natural has that property, whereas 2 real lacks it). Since 2 natural and 2 real differ with respect to 
this property, it follows by contraposition on Leibniz's Law (if x = y, then x and y share all 
the same properties) that 2 natural  ≠ 2 real .
This objection to Resnik's position should have a familiar ring to it. In fact it is a version of 
Evans's famous argument against vague objects. Chihara has also independently advanced 
a version of the argument targeted specifically against Resnik (Evans [1978]; Chihara 
[1990], p. 143). Unfortunately, it is an objection that cannot be logically decisive. 
Arguments of this kind presuppose the rules of classical logic. For example, the 
Evans/Chihara argument sketched here presupposes the rule of contraposition. But, as has 
become all too familiar from the vagueness debate, proponents of indeterminate identity all 
too often reject classical 
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logic, in particular the rule of contraposition in contexts involving an indeterminacy 
operator.5 
This does not mean that another version of this argument might not be given, one that does 
not rely upon the questionable use of Leibniz's Law. For example, the Evans/Chihara 
argument relies upon the principle that if a and b have different properties, then a ≠ b. This 
principle—sometimes called the Diversity of the Dissimilar—is derived by contraposition 
from Leibniz's Law. If, however, we are willing to entertain the Diversity of the Dissimilar 
as a logical principle (or, at least, a highly compelling principle) in its own right, then the 



argument can easily be rewritten so as to obviate the questionable use of contraposition. 
Simply assume the Diversity of the Dissimilar as a premise and forget about deriving it 
from Leibniz's Law. But the package of views to which Resnik is committed—his denial 
that identity is everywhere determinate, his disavowal of any domain shared among 
theories—runs counter to the Diversity of the Dissimilar along with many other 
presuppositions of classical reasoning. It is correspondingly doubtful whether a refutation 
of Resnik's system of beliefs might be constructed that is compelling by the lights of both 
Resnik and his opponents.
In a way this should come as no surprise. As an advocate for classical logic might put the 
point: if someone refuses to employ reason, then, of course, it's going to be difficult to hit 
upon an argument that persuades him of much about anything. Nevertheless this suggests 
another means of taking the attack to Resnik, an attack that does not threaten to become 
bogged down in discussion of what counts as logic. Resnik cannot accept that certain rules 
of inference or certain "logical" principles are compelling because there are other things he 
refuses to say (for example, that 2 natural  = 2 real or 2 natural  ≠ 2 real). But it may be that this 
refusal prevents Resnik from sayings other things that really need to be said. So Resnik's 
position may admit of pragmatic confutation even if it cannot be logically refuted.
It is to avoid confutation of this kind that Resnik adopts the replacement strategy. He 
refuses to allow that there can be any embeddings between the domains of distinct theories. 
But mathematicians appear to say that there are such embeddings. To avoid this pragmatic 
clash, Resnik reinterprets what mathematicians are doing so that it coheres with his own 
account.
Unfortunately, Resnik's response to this pragmatic difficulty is hardly credible, certainly no 
more credible than Russell's valiant attempts to accommodate the restrictions imposed by 
the theory of types. If Resnik is correct, then mathematical theories are inherently 
incommensurable in the very sense that will disturb a mathematician most: there can be no 
comparison of the size or structure of their domains unless—behind our backs, as it were—
they are merely passages of a larger theory. (Why? Well, because size and structure are 
established by laying down forbidden embeddings between domains.) As a consequence, 
each novel 
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embedding between theories signals a Kuhnian paradigm shift, the dawn of a new theory 
that subsumes the embedding in question, and the history of mathematics is a succession of 
Kuhnian revolutions of this kind. But this cannot be right; this picture belies the underlying 
rationality of mathematical practice. What sense can be made of the fact that 
mathematicians choose to replace two or more old theories with a new one? The only 
answer that appears to be available is this: because of the embeddings that obtain between 
the domains of these different theories and the novel theory introduced. But Resnik cannot 



say this. From his perspective it appears that each shift in practice is nothing more than an 
arational transition between subjects of enquiry.
It is a further corollary that there can be no intelligible attempt—of the kind that Zermelo 
and Fraenkel undertook—to unify mathematical practice. From Resnik's point of view, any 
attempt to do so will inevitably miss its mark. Any new theory that attempts to comprise 
the subject matters of established theories will simply introduce a domain of its own such 
that there is no fact of the matter concerning whether the objects in this novel domain are 
identical to or distinct from objects drawn from the domains of already familiar theories. 
The attempt to unify will inevitably result only in further fragmentation, never in the 
unification of practice.
These are not the only pragmatic difficulties that threaten to confute Resnik's account. His 
refusal to admit embeddings between domains leaves Resnik unable to say how 
mathematics gains application in the physical world. There is no sterner criticism (short of 
contradiction) to be made of a philosophy of mathematics. As Frege insisted, it is the fact 
that mathematics is capable of gaining application that elevates it from the status of a game 
to the rank of a science (Frege [1893-1903], vol. 2, §91).
Resnik says very little about the applications of mathematics.6 However, it seems, at least, 
that he is committed to something like the following. It is because physical objects 
instantiate mathematical patterns (or segments of them) that the study of mathematical 
objects—objects that are positions in the aforementioned patterns—is capable of 
illuminating the character of the physical realm. For Resnik, instantiation is a special case 
of an embedding (a congruence) between mathematical objects and the physical things that 
exhibit the same pattern, a case where "the objects 'occupying the positions' of a pattern 
have identifying features over and above those conferred by the arrangements to which 
they belong" (MSP, p. 204).
By now it will be clear what problem arises. Since, for example, number theory does not 
include physical objects in its domain, it follows that there cannot be any kind of 
congruence between the natural numbers and physical things. 
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It follows that the natural numbers cannot be instantiated by the physical realm and are 
therefore intrinsically incapable of application. The same goes for other kinds of 
mathematical objects that are introduced independently of physical theory. It is Resnik's 
distinctive claim that mathematical objects are incomplete by nature, incomplete in the 
sense that there is no fact of the matter concerning whether they are identical to or distinct 
from objects of other kinds and do not even belong to a common domain of discourse. 
Insofar as Resnik is correct to say this, he cannot account for the applications of 
mathematics.7 



Is there no "way out" for Resnik? The difficulties confronted so far turn upon the 
assumption (among others) that there can be an embedding between collections of objects 
only if they belong to the same domain. Perhaps, however, this assumption can be put 
under pressure. Consider the usual definition of isomorphism: Fs 1-1 Gs iff R x((Fx→
!y(Gy & Rxy)) & (Gx → !y(Fy & Ryx)). This definition presupposes that the Fs and Gs 
that are 1-1 correlated occupy the same domain of discourse. This presupposition is 
revealed by the fact that the universal quantifier " x" ranges over both Fs and Gs. 
However, it appears that an alternative definition might be offered where the Fs and Gs are 
ranged over by separate quantifiers, and no assumption is made that they belong to a 
common domain: Fs 1-1 Gs iff R x ((Fx→ !y(Gy & Rxy)) & y(Gy → !x(Fx & Ryx)). If 
there is a difficulty that confronts this proposal, it is nothing to do with the absence of facts 
of the matter concerning the identity of the Fs with the Gs. Such facts are not required to 
determine an isomorphism. For this, facts of identity and distinctness are required among 
the Gs and among the Fs—so that it is determined that each F bears R to a unique G and 
each G bears R to a unique F—but not between the Fs and the Gs. If this modified 
definition is tenable, then perhaps there can be isomorphisms (or, more generally, 
embeddings) between distinct domains after all.
Is this a "way out" for Resnik? An answer to this question will depend (in part) on what is 
meant by "relation" and "domain." There is certainly a very permissive notion of domain 
according to which the mere obtaining of a relation provides a sufficient condition for its 
relata to belong to a common domain. But there are also more restricted notions of domain 
that require some privileged kind of relation to obtain between the elements of a domain. 
For example, it is built into the idea of a spatiotemporal domain that the elements that fall 
within a domain of this kind are spatiotemporally related. Any proponents of the "way out" 
we are considering therefore face a substantial challenge. If they wish to allow embeddings 
between distinct domains, then they cannot merely mean "domain" in 
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the permissive sense. But if they mean domain in some more restricted sense, then 
whatever types of relation in fact embed distinct domains, these relations had better not be 
privileged for the kind of domain in question. For example, if the relation R that in fact 
correlates the Fs and Gs is privileged for the kind of domain under consideration, then the 
embedding between the Fs and Gs will indicate that they share a common domain after all. 
Whether appropriate notions of domain and relation—that are neither too permissive nor 
too restrictive—can be made out remains to be seen. This is an area that is too little 
investigated. It is disappointing that Resnik does not subject his own assumptions—
concerning what he means by relation and domain—to scrutiny.
Suppose, however, that Resnik manages somehow to resolve the pragmatic difficulties so 
far considered. Does it follow that he has succeeded in coming to terms with the 



incompleteness of mathematical objects? No. Here is a preliminary indication to the 
contrary. It is usually assumed that it is mathematical objects rather than, say, concrete 
objects that are incomplete. Resnik shares this assumption, maintaining that mathematical 
objects are unlike "ordinary objects," and thus fit to be considered as positions in patterns 
(MSP, p. 211). But there is a tension here. Resnik "accounts" for incompleteness by 
denying any facts of the matter concerning the identity of mathematical objects to other 
kinds of objects drawn from the domains of other theories. But this makes every kind of 
object incomplete. Just as there is no fact of the matter about whether 2 natural  = 2 real , so 
there is no fact of the matter about whether Julius Caesar = 2 natural (indeterminate identity is 
symmetric). Hence ordinary objects turn out to be no less incomplete than mathematical 
objects themselves.8 
Perhaps finessing the kind of incompleteness involved may assuage this concern. Even if it 
transpires that ordinary objects are incomplete in one sense—that of failing to be 
everywhere determinately identical or distinct—it does not follow that they are incomplete 
in another sense—namely, that of failing to possess any intrinsic nature. So long as 
ordinary objects do not turn out to be incomplete in this latter sense, there need be no deep 
objection to the position that says they are incomplete in the former sense.
Yet even if this response is acceptable, there are deeper methodological objections to the 
way in which Resnik treats of the phenomenon of incompleteness. He begins from the 
premise that mathematics recognizes no facts of the matter concerning the identity of 
mathematical objects outside of the domains of the theories that introduce them. He then 
develops a truth-value gap account to accommodate this phenomenon: 
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I would like to add that mathematical realists are not committed to claims about 
mathematical objects beyond those they hold by virtue of endorsing the claims of 
mathematics. Since mathematics recognises no facts of the matter in the puzzling cases, 
mathematical realists are free to develop solutions that do not recognise them either. (MSP, 
p. 92) 
However, the failure of mathematics to register facts of the matter in the relevant class of 
cases may be symptomatic of a variety of underlying causes. It may indeed be the case that 
mathematics fails to register these facts because none of the relevant facts are out there 
waiting to be discerned. But mathematics may fail to register these facts for reasons other 
than their nonexistence. It may simply be that they are epistemologically inaccessible to 
mathematical techniques (see Steiner [1975], p. 91). After all, no mathematician—not even 
an ideal mathematician—is a god. So why suppose that every fact about a mathematical 
object must be accessible to inquiry by mathematicians? Alternatively, the failure of 
mathematics to register any of the relevant facts of the matter may arise from 
indeterminacy in the language of mathematics rather than the quirky incomplete natures of 



mathematical objects. In other words, the failure of mathematics to settle whether 2 natural 

 = 2 real may result from the semantic fact that the expressions "2 natural " and "2 real" are 
systematically ambiguous. Consequently, there is no fact of the matter about whether they 
absolutely refer to the same mathematical object (see Field [1974], pp. 221-222 and 
McGee [1997], p. 39 for different versions of this proposal). Until these (and other) 
alternative explanations of incompleteness are ruled out, Resnik is hardly "free" to draw 
the ontological conclusion he favors from a purely epistemological premise.9 Until then, 
his claim that mathematical objects are incomplete in re can hardly be justified.10 
This is not the only difficulty that confronts Resnik's account of incompleteness. His 
account also rests on the assumption that the incompleteness 
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of mathematical objects arises from the way in which they are introduced into discourse: 
Mathematical objects are incomplete in the sense that we have no answers within or 
without mathematics to questions of whether the objects one mathematical theory 
discusses are identical to those another treats; whether, for example, geometrical points are 
real numbers. This springs from the way mathematics defines its terms. (MSP, p. 90) 
But what sense are we to make of this? How can the manner in which an object is 
introduced into discourse—the way in which a term that first denotes an object is defined
—determine that the object introduced is thereby constrained to have no more of a nature 
than is given expression by whatever served as an initial characterization of it?
Of course, there is one class of entities for which, arguably, it is true that their initial 
characterization exhausts their nature. This is the class of fictional objects. One might think 
that there is no more to a fictional character than arises from the descriptions of the author 
who invented them: there is, for instance, no more to Nostromo—no hidden aspect of his 
nature—that is not already contained in Conrad's descriptions of the character; it is not 
open to a future author to discover Nostromo's true nature concealed beneath these 
(perhaps) deceptive characterizations. But this does not hold for objects about which we 
are realist. For instance, it does not follow from the fact that we are first introduced to 
tables in macroscopic terms that tables are not also swarms of microscopic particles. It is 
worth noting that Resnik is keen to emphasize the contrasts between mathematics and 
fiction. He denies, in particular, that mathematical objects are, in any sense, constructed or 
invented by us (MSP, pp. 188-189). But if we are also realist about numbers, it no more 
follows that where the natural numbers are introduced by (e.g.) the axioms of Peano 
Arithmetic, they are not also real numbers (where the real numbers are introduced 
independently by a different axiomatic theory). Consequently, Resnik fails to provide 
sufficient reason to doubt that relevant facts of the matter about the identity of 
mathematical objects obtain in such cases. As a result, Resnik fails to establish or shed 
light upon the doctrine that mathematical objects are incomplete in re.



3. Shapiro on Ontology and Incompleteness

Does the structuralism that Shapiro avows make any more sense of the idea that 
mathematical objects are incomplete? By contrast to Resnik, Shapiro does endeavor to 
provide an ontological foundation for mathematics. According to the "ante rem 
structuralism" he favors, structures are universals and mathematical 
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objects are identified (literally) with positions within these structures (PMSO, pp. 10-11, 
100). According to this view, the progression of natural numbers, for example, is itself a 
structural universal, the individual numbers being places or positions within the structure, 
their properties and relations determined solely by the structural role they perform there, 
and every property or relation of a number n consequent upon its being the nth position in 
the natural number structure. Mathematical structures and positions are, in this sense, said 
to be "freestanding."
Ante rem structuralism accounts for the instantiation of structures in the following terms. A 
structure is instantiated (realized) when objects occupy the positions of the structure. 
Objects occupy positions when they exhibit the relevant battery of relations to the other 
objects in a system that exhibits the structure to which these positions belong; in effect, 
positions are conceived as relational properties, the overarching structure they participate 
in being a complex relation that obtains when these properties are satisfied. The objects 
that occupy these positions may in turn be positions drawn from other structures. More 
radically, a structure ∑ will instantiate itself and may embed substructures that are also 
instances of ∑. This is made possible by the fact that—according to the ante rem view—
the notion of "place" admits of a significant relativity; pronouncements about place are 
understood either relative to the "places-are-offices" perspective or to the "places-are-
objects" perspective.
To see this last point, consider once more the progression of natural numbers. From the 
places-are-offices perspective, the natural numbers are offices or roles (the 0-role, the 1-
role, the 2-role … ) waiting to be filled by objects drawn from some background ontology 
(for example, the sets Ø, {Ø}, {{Ø}} … ). But from the places-are-objects perspective, the 
numbers are objects in their own right, conceived independently of any objects—set-
theoretic or otherwise—that may occupy these positions. From this perspective, the series 
of natural numbers instantiates the natural number structure (0 fills the 0-role, 1 fills the 1-
role, 2 fills the 2-role … ). Moreover, the natural numbers also embed indefinitely many 
series of numbers—for example, the even numbers, the odd numbers, and so on—that 



satisfy Peano's Axioms and instantiate the natural number structure. So, from the places-
are-objects perspective, the natural numbers can also occupy different positions within the 
natural number structure (for example, in the even numbers series 0 fills the 0-role, 2 fills 
the 1-role, 4 fills the 2-role … ).
Against this ontological backdrop Shapiro offers two contrasting accounts of 
incompleteness. According to the first account, identities between the elements of different 
structures are indeterminate: 
But it makes no sense to pursue the identity between a place in the natural number 
structure and some other object, expecting there to be a fact of the matter. Identity between 
natural numbers is determinate; identity between other sorts of objects is not, and neither is 
identity between numbers and the positions of other structures. (PMSO, p. 79) 
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This much Shapiro shares in common with Resnik. Yet unlike Resnik, he continues to 
espouse classical logic, insisting that "each well-formed, meaningful sentence has a 
determinate and non-vacuous truth-value, either truth or falsehood" (PMSO, p. 4). Shapiro 
does not explain how indeterminacy and classical logic can peacefully coexist. But he does 
hint that to ask after the identity of objects of different kinds is to commit a category 
mistake ("It is similar to asking whether 1 is braver than 4, or funnier" [PMSO, p. 79]). 
This suggests that the identity "statements" in question are actually meaningless. If such 
meaningless utterances lack a truth-value, this hardly constitutes a violation of classical 
logic (excluded middle).
Shapiro's account faces a now familiar difficulty. It threatens to conflict with mathematical 
practice, the fact that mathematicians routinely embed and even "identify" the elements of 
different structures. To accommodate these facts, Shapiro offers a threefold theory of the 
copula, distinguishing the "is" of identity, the "is" of prediction and the "is" of fiat. Even if 
it is indeterminate whether 2 is identity {{ }}, it may still be the case that 2 is predication {{ }} in 
the sense that {{ }} performs the "2"-role (occupies the "2" position) in the Zermelo 
system of arithmetic. In the same sense it is also true that 2 is predication { , { }}, for { , { }} 
performs the "2"-role in the von Neumann system. To accommodate the practice of 
identifying elements of different structures, Shapiro also acknowledges a further use of the 
copula: "For example, when set theorists settle on the von Neumann account of arithmetic, 
and thereby declare that 2 is { , { }}, they invoke what might be called the " 'is of identity 
by fiat' " (PMSO, p. 83).
There are (at least) three obstacles faced by this account. The first, perhaps the most 
significant, is shared with Resnik's treatment of incompleteness. It cannot simply be a 
matter for declaration that identity between the elements of different structures is 
everywhere indeterminate, that there might not (e.g.) be facts of the matter that fall beyond 
our epistemic capacity to register or the precision of our language to encode. Shapiro owes 



us an argument for the absence of any underlying facts of the matter, but he gives none. 
Second, Shapiro must provide some means of policing the boundary between genuine 
category mistakes and statements that are just plain obviously false. If any of the 
"statements" of identity at issue fall on the wrong side of this boundary, then—at least on 
some occasions—the identity between places in different structures will be determinate. 
But it is difficult to foresee how the boundary between grammatical nonsense and self-
evident falsity could be reliably policed. Notoriously, our linguistic intuitions do not speak 
in unison on distinctions of this kind, and it is unclear what else there is to go on. Third 
obstacle: the notion of "identity by fiat" makes dubious sense. If we are realist about our 
subject matter—Shapiro staunchly advocates such "realism in ontology" (PMSO, p. 4)—
then the facts of identity cannot be manufactured by us. Moreover, it is mysterious how 
utterances that are category mistakes in some contexts can turn out to be true in others.
end p.578

It is the clash with realism in ontology that motivates Shapiro to develop an alternative 
account of incompleteness. This second account says that positions drawn from different 
structures are determinately false (rather than neither true nor false, as Shapiro's first 
account suggested) (Shapiro [forthcoming]). Mathematical objects of different kinds (2 
natural , 2 real , { , { }}) belong to different structures. For example, 2 natural belongs to the 
natural number structure and therefore has an immediate successor (3 natural ). By contrast, 2 
real belongs to the real number structure and enjoys no such successor. Mathematical objects 
drawn from different structures therefore "enjoy different relations to different objects." 
Because these objects are dissimilar—because (e.g.) 2 natural enjoys relations that 2 real lacks
—it follows that they are distinct. Therefore identity statements to the contrary are strictly 
false.
This reasoning relies upon two key assumptions: (i) the same object cannot belong to 
different structures; (ii) mathematical objects of different kinds belong to different 
structures (natural numbers belong to the natural number structure, whereas real numbers 
belong to the real number structure). (i) derives from Shapiro's structuralist slogan that 
"mathematical objects are tied to the structures that constitute them." It is, Shapiro claims, 
"part of the essence" of a mathematical object that it belongs to its parent structure. But 
even if this is granted, it does not follow that the same object cannot belong to different 
structures. Nothing has been established that precludes the possibility that a single object 
might belong essentially to different structures, constituted jointly by them, much as a 
child might—if Kripke is right—be essentially the offspring of distinct parents.11 
(ii) appears no less precarious an assumption. It is certainly built into the concept of 
structure that the natural number structure and the real number structure are different. 
However, it does not follow that the former cannot be a substructure of the latter. If indeed 
the natural number structure is a substructure of the real number structure, then—contrary 



to Shapiro—it is not in general the case that natural numbers and real numbers enjoy 
different relations to different objects. For example, 2 natural will enjoy the relation of having 
an immediate natural successor, but this does not preclude 2 natural from lacking an 
immediate real successor. Consequently, Shapiro has said nothing to preclude the 
possibility that 2 natural is 2 real. More generally, if one is willing to multiply different types of 
relation (natural successor, real successor, and so on), there is no need to multiply kinds of 
objects (structures and the objects that inhabit them). In fact, there is strong motivation for 
opting to multiply relations rather than structures and their objects. For by doing so, we are 
able to provide a smooth and natural reading of mathematical practice.
To see this, consider an objection that Shapiro raises to Resnik's structuralism (Shapiro 
[forthcoming]). He observes that it may, to choose just one pertinent example, be an 
interesting mathematical question whether a given closed integral 
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is a natural number. Shapiro complains that Resnik cannot make sense of questions of this 
kind. This is because, according to Resnik, there can be no fact of the matter—and so no 
interesting mathematical question—about whether objects drawn from different structures 
are the same or different. Resnik actually anticipates this complaint. He argues that even if 
mathematical practice sometimes allows that interesting questions may be raised 
concerning the identities among mathematical objects of different kinds, we may 
nevertheless make sense of this practice without supposing there to be any facts of the 
matter about the identity of objects drawn from different patterns or structures.12 For, 
Resnik claims, there will be a fact of the matter about whether, say, a given integer is a 
natural number if we liken the historical development of the integer number system to "the 
step-by-step construction of a complicated pattern through adding positions to an initially 
simple one" (MSP, p. 215). If, in this way, the integer structure is conceived as an 
extension of the natural number structure, it will be true that some natural numbers are 
integers. Of course, in that case—as Shapiro points out and Resnik readily admits—there 
will be no fact of the matter concerning whether the natural numbers and integers so 
conceived are identical to or distinct from naturals and integers conceived as the objects 
posited by independent theories (MSP, p. 247; Shapiro [forthcoming]).
What is important for present purposes is that a version of the complaint that Shapiro raises 
against Resnik may be turned against his own brand of structuralism. Consider the question
—that a mathematician may surely raise—of whether a given integer is a natural number. 
If the natural numbers and integers belong to the same structure, this question may receive 
a clear and straightforward answer. It will be true or false depending upon whether the 
integer in question is identical to a natural number. But if Shapiro's account is right, the 
answer to this question (if it is taken at face value) can only be "false," since, according to 
Shapiro, integers and natural numbers belong to different structures. Moreover, it can 



hardly be an interesting question—it only takes a metaphysician who knows precious little 
about mathematics to figure out that answer. So Shapiro is obliged to deny a face-value 
reading of questions of this kind and is forced to uncover instead a subterranean interest in 
establishing whether an embedding obtains between distinct structures. But, other things 
being equal, a face-value reading of mathematical practice is to be preferred. It cannot be 
credible to suppose that mathematicians persist in speaking falsely even though the 
vocabulary of embeddings is so readily to hand for expressing what—by Shapiro's lights—
they must really mean.
end p.580

In sum, neither account that Shapiro presents provides a convincing treatment of the 
"incompleteness" of mathematical objects. There remains, however, the further question of 
whether structures—conceived as ante rem universals—provide an otherwise credible 
ontology for mathematics. Hellman has suggested otherwise: that purely structural 
relations on the ante rem conception are not even intelligible. He argues the point in the 
following terms. The positions of a purely structural relation are identified merely as its 
terms (they are purely structural positions). But the relation cannot be identified simply as 
the structure that formally satisfies whatever axioms may be available for the purpose. This 
is because any system that exhibits the relation in question will answer to the axioms, too. 
In short, the relation will be indistinguishable from the systems that exhibit it unless we 
already have access to the relata of the relation and can identify the relation as the relation 
of those relata. This, Hellman maintains, is a "vicious circularity": "to understand the relata 
we must be given the relation, but to understand the relation, we must already have access 
to the relata" (Hellman [2001]; also ch. 17 in this volume).
This difficulty does not appear to be critical. It presupposes that we are able to understand 
a relation only if we are able to uniquely identify it. But there seems no reason to assume 
that reference to structures is or ought to be determinate. It is certainly true that many 
proponents of the view—Shapiro included—have accepted this assumption, presenting 
structuralism as an antidote to referential indeterminacy. But since indeterminacy appears 
to be an ineliminable aspect of reference to mathematical objects (structural or otherwise), 
there appears no reason to accept it. And once this assumption is discarded, Hellman's 
criticism appears to express only a concern about the impredicative dependencies that 
obtain between structures and positions, a concern that should hardly carry force once it is 
recognized that structures and positions are not constructed by us (cf. Gödel [1944], pp. 
455-456).
Far more worrisome is the concern that Shapiro's notion of a structural position cannot be 
made to cohere with the existence of structures admitting nontrivial automorphisms. The 
concern arises from structuralist slogans like "The essence of a natural number is its 
relation to other natural numbers … there is no more to the individual numbers 'in 



themselves' than the relations they bear to each other" (PMSO, pp. 72-73).13 This makes it 
appear as if Shapiro is committed 
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to a version of the Identity of Indiscernibles for mathematical objects: if x and y share just 
the same intrastructural relations to other items, then x = y. There are, however, systems of 
mathematical objects that contain structurally indiscernible elements (systems that admit 
nontrivial automorphisms): the complex numbers (i and −i), the additive integers (+1 and 
−1), points in the Euclidean plane, geometric figures with reflectional symmetry, and so 
on. This means that Shapiro is committed to identifying these indiscernible elements: i 
with −i, +1 with −1, and so on. But we know mathematically that these elements are 
distinct. It follows that ante rem structuralism must be rejected (see Burgess [1999], pp. 
287-288; and Keränen [2001]).
Whether this objection ultimately carries any force turns upon whether a version of the 
Identity of Indiscernibles really does follow from the structuralist slogans. But these 
slogans may be interpreted in a way that does not evince a commitment to the Identity of 
Indiscernibles. However, interpreting them in this way leaves ante rem structuralism 
almost indiscernible from traditional Platonism. Thus a dilemma arises for Shapiro: either 
bad news (i = −i) or old news (ante rem structuralism = good old-fashioned Platonism).
To work toward an appreciation of this dilemma, let us assemble some of the 
considerations that speak in favor of a structuralist commitment to the Identity of 
Indiscernibles. Keränen argues that general considerations to do with the metaphysics of 
identity elicit this commitment (see his [2001], pp. 312-318). According to Keränen, 
whenever a type of object Ω is introduced into discourse, it must be possible to supply 
necessary and sufficient conditions for Ωs to be identical. Next, he remarks: "All extant 
theories of ontology maintain that the identity of objects is governed by their properties." 
Such an account of identity may appeal either to purely general properties or else to 
haecceities. Keränen now develops a dilemma of his own for the ante rem structuralist. 
Suppose the structuralist appeals to purely general properties to provide necessary and 
sufficient conditions for the identity of mathematical objects. Then the properties he has 
available for the purpose of fashioning an account of identity are all structural properties 
and relations. This means that mathematical objects can be distinct, from the structuralist 
perspective, only if they differ in their structural properties and relations. However, we 
know this is wrong. We know mathematically that there are structurally indiscernible but 
distinct mathematical objects. Alternatively, if the structuralist appeals to haecceities, then 
structurally indiscernible objects may be distinguished by their possession of nonstructural 
properties (i enjoys the property being identical to i, whereas −i lacks it). But then the 
structural slogan—"There is no more to the individual numbers 'in themselves' than the 
relations they bear to each other"—will have been given up.



The most questionable feature of this argument is its most basic assumption, the thesis that 
necessary and sufficient conditions for the identity of objects can and should be stated in 
exclusively property-theoretic terms. The idea that we 
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should be able—at least in principle—to uniquely characterize each object in our ontology 
provides one motivation for upholding this thesis. That such a motive is operative in 
Keränen's mind is suggested by the frequent shifts he makes between talking about 
"identity" and talking about "individuation." But, as Shapiro points out, it is highly 
questionable to suppose that we should be able to individuate—even in principle—the 
elements of an uncountable ontology (see Shapiro [forthcoming]). More generally, 
Keränen has articulated a metaphysical thesis about identity (reductionism) that seems no 
less dubious. Why should the relevant class of identity facts not turn out to be 
metaphysically basic rather than reducible? Why should it be supposed that there is 
invariably a supply of properties sufficient to provide a reductive base for the facts of 
identity? To these and other relevant questions Keränen supplies no answers.
There are, however, less global considerations that speak in favor of an ante rem 
structuralist commitment to the Identity of Indiscernibles. For the slogan "There is no more 
to the individual numbers 'in themselves' than the relations they bear to each other" may be 
interpreted as articulating a local reductionist thesis about mathematical objects. According 
to this interpretation, the structuralist is committed to a bundle theory of mathematical 
objects: there are no "bare particulars" hidden behind the façade of structural relations; 
there are only bundles of these relations. But if mathematical objects are reducible to 
bundles of structural relations, then mathematical objects that are structurally indiscernible 
must be numerically the same. Since there are structurally indiscernible but numerically 
distinct mathematical objects, it follows that the structuralist slogan must be rejected. 
Mathematical objects cannot be just bundles of structural relations.
It is far from evident, however, that the ante rem structuralist is committed to a bundle 
theory (object reductionism) of this kind. For there is a further reading available of the 
slogan "There is no more to the individual numbers 'in themselves' than the relations they 
bear to each other." Instead of offering a reductionist thesis about mathematical objects, the 
slogan may be interpreted as a reductionist thesis about mathematical properties. 
According to this reading, there is no more to the properties of individual numbers than 
arise from the relations to other positions in their parent structure. But the fact that the 
properties of mathematical objects are reducible to structural ones does not imply that 
mathematical objects are themselves capable of such reduction. So it is consistent with this 
reading of the structuralist slogan that there are structurally indiscernible but numerically 
distinct mathematical objects.



Unfortunately, a property reductionist conception of ante rem structuralism is beset by 
difficulties of its own. To start with, it is far from evident that all the properties 
mathematical objects exhibit are reducible to structural relations (Hellman [1999], [2001]). 
There are three classes of plausible counterexamples to this claim. First, there are 
categorical properties such as being abstract. Second, 
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there are intentional properties like being Stewart's favorite number. Third, there are 
properties of application (e.g., being the number of planets).
Some of these examples may be less troublesome than others. It may be doubted whether 
there are any genuine categorical properties rather than mere formal predicates. For 
example, the predicate "x is abstract" may be taken to be true of objects that lack a certain 
property (being spatiotemporally located) rather than of objects that possess some definite 
feature of their own. In a similar way, it may be doubted whether there are genuine 
intentional properties. For example, Nostromo may be my favourite fictional character, but 
it doesn't follow that there is some genuine property possessed by him (how could there be 
a property possessed by him? he doesn't exist!). But if there aren't any categorical or 
intentional properties, then these nonstructural properties cannot serve as counterexamples 
to the thesis that the properties of mathematical objects are reducible to structural ones.
Of course, these arguments against categorical or intentional properties are far from 
decisive. But even if it is granted—for whatever reason—that there are no such properties, 
properties of application present a more troublesome case. Recall that it is the possession 
of these properties that makes mathematical objects worth believing in. Properties of 
application cannot be dismissed as mere lacks or shadows of thought. For what use are the 
cardinal numbers if they can't be employed to count? What merit is there in the real 
numbers if they cannot serve to measure? But while properties of application cannot be 
dismissed in this way, they cannot be reduced to the obtaining of structural relations either. 
The fact that 9 has the property of being the number of planets is not reducible to the 
structural relations (derived from the obtaining of the successor function) that 9 bears to 
the other natural numbers. Those relations might have obtained among the numbers even if 
(e.g.) Neptune had never existed. The structuralist slogan cannot be sustained as a general 
thesis.
Recall the dilemma posed for ante rem structuralism: either it's bad news or it's old news. 
We have seen how Shapiro may avoid the first horn of this dilemma—the horn that says 
structurally indiscernible objects must be numerically the same. This horn may be avoided 
by insisting upon a property-theoretic reading of structuralist slogans. But now Shapiro is 
impaled on the other horn of the dilemma—ante rem structuralism collapses into 
Platonism. Why? The first horn of the dilemma reveals that object reductionism fails. 
Mathematical objects cannot simply be bundles of structural relations; they are a separate, 



irreducible category of existent. So the structuralist must admit (at least) a two-category 
ontology of objects and relations. The failure of property reductionism indicates that 
mathematical objects are also the bearers of properties and relations that take them outside 
their parent structures; for example, to the items in the physical world they are used to 
count and measure. But then ante rem structuralism turns out to be just a kind of traditional 
Platonism that also posits a two-category ontology and conceives mathematical 
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objects as the bearers of structure-independent properties and relations. How, then, has the 
ante rem structuralist enabled us to pass beyond this traditional picture? Where's the news?
Shapiro may seek to evade this dilemma by pointing to what is ontologically innovative in 
his view, something that traditional Platonists do not routinely countenance, namely the 
identification of mathematical objects with positions in structures. But can this 
identification legitimately be made? Structures are conceived by ante rem structuralism to 
be a species of universal; they are considered to be relations (complex relations in the 
mathematically interesting cases) that obtain among systems of objects. Positions in 
structures then turn out to be the argument slots that are filled by objects when the 
universal (relation) in question is instantiated. However, the identification of mathematical 
objects with positions in structures rests upon the prior credibility of the thesis that 
positions are objects in their own right. But this thesis—it will be seen—is more incredible 
than credible, and it is far better to conceive of positions in a nominalistic spirit. Note the 
consequences of this: if the notion of a "position" is not that of a kind of object, if 
"positions" do not exist, then clearly Shapiro's identification of mathematical objects with 
positions misfires.
If there is a reason to believe in positions (as objects), then it should surely be a reason of 
the following kind. It should be because the positing of them oils the wheels of a theory of 
differential application. What does this mean? It means that positing positions should 
enable us to explain why relations obtain one way rather than another (why aRb rather than 
bRa, where R is asymmetric). Now it is indeed familiar enough for philosophers to 
introduce the notion of a position in the following terms: positions are "slots" in the 
relation universal, and the relation applies differently (in a different order) when the terms 
of the relation fit different slots. Speaking in these terms, it is a fact that aRb rather than 
bRa because a fits into the x slot, and b fits into the y slot rather than the other way around. 
But does an explanation of this kind—perhaps unexceptional in itself—provide any 
grounds for supposing that positions or slots are entities?
The problem is that this explanation goes awry if positions are conceived as self-standing 
objects. The proposed explanation of the differential application of relations to objects 
goes via the assignment of objects to slots (a and b to x and y, in that order). However this 
explanation will be effective only if it is presupposed that some other objects—the slots—



are related to each other in the right order: the right order to secure the result that the 
objects assigned to them are then related in a given order (so that aRb rather than bRa). 
The application of a to x and b to y will therefore suffice for aRb rather than bRa only if x 
lies in the further relation (call it R*) to y such that if a fills x and b fills y, then aRb. This 
shows that the purported explanation of the differential application of R presupposes the 
further relational fact that xR*y rather than yR*x (this is not, of course, the only relational 
fact presupposed). A regress now arises. In order to explain the relational ordering of the 
slots x and y, the relation R* will require further slots z and w into which x and y 
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must fit to explain the differential application of R* to x and y. But then the further 
relational fact wR**z will have been presupposed, and so on.14 
This regress may be avoided by refusing to posit further entities to explain the ordering of 
the slots. In that case it will just be a brute fact that the slots x and y are so ordered. But, if 
that is the case, the differential application of relations (R) might have been explained all 
along by appeal to the brute ideology of order. Then there will simply have been no reason 
to inflate our ontology to include positions. And if there is no reason to believe in positions 
(conceived as objects), then there is no reason to believe that positions are candidates 
eligible to be identified with mathematical objects.
Of course the ante rem structuralist may continue to insist that positions are objects (to be 
identified with mathematical objects) for reasons other than their potential contribution to 
an account of order. But it is important to keep in focus that it is the raison d'être of 
relations to account for order and that positions are essentially the positions of relations. 
Therefore, unless positions (conceived as objects) are assigned some significant role in the 
account of order, the insistence that "positions" are objects will not differ from simply 
insisting that there are objects (for no content will have been given to the notion that these 
objects are positions). So unless such a role for positions is made out, the ante rem 
structuralist will differ no whit from the traditional Platonist who simply posits 
mathematical objects outright.
The ante rem structuralist faces a challenge, a challenge to explain how order obtains in the 
world. Unless ante rem structuralists—Shapiro included—answer this challenge, they will 
be unable to justify the critical thesis for which an argument remains wanting in all their 
writings: the thesis that positions are objects.

4. Conclusion



What are the primary obstacles that confront any attempt to vindicate the claim that 
mathematical objects are incomplete in re, to be fruitfully compared or identified with 
positions in patterns or structures? A variety of criticisms have been made of the attempts 
by Resnik and Shapiro to convince us that mathematical objects should be conceived in 
such a spirit. Nevertheless, two general difficulties stand out. They arise not only for 
Resnik and Shapiro but also for anyone else who would claim that mathematical objects 
are incomplete in re. First difficulty: that 
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the evidence adduced (so far) in favor of the incompleteness of mathematical objects 
underdetermines whether it is the objects themselves that are incomplete rather than our 
knowledge or descriptions of them. Second difficulty: that holding mathematical objects to 
be incomplete conflicts or fits uncomfortably with the practice of mathematics. These 
concerns are not independent of one another. The fact that the incompleteness of 
mathematical objects fits ill with mathematical practice places even greater pressure upon 
the assumption that the evidence adduced in favor of the incompleteness of mathematical 
objects is at all convincing.
These and other difficulties that the views of Resnik and Shapiro encounter point toward 
the contrary view, that it is our knowledge or our description of mathematical objects that 
is incomplete rather than the objects themselves. So rather than speaking completely about 
objects that are incomplete in re, the mathematician should be interpreted as speaking 
incompletely about objects that are complete in themselves. Just over a century ago Russell 
advanced this idea in an especially pure form. He claimed that the role of mathematics is 
not to speak about a special realm of privileged objects—the "mathematical" objects—but 
rather to speak conditionally about objects of any kind whatsoever: 
We start, in pure mathematics, from certain rules of inference, by which we can infer that 
if one proposition is true, then so is some other proposition. These rules of inference 
constitute the major part of the principles of formal logic. We then take any hypothesis that 
seems amusing, and deduce its consequences. If our hypothesis is about anything, and not 
about some one or more particular things, then our deductions constitute mathematics. 
Thus mathematics may be defined as the subject in which we never know what we are 
talking about, nor whether what we are saying is true. (Russell [1901], p. 75) 
Russell went on to express this idea more formally in the opening sentence of The  
Principle of Mathematics: 
Pure mathematics is the class of all propositions of the form "p implies q," where p and q 
are propositions containing one or more variables, the same in the two propositions, and 
neither p nor q contains any constants except logical constants. (Russell [1903], p. 3) 



The difficulties that confront the claim that mathematical objects are incomplete in re 
indicate that it is in this direction—the direction that Russell pointed—that structuralism 
can expect to receive its most fruitful development.
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19. Predicativity
Solomon Feferman 

What is predicativity? While the term suggests that there is a single idea involved, what the 
history will show is that there are a number of ideas of predicativity which may lead to 
different logical analyses. I shall uncover these only gradually.1 A central question will 
then be what, if anything, unifies them. Though early discussions are often muddy on the 
concepts and their employment, in a number of important respects they set the stage for the 
further developments, and so I shall give them special attention. Note that, ahistorically, 
modern logical and set-theoretical notation will be used throughout, as long as it does not 
conflict with original intentions.
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Predicativity Emerges: Russell and Poincaré

To begin with, the terms predicative and nonpredicative (later, impredicative) were 
introduced by Russell (1906) in his struggles dating from 1901 to carry out the logicist 
program in the face of the set-theoretical paradoxes. Russell called a propositional function 



φ(x) predicative if it defines a class (i.e., if the class {x : φ(x)} exists), and nonpredicative 
otherwise. Thus, for example, the propositional function x  x figuring in Russell's paradox 
is impredicative. Since the admission of classes defined by arbitrary propositional 
functions in Frege's execution of his logicist program led to its demise as a result of this 
paradox, if the program were to be resurrected, it would somehow have to incorporate a 
criterion for distinguishing predicative from impredicative functions. Russell's first 
attempts to separate these were highly uncertain, and it was only through the engagement 
of Henri Poincaré in the problem, starting in his article (1906a) that progress began to be 
made.
Poincaré took several paradoxes as examples to try to elicit what was common to them: the 
Burali-Forti paradox of the largest ordinal number, König's paradox of the least 
nondefinable ordinal number, and the Richard paradox defining, by diagonalization, a real 
number different from all definable real numbers; it was this last that Poincaré took as a 
paradigm. Note that in doing so, Poincaré shifted attention away from purported definitions 
of set-theoretical objects involving only purely set-theoretical notions such as those of 
class, membership, ordinal number, and cardinal number, to purported definitions of 
mathematical objects more generally in which the notion of definability itself was an 
essential component. In doing so, he could be considered to be at cross-purposes with 
Russell. At any rate, Poincaré came up with two distinct diagnoses of the source of the 
paradoxes via what he regarded as "typical" examples. The first was that there is in each 
case a vicious circle in the purported definition. For example, in the case of Richard 
(1905), since each definition of a real number via its decimal expansion can be written out 
using a finite number of symbols, the set D of definable real numbers is countable. Then, 
by Cantor's diagonal construction, one can define a real number r which is distinct from 
each member of D; but since r is defined, it is a member of D, which is a contradiction. 
According to Poincaré, in this case the vicious circle lies in trying to produce the object r 
in D by reference to the supposed totality of objects in D; indirectly, then, r is defined in 
terms of itself, as one of the objects in D. Poincaré's second diagnosis is distinct in its 
emphasis, that the source of each paradox lies in the assumption of the "actual" or 
"completed" infinite. Again with reference to the Richard paradox, one cannot assume that 
there is a completed totality of all definable objects of a certain kind; rather, each one 
"comes into existence" through a definition in terms of previously defined objects. As we 
shall see, in his own mathematics 
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Poincaré did not hew to the injunction against the actual infinite. And that is related to the 
issue of impredicative definitions as they occur in mathematical practice, to which 
Poincaré was to return a few years later. We'll also that take up below.
Russell's Elaborations



In his article "Les Paradoxes de la logique" (1906b), Russell quickly took both the vicious 
circle diagnosis and, to an extent, the objection to the completed infinite as the point of 
departure for his further work on predicative versus impredicative definitions of classes:2 
I recognize … that the clue to the paradoxes is to be found in the vicious circle suggestion; 
I recognize further this element of truth in M. Poincaré's objection to totality, that whatever 
in any way concerns all or any or some of a class must not be itself one of the members of 
a class. (Russell 1973, p. 198) 
Russell then went on to make the first of his several attempts to formulate the VCP 
(Vicious Circle Principle) in syntactic terms that would be appropriate for a formalism in 
which to redevelop logicism: 
In M. Peano's language, the principle I want to advocate may be stated: "Whatever 
involves an apparent variable must not be among the possible values of that variable." 
(ibid.) 
Insofar as this form of the VCP proscribed certain formulas φ(x) from defining classes, its 
effect would be to exclude from φ any bound variables whose intended range includes the 
class {x : φ(x)} as one of its values. But also the bound variable "x" in the designation 
{x : φ(x)} of that class must not be in that range. These restrictions were then the lead-in to 
the formalism proposed in Russell's article "Mathematical Logic as Based on the Theory of 
Types" (1908), and on whose plan Principia Mathematica was erected. As is well known, 
Russell formulated the VCP in several different ways, and their precise significance and 
relation to each other has been the subject of much scrutiny and critique by a number of 
scholars, including Kurt Gödel (1944), Charles Chihara (1973), and Philippe de Rouilhan 
(1996). The formulation that is tied most closely to Russell's theory of types was given in 
the 1908 article as the following sharpening of the above: 
[The VCP], in our technical language, becomes: "whatever contains an apparent variable 
must not be a possible value of that variable." Thus [it] must be of a 
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different type from the possible values of that variable. Thus we will say that whatever 
contains an apparent variable must be of a different type from the possible values of that 
variable; we will say that it is of a higher type. (Russell 1908, in van Heijenoort 1967, p. 
163) 
Before going into the actual structure of types in Russell's setup, let me draw attention to 
an earlier section of the article, headed "All and Any" (ibid., pp. 156-159). Here, in 
contrast to the first quotation from Russell above, a distinction was made between the use 
of these two words. Roughly speaking, in logical terms, the statement that all objects x of a 
certain kind satisfy a certain condition φ(x) is rendered by the universal quantification (  
x)φ(x) in which "x" now is a bound variable, while the statement that φ(x) holds for any x 
is expressed by leaving "x" as a free variable. In modern terms, the logic of the latter is 



treated as a scheme to be coupled with a rule of substitution. The importance of this 
distinction for Russell has to do with the injunction against illegitimate totalities. In 
particular, with p a variable for propositions, he would admit "p is true or false, where p is 
any proposition" (i.e., the scheme p V ¬ p, but not the statement ( p)(p V ¬p) that "all 
propositions are true or false" (in both cases using truth of p to be equivalent to p). 
Similarly, for properties P(x); significantly, Russell pointed out that the proposed 
definition of the natural numbers in the form " 'n is a finite integer' means 'Whatever 
property φ may be, n has the property φ provided φ is possessed by 0 and by the successors 
of possessors' " (ibid., p. 159). That is, in symbols, 
N(n): = ( φ)[φ(0) ( x)(φ(x) → φ(x′)) → φ(n)] 
cannot be replaced by dropping the universal quantifier over properties "( φ)."
Though the simplest paradoxes, such as Russell's of the class of all non-self-membered 
classes or the heterologicality paradox, can be construed as involving arbitrary classes or 
properties in the form of apparent variables, they do not involve them in the form of 
quantified variables. Nevertheless, these considerations led Russell to ban the use of "all" 
in the form of unrestricted quantification over propositions and properties, among other 
things. He then faced the question of when it is legitimate to apply universal quantification 
over any given kind of object, and here he veered away from Poincaré's injunction against 
the "actual" infinite: 
It has often been suggested that what is required in order that it may be legitimate to speak 
of all of a collection is that the collection should be finite. Thus "all men are mortal" will 
be legitimate because men form a finite class. But that is not really the reason why we can 
speak of "all men." What is essential … is not finitude, but what may be called logical  
homogeneity. This property is to belong to any collection whose terms are all contained 
within the range of significance of some one function. It would always be obvious at a 
glance whether a collection possessed this property or not, if it were not for the concealed 
ambiguity in common logical terms such as true and false, which gives an appearance of 
being 
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a single function to what is really a conglomeration of many functions with different 
ranges of significance. (ibid., p. 163) 
Here a new idea became central: 
 … we can speak of all of a collection when and only when the collection forms part or the 
whole of the range of significance of some propositional function, the range of significance 
being defined as the collection of those arguments for which the function in question is 
significant, that is, has a value. (ibid.) 
That is, in more modern terms, like all functions in ordinary mathematics, propositional 
functions are partial in the sense that they have a prescribed domain which is given in 



advance of the function, and outside of which they are undefined. In particular, the 
arguments x of a propositional function φ must somehow be "prior" to the function itself. 
This is achieved by the type distinction and an ordering of types, which makes the type of 
x lower than the type of φ. Without further restrictions, this would lead to the formalism of 
the simple theory of types. But the VCP in the form given above requires that each 
apparent (bound) variable in φ also have lower type than φ. Together these result in the 
formalism of the ramified theory of types. At the bottom are variables of type 0 ranging 
over an unspecified nonempty domain of "individuals." In the simple theory of types, types 
can be identified with natural numbers; classes of individuals are of type 1; classes of 
classes of individuals, of type 2; and so on. In the ramified theory of types, (e.g., as 
elucidated by Myhill 1974), types are finite descending sequences t = m 1 , m 2 , … m k of 
natural numbers m 1  > m 2  >  …  > m k  = 0, of order or level m 1 . If φ(x) has x of type t 
and m is least such that m > m 1 and all bound variables of φ have order less than m, then φ 
and its extension {x: φ(x)} are of type m t = m, m 1 , m 2 , … m k , and variables of that 
type are interpreted as ranging over all such classes. The atomic formulas of this language 
are of the form x = y where x, y are of the same type and x y where x is of a type t and y is 
of a type m t. Russell says that the type of one object is lower (resp. higher) than that of 
another if its level is lower (resp. higher).
If the domain of individuals is finite, then under this interpretation, for each type t the 
domain of objects of type t is finite, and the ramified interpretation collapses to the simple 
interpretation. Thus, if one is to define the notion of natural numbers in purely logical 
terms, as would be required by the logicist program, it must be assumed that the domain of 
individuals is infinite. The assumption of this Axiom of Infinity was the first crack in 
Russell's attempt to continue the logicist program within the ramified theory of types. The 
second came with the definition of natural number itself in the form, as above: 
N(a): = ( φ)[φ(0) ( x)(φ(x) → φ(x′)) → φ(a)], 
where 0 is the empty class at a given type t and the successor operation takes objects of 
type t to objects of type t, φ is of a type m t, and the variable "a" is 
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also of type t. Here, with natural numbers interpreted as cardinal numbers in the sense of 
equivalence classes under the relation of one-one correspondence, t must be of a type of 
classes of classes.
There were two problems with this. First, the notion of natural number is relative to any 
such type t, and second, most usual proofs of induction can't be carried out. To show, for 
example, for any given natural number a that ( x) [N(x) → N(a + x)], where + is suitably 
defined in cardinal-theoretic terms, one usually has to carry out an induction as follows: 
take ψ(x): = N(x) → N(a + x), and establish ( x) ψ(x) by showing ψ(0) (
x)(ψ(x) → ψ(x′)). But ψ is of a higher type (level) than that of the quantified variable φ in 



the definition of N, so we can't apply that definition to carry out the required induction. As 
Russell says, "[i]t is obvious that such a state of things renders elementary mathematics 
impossible" (ibid. p. 167). In order to get around this quite serious obstacle, Russell 
introduced his "oddly devious" (in Quine's words3 ) Axiom of Reducibility. This is 
formulated in terms of a notion of predicative function φ!x which may be described as one 
in which the bound variables, if any, are all of the same or lower type than the type of x. 
(Note that here "predicative" is used in a very restricted sense.) Using variables f, g, … to 
range over predicative functions, the Axiom of Reducibility states that any propositional 
function is coextensive with some predicative function. Schematically: 
( f)( x)[φ(x) ↔ f!x] 
(ibid., p.171). In particular, that allows one to carry out the blocked induction above by 
replacing ψ with an associated predicative function g.
Evidently, the Axiom of Reducibility completely vitiates the system of ramified types and 
makes it equivalent to simple type theory, for which, however, there is no predicative 
justification if one assumes the Axiom of Infinity. In the introduction to the second edition 
of Principia Mathematica, (presumably) Russell wrote: 
[The Axiom of Reducibility] has a purely pragmatic justification: it leads to the required 
results, and to no others. But clearly it is not the sort of axiom with which we can rest 
content. On this subject, however, it cannot be said that a satisfactory solution is as yet 
obtainable. (Whitehead and Russell 1925, p. xiv) 
More specifically, at the end of that introduction Russell points out various places in the 
development of mathematics on the basis of his formalism, where the Axiom of 
Reducibility is required to carry out not only the usual inductions on the natural numbers, 
as well as their generalizations to transfinite ordinal numbers, but also in the foundations of 
the theory of real numbers. In conclusion, he writes: 
It might be possible to sacrifice infinite well-ordered series [i.e., well-ordering relations] to 
logical rigour, but the theory of real numbers is an integral part of 
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ordinary mathematics, and can hardly be the object of a reasonable doubt. We are therefore 
justified in supposing that some logical axiom which is true will justify it. The axiom 
required may be more restricted than the axiom of reducibility, but, if so, it remains to be 
discovered. (ibid., p. xlv) 

Poincaré versus the Logicists and the Cantorians: From Paradoxes to Practice



In view of the lack of justification for the Axiom of Infinity and the Axiom of Reducibility, 
one must count as a failure Russell's attempt at a purely logical predicative foundation of 
mathematics beginning with the definition of the natural numbers. But even if it had been 
successful, it would have done nothing for Poincaré. In his excellent article, "Poincaré 
Against the Logicists," Warren Goldfarb writes: 
Although the great French mathematician Henri Poincaré wrote on topics in the philosophy 
of mathematics from as early as 1893, he did not come to consider the subject of modern 
logic until 1905. The attitude he then expressed toward the new logic was one of hostility. 
He … dismissed as specious both the tools devised by the early logicians and the 
foundational programs they urged. His attack was broad: Cantor, Peano, Russell, Zermelo, 
and Hilbert all figure among its objects. Indeed, his first writing on the subject is extremely 
polemical and is laced with ridicule and derogation. Poincaré's tone subsequently became 
more reasonable but his opposition to logic and its foundational claims remained constant. 
(Goldfarb 1988, p. 61) 
In this article Goldfarb on the whole legitimately critiques various of Poincaré's objections 
to the indicated foundational programs, but the nature of those objections is relevant to a 
fundamental shift in the further development of the idea(s) of predicativity and its relation 
to mathematical practice, so we shall review them here. First, as Goldfarb explains, 
Poincaré's attack on the new logicians begins 
 … with the avowed aim of showing that [they] have not eliminated the need for intuition 
in mathematics. By showing this, he says, he is vindicating Kant. … This avowal is 
misleading, for in Poincaré's hands the notion of intuition has little in common with the 
Kantian one. (ibid., p. 63) 
Rather, 
For Poincaré, to assert that a mathematical truth is given to us by intuition amounts to 
nothing more than that we recognize its truth and do not need, or do 
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not feel the need, to argue for it. Intuition, in this sense, is a psychological term; it might 
just as well be called "immediate conviction." (ibid.) 
In particular, for Poincaré the structure of natural numbers and the associated principle of 
induction are given in intuition and do not require a foundation; indeed, in his view, they 
are presupposed in any attempt at such a foundation. In the case of the logicist program, 
this is seen in the very description of the axiomatic system, with its inductive generation of 
formulas and proofs; hence that enterprise assertedly involves a petitio principii. Goldfarb 
argues that Poincaré is mistaken in ascribing a petitio in this case, as he is in other cases. In 
a useful review of Goldfarb's article, Michael Hallett (1990) defends Poincaré on this 
point, at least in part. What is important for us here is not which side is correct, but the 
content and influence of Poincaré's views.



Poincaré's objections to the Cantorians rests on their essential use of impredicative 
constructions violating the VCP. Curiously, he accepted the Axiom of Choice on the 
grounds that it "is a synthetic judgment a priori [note the Kantian terminology]; without it 
the theory of cardinals would be impossible, for finite numbers as well as for infinite 
ones."4 But he criticized Zermelo's 1904 proof—from the Axiom of Choice—that every set 
can be well-ordered, at a point that made use of the very common set-theoretical operation 
of the union U of a set S of sets X, U = {x: ( X)(X S x X)}, on the grounds that what 
members U has, depends on which sets belong to S and what their members are. In 
particular, it depends on whether U belongs to S and what its members are; thus, Poincaré 
identified the operation of union as illegitimately impredicative. In his response to this 
criticism, Zermelo (1908, pp. 190-191) pointed out that "proofs that have this logical form 
are by no means confined to set theory; exactly the same kind can be found in analysis 
wherever the maximum or the minimum of a previously defined "completed" set of 
numbers … is used for further inferences. This happens, for example, in the well-known 
Cauchy proof of the fundamental theorem of algebra, and up to now it has not occurred to 
anyone to regard this as something illogical."
The particular proof cited by Zermelo proceeds by forming the minimum of the set of 
values of |p(x)| where p is a polynomial over the complex numbers. Relatedly, if f(x) is a 
continuous function on a closed interval [a,b] in the real numbers, then f has a minimum 
value (as well, of course, as a maximum value) in that interval. This seems to appeal to the 
general greatest lower bound (g.l.b.) principle for the real numbers R (i.e., any bounded 
subset S of R has a g.l.b. [and least upper bound, l.u.b.]). The existence of the g.l.b. can be 
recognized set-theoretically as the formation of a union in terms of the association of real 
numbers x with their upper Dedekind sections D x in the rational numbers Q, where 
D x  = {r: r Q x < r}. 
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Let S* = {D x : x S}. Then the union U of the sets in S* is the Dedekind section D m where 
m = g.l.b.(S); in this, one invokes the Dedekind completeness (or continuity) of R, 
according to which every Dedekind section determines a real number. Dually, the l.u.b.(S) 
is determined by the intersection of all the sets in S*. (If one uses lower Dedekind sections, 
these operations are reversed.)
Poincaré responded to Zermelo's specific example by asserting that the minimum of |p(x)| 
is equally described as the minimum of {|p(x)| : x is rational}. More generally, for any 
continuous function f(x) on a compact set S in the real or complex numbers, its minimum is 
the same as the minimum of the countable set {f(x): x S x is rational}, and that does not 
require an impredicative step. Poincaré was correct in this response, though his argument 
was faulty. Simply, any bounded set S of rational numbers has a g.l.b. (and l.u.b.) by 
selecting a subsequence that converges to the same. In this case, one invokes Cauchy  



completeness of R, for which, in contrast to Dedekind completeness, there is a predicative 
argument, as will be explained below.
Though Poincaré rejected the actual infinite in his polemical writings (e.g., "There is no 
actual infinite; the Cantorians forgot that, and they fell into contradiction."—1906, p. 316), 
his acceptance of the structure of natural numbers and of the principle of induction on it, 
coupled with the implicit use of classical logic and its assumption of the law of excluded 
middle, at least takes quantification over the natural numbers to be definite, and that is a 
form of acceptance of the actual infinite. No doubt Poincaré assumed this and much more 
in his mathematical practice in analysis and topology, though he might have said that he 
could always account for his work predicatively by more careful considerations of the sort 
given in his response to Zermelo. There would be some historical interest in putting 
Poincaré's "philosophical" principles (to the extent that they can be made precise) up 
against the details of his practice, but that is neither here nor there for our present survey. 
What counts is what influence those principles had on the development of predicativity, 
not whether he abided by them himself. And what is most significant about Poincaré's 
dispute with Zermelo in 1906-1909 is that attention was shifted away from the role of 
purportedly circular definitions in the production of the paradoxes to their role at the very 
center of mathematical practice, namely, in the l.u.b. principle for the real numbers.
The other aspect of Poincaré's dispute with Cantorians lies in their extension of the actual 
infinite to the transfinite. Of course he was not alone in this. Other prominent critics were 
Leopold Kronecker in the nineteenth century and L. E. J. Brouwer in the twentieth century; 
but both were more radical than Poincaré, in rejecting it also at the level of the natural 
numbers. In Brouwer's case it lay in the identification of the law of excluded middle as the 
culprit in the Cantorian crimes, in its supposedly illegitimate employment when applied to 
infinite totalities. Since, as I have argued, Poincaré did not go that far, he can be considered 
to be 
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laying out a middle ground between the constructivists and the set-theoretical Platonists: 
the position of being a realist with respect to the natural numbers and a definitionist in all 
else.

Weyl's Predicative Development of Analysis

Hermann Weyl was the first to give substance to this middle ground, in his famous 1918 
monograph Das Kontinuum. An exegesis of that work is contained in the article "Weyl 
Vindicated" (Feferman 1988), and its significance has been discussed in several other 



articles reprinted in my collection In the Light of Logic (1998). There is thus no need to go 
over those here at any length. Rather, for the present purposes, a relatively brief summary 
is sufficient, and that is most simply accomplished by quoting from myself (1988, pp. 
51ff.): 
In the introduction to [Das Kontinuum] Weyl criticized axiomatic set theory as a "house 
built on sand" (though the objects of, and reasons for, his criticism are not made explicit). 
He proposed to replace this with a solid foundation, but not for all that had come to be 
accepted from set theory; the rest he gave up willingly, not seeing any other alternative. 
Weyl's main aim in this work was to secure mathematical analysis through a theory of the 
real number system (the continuum) that would make no basic assumptions beyond that of 
the structure of natural numbers N. … Weyl did not attempt to reduce … reasoning about 
N to something supposedly more basic. In this respect Weyl agreed with Henri Poincaré 
that the natural number system and the associated principle of induction constitute an 
irreducible minimum of theoretical mathematics, and any effort to "justify" that would 
implicitly involve its assumption elsewhere … unlike Brouwer, Weyl accepted uncritically 
the use of classical logic at this stage (though at a later date he was to champion Brouwer's 
views). 
In Weyl's redevelopment of analysis, the rational numbers are reduced to the natural 
numbers in a standard way going back to Kronecker. But to do analysis, one needs 
representations of real numbers either as sets or as sequences of rational numbers, and that 
reduces to the question of what sets or sequences of natural numbers may be asserted to 
exist. Having accepted the natural number system with its basic inductively defined 
operations such as addition and multiplication, Weyl accepted that each subset of N of the 
form {n N: A(n)} exists, where A is an arithmetical formula (i.e., one that contains no 
quantifiers ranging over sets, only over natural numbers). Beyond those, what other kinds 
of sets may be 
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asserted to exist on predicative grounds? Adapting ramified type theory to this specific 
second-order context, one could consider sets of level 1, 2, 3, and so on, where the sets of 
level 1 are the arithmetically definable ones, those of level 2 are defined by formulas in 
which all second-order quantifiers range over sets of level 1, those of level 3 allow second-
order quantifiers to range only over sets of level 1 or sets of level 2, and so on. Carrying 
this over to analysis, one would correspondingly then have real numbers of different levels 
1, 2, 3,  … . But if S is a bounded set of real numbers of some level k, its g.l.b. and l.u.b. 
are defined by applying the operations of union (resp. intersection) to corresponding sets 
S* of upper Dedekind sections of the rational numbers, and that requires quantification 
over sets of level k. Thus the g.l.b. (resp., l.u.b.) of S would be of level k + 1.



Weyl concluded that a development of analysis in such ramified terms would be 
unworkable; at the same time, he rejected the Axiom of Reducibility as untenable on 
predicative grounds. His solution was to confine himself to arithmetical sets of natural 
numbers and the associated sets and sequences of rational numbers. With real numbers 
identified not as Dedekind sections but rather as Cauchy (or fundamental) sequences r n n 

N of rational numbers, sequences of real numbers can be treated as double sequences r k,n 

of rational numbers. Then one can show that if s = x k k N is a Cauchy sequence of real 
numbers given as x k  = r k,n n N , then its limit t = q n n N exists arithmetically definable 
from the double sequence r k,n k,n N . Thus, in this form, the Cauchy completeness of the 
real number system is justified by the arithmetical comprehension axiom.
With the real number system secured in this way, Weyl could move on to see which parts 
of analysis could be redeveloped in this restricted version of predicativity, given the natural 
numbers, which one might call arithmetical analysis.5 His main achievement was to show 
that substantially all of nineteenth-century analysis of piecewise continuous functions 
could be accounted for in this way, since any continuous function f of real numbers is 
completely determined by its behavior at rational arguments, and hence can be represented 
at the second-order level. Subsequent research beginning in the 1970s has been able to 
extend Weyl's program much farther into twentieth-century analysis; more details about 
the reach of that will be described below. What is important for this part of our story is not 
that Weyl brought forth a new idea about predicativity, but rather that he showed 
mathematically the exceptional viability of the restricted part of predicativity, given the 
natural numbers, that is based unramifiedly on the second-order arithmetical 
comprehension axiom.
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Predicativity Sidelined: 1920-1950

If predicativity was to progress following these early developments, it would need a leader 
and practitioners. As it turned out, neither were there, for a number of reasons. Its first 
champion, Poincaré, died in 1912, and in any case he had not engaged in the essential 
clarification or implementation of his ideas. As for Russell, predicative logicism in the 
form of ramified type theory was compromised by the Axiom of Reducibility. Then, 
following the exhausting task of producing the first edition of Principia Mathematica 
(1910-1913), Russell turned to general problems in philosophy from an analytic 
perspective, and during World War I was drawn aside into pacifist politics. Finally, 
Wittgenstein's critiques of Russell's logic and philosophy struck serious blows to his 
confidence in his ideas.



The case of Weyl is different: despite the relative success of his arithmetically predicativist 
program in Das Kontinuum, he fell under the spell of Brouwer as he became more familiar 
with the work of that crusading intuitionist. In 1921 he wrote, "I now abandon my own 
attempt and join Brouwer."6 He then engaged in contributing to intuitionistic ideas and 
their relation to practice, and championed these in the following years, but eventually he 
became rather pessimistic about its prospects. Years later he wrote: 
Mathematics with Brouwer gains its highest intuitive clarity. He succeeds in developing 
the beginnings of analysis in a natural manner, all the time preserving the contact with 
intuition much more closely than had been done before. It cannot be denied, however, that 
in advancing to higher and more general theories, the inapplicability of the simple laws of 
classical logic eventually results in almost unbearable awkwardness. (Weyl 1949, p. 54) 
The foundational program most prominently in competition with that of Brouwer was 
Hilbert's proof-theoretical consistency program. By restricting to finitist methods, it was 
more radical than Brouwer's, but it was much more ambitious in its aim to "secure" the 
practice of nonconstructive mathematics via consistency proofs of appropriate formal 
systems. Though that was dashed by Gödel's theorem on unprovability of consistency in 
1931, the program took on new life with Gentzen's consistency proof for arithmetic and 
was transformed by the employment of limited transfinite methods.
What really pushed predicativity to the sidelines, though, was the success of axiomatic set 
theory—as developed by Zermelo, Skolem, and Fraenkel—in allaying fears about the 
paradoxes. Though not demonstrably consistent, intensive development of the subject 
without running into any difficulties gave comfort and confidence to its practitioners and 
gradually won the support of mathematicians at 
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large. Nor did the impredicativity that Poincaré and Weyl had located in the l.u.b. principle 
in the real numbers generate any concern. For, in mathematical practice, the real numbers 
are regarded as a definite, completed totality independent of human constructions and 
definitions, not some vague collection of numbers "growing" under successive definitions. 
Then the l.u.b. of a bounded subset S of R merely serves to single out a specific element of 
R, not to "bring it into existence." In this respect, it is like the least number operator in the 
set of natural numbers, which serves to single out a specific number in N without our 
always being able to say which one it is in ordinary systems of representation. (For 
example, in the solution of Waring's problem, given k, there is a least n such that every 
natural number is a sum of at most n kth powers; for all but the first few k, the specific 
value of n is unknown.) Mathematicians were thus insensitive to impredicativity in 
practice.
A story recounted in Feferman 1998 is apropos here: 



 … a famous wager was made in Zürich in 1918 between Weyl and George Pólya, 
concerning the future status of the following two propositions: 
(1) Each bounded set of real numbers has a precise upper bound. 
(2) Each infinite subset of real numbers has a countable subset. 
[The latter requires the Axiom of Choice.] Weyl predicted that within twenty years either 
Pólya himself or a majority of leading mathematicians would admit that the concepts of 
number, set and countability involved in (1) and (2) are completely vague, and that it is no 
use asking whether these propositions are true or false, though any reasonably clear 
interpretation would make them false. … the loser was to publish the conditions of the bet 
and the fact that he lost in the Jahresberichten der Deutschen Mathematiker  
Vereinigung … . (p. 57) 
The wager was never settled as such, for obvious political reasons. According to Pólya 
(1972), "The outcome of the bet became a subject of discussion between Weyl and me a 
few years after the final date, around the end of 1940. Weyl thought he was 49% right and 
I, 51%; but he also asked me to waive the consequences specified in the bet, and I gladly 
agreed." Pólya showed the wager to many friends and colleagues, and, with one exception, 
all thought he had won.
In axiomatic Zermelo-Fraenkel (ZF) set theory, the fundamental source of impredicativity 
is in the Separation Axiom scheme, which asserts for each well-formed formula φ(x) 
(possibly with parameters) of the language of ZF the existence of the set {x: x a φ(x)} for 
any set a. Since the formula φ may contain quantifiers ranging over the supposed "totality" 
of all sets, this is impredicative according to the VCP. Mathematically, this is given teeth 
by the assumption of the Axiom of Infinity, guaranteeing the existence of the set ω of finite 
ordinals (or the natural numbers) and by the assumption of the Power Set Axiom, 
guaranteeing for any set a the existence of (a) = {x: x a}. Without the Axiom of Infinity, 
the impredicativity of the Separation Axiom becomes innocuous, since the system has a 
model in the hereditarily finite sets. With the Axiom of Infinity, power set and separation 
lead, among other things, to the existence of the real 
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number system, represented, for instance, as the set of all upper Dedekind sections in the 
rational numbers, and thence to the l.u.b. principle for arbitrary bounded sets of real 
numbers.
Though predicativity went into hibernation until the 1950s, one important technical 
development in axiomatic set theory would prove to be significant for it. This was Gödel's 
model of the constructible sets (1939). The "standard interpretation" of ZF set theory, due 
to Zermelo in 1930, is in the cumulative hierarchy V α α On , defined by transfinite 
recursion on the class On of (finite and transfinite) ordinal numbers α by transfinite 
iteration of the power set operation starting with the empty set Ø as follows: 



•

This is a cumulative theory of types, unlike simple type theory, since, as may be shown by 
induction on α, if β < α, then V β V α . Gödel defined the constructible hierarchy L α α On 

by modifying the successor step, replacing the power set operation with an operation Def 

(a) which, for any set a, consists of all sets of the form {x: x a φa(x)} where the 
superscript "a" indicates that all quantifiers in φ are restricted to range over a, and where 
all parameters in φ are elements of a. Then L α is defined recursively by 

•

The constructible hierarchy thus stands to the cumulative hierarchy as Russell's ramified 
theory of types stands to the simple theory of types. In fact, the constructible hierarchy 
may be considered to be entirely predicative except perhaps in its free use of arbitrary 
ordinals. Since ordinals are the order types of well-ordered sets and those are defined 
impredicatively by the condition that any nonempty subset has a least element, the 
constructible hierarchy is not on the face of it predicative. But it may be considered to be 
predicative in a modified sense, relative to the notion of arbitrary well-ordering or ordinal 
number. An interesting restriction of that notion is the constructible hierarchy taken up to 
the least uncountable ordinal ω 1 , which comes into the next part of our story.

Predicativity in Transition, as a Chapter of Definability Theory

The logical analysis of predicativity reemerged in the 1950s as a chapter in the extension 
of recursion theory to various "higher" definability notions, especially 
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for sets of natural numbers. A systematic study of hierarchies of definitions of sets of 
natural numbers was undertaken in the early 1950s by Kleene and, independently, Davis 
and Mostowski. In Kleene's hands, this took the following form, using the "Turing jump" 
operator which takes one from any set X to a set X′ which is universal for sets that are Σ0 1 

in X. The sets which are obtained from N by finite iteration of the jump operation are, up to 
relative recursiveness, all the arithmetically definable sets. These thus take for granted the 
definiteness of quantification over N, and in that sense N as a completed totality. Kleene 
(1955) defined a transfinite extension of this hierarchy, using the set O of Church-Kleene 
notations for constructive ordinals. The details of the latter are not important in the 
following. Roughly speaking, there is a notation for 0 in O, and each n O has a notation 
for its successor; finally, any effectively enumerated increasing sequence in O has a 



notation for its limit. For n O, we write |n| for the ordinal α it denotes. As an analogue of 
the least uncountable ordinal ω 1 , the least ordinal not constructive in the sense of Church-
Kleene (i.e., the least α such that there is no n O with |n| = α), is denoted ω 1 CK. It was 
shown by Spector (1955) that the order types of recursive well-orderings of N are exactly 
the ordinals less than ω 1 CK. Kleene's extension of the finite jump hierarchy, and thence of 
the arithmetical sets, is defined inductively for each n O yielding a subset H n of N, as 
follows. H 0  = Ø and the step from H n to its successor set is by the jump operation; finally, 
at a limit notation, one takes the direct sum of the sets associated with the sequence 
approaching it. Then a set is called hyperarithmetic if it is recursive in H n for some n O. 
The collection of all such sets is denoted HYP, which properly extends the class of 
arithmetical sets. One of the main results of Kleene (1955) is that 

HYP = Δ1 1 
where Δ 1 1 is by definition 㨐 1 1 ∩Σ1 1 . That is, it consists of all sets S such that for some 
arithmetical predicates A(n,X) and B(n,X), and all n N, 
n S ↔ ( X)A(n, X) 

and 

n S ↔ ( X)B(n, X) 
The connection with predicative definitions in the sense of the ramified analytic hierarchy 
was established as follows. The basic step in that hierarchy consists in passing from a 
collection D of subsets of N to a new collection D* by putting a set S in D* just in case 
there is a formula φ(x) of second-order arithmetic such that for all n, 
n S ↔ (φ(n))D, 
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where the superscript "D" indicates that all second-order quantifiers in φ are relativized to 
range over D. Then we can define the collections R α for arbitrary ordinals α by 

•

Thus the definition of the R α proceeds exactly like the L α in Gödel's constructible 
hierarchy, except that at each stage one is confined to collections of subsets of N. Though 
R α is defined for all α, it is not hard to show that we get nothing new for uncountable α; in 
fact there is a countable α such that R α  = R α + 1 . Kleene (1959) proved that 

•



However, HYP does not exhaust the ramified hierarchy, as follows from results of Gandy 
(1960) and Spector (1960).
It was tentatively proposed by Kreisel (1960) to identify the predicatively definable sets, 
given the natural numbers, with the members of HYP, essentially for the following reasons. 
Call an ordinal α predicative(ly definable) if it is the order type of a predicatively definable 
well-ordering W of the natural numbers; then a set should be considered to be predicatively 
definable if it belongs to R α for some predicative α. Clearly, then, on those grounds all 
recursive ordinals are predicative, and so by Kleene's equation above, each member of 
HYP ought to be accepted as predicative. For the converse, the predicative ordinals should 
be taken to be only those generated by the following "bootstrap" condition: if α is a 
predicative ordinal and W is a well-ordering relation in R α and if β is the order type of W, 
then β is predicative. But then the predicative ordinals do not go beyond the recursive 
ordinals, using the result of Spector (1955) that every hyperarithmetic well-ordering has 
order type less than ω 1 CK: for if α is recursive and the well-ordering W R α , then W HYP, 
and hence the order type of W is recursive. This part of the argument shows that the 
predicative sets do not go beyond HYP.
Actually, analogous considerations leading to this identification had been proposed 
somewhat earlier by Wang (1954), who introduced ramified formal systems Σ α , which 
have as a natural model the constructible sets to level ω + α (since Wang starts with the 
hereditarily finite sets). The ordinals regarded to be predicative are again generated by a 
"bootstrap" condition: if α is predicative and β is defined by a well-ordering relation 
expressed in Σ α , then β is predicative. The system Σ is taken to be the union of the Σ α for 
α predicative. Spector (1957) established that the predicative ordinals in this sense are 
exactly those less than ω 1 CK and the sets of natural numbers definable in Σ are exactly the 
HYP sets. In a suitable sense, the sets definable in Σ are those which have HYP structure on 
their transitive closure.
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Independently of Wang, Lorenzen (1955) dealt with systems S α of a character similar to 
the Σ α but did not impose precise conditions on the ordinals to be admitted. Lorenzen's 
main concern there is with what parts of mathematics can be developed predicatively. 
Incidentally, both Lorenzen and Wang claim that the l.u.b. principle holds for sets of reals 
defined at any limit level α, in particular for α = ω. In their systems, the members of a set 
at any level are all at a lower level. Hence, if a bounded set X of real numbers is defined in 
S α + 1 for limit α, then it lies in S β for some β < α, and then l.u.b.(X) belongs to S α + 1 . 
However, the applicability of this form of the l.u.b. principle has to be questioned, since 
the sets of reals one deals with in practice, even if defined arithmetically, do not have 
members of a level restricted in advance.



Though the considerations leading to the identification of the predicative ordinals (resp. 
sets of natural numbers) with the recursive ordinals (resp. hyperarithmetic sets) have a 
certain plausibility, they ignored one crucial point if predicativity is only to take the natural 
numbers for granted as a completed totality: namely, that they involve in an essential way 
(both from above and below) the impredicative notion of being a well-ordering relation. A 
step away from that would be to talk of predicatively provable well-orderings in a way to 
be explained next.

Predicative Provability in the 1960s

The idea, to begin with, is that instead of dealing with the collections R α , one deals (as in 
the systems Σ α ) with a transfinite progression of formal systems of ramified analysis RA α 

, using variables Xβ, Yβ, Zβ, … for each β ≠ α. Here ordinals are not to be considered set-
theoretically but rather as notations chosen from O by some natural procedure. The formal 
systems RA α incorporate as axioms comprehension principles expressing closure under the 
appropriate ramified definitions. These can provide closure conditions only on the sets at 
each level; the minimal model of RA α is given by R β β ≠ α , but larger collections can also 
satisfy the axioms of RA α . In particular, we can interpret the variables X0, Y0, Z0, … as 
satisfying the closure conditions of any larger R β .
The crucial new point (compared to Wang's systems) is that the predicative ordinals not 
only are those that can be defined by (what happen to be) well-ordering relations in the 
given systems, but also must previously be proved to be such relations. The problem is 
how to meet this requirement without unrestricted second-order quantification; the answer 
comes from the provability condition as 
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follows. Given W, a binary recursive relation in the natural numbers, let WOβ (W) express 
that W is a linear ordering such that every nonempty subset Xβ of the field of W has a W-
least element. Then if one proves WO0(W), it follows that one can "lift" the proof to 
establish WOβ(W) for each β that comes to be accepted. In this sense, the proof of the 
predicatively meaningful statement WO0(W) can ensure all predicatively meaningful 
consequences WOβ(W) of the impredicative statement of well-ordering WO(W); indeed, 
from the outside it ensures that W is a well-ordering. Now Kreisel's proposal (1958, 1960) 
can be formulated as follows. The predicative(ly provable) ordinals are generated from 0 
by the bootstrap or autonomy condition: if α is predicative and RA α proves WO0(W) for a 
given recursive W, and β is the order type of W, then β is predicative. The least 



nonpredicatively provable ordinal is then proposed to be the least ordinal which cannot be 
obtained in that way.
Kreisel called for an independent characterization of that limit of the predicatively 
provable ordinals in the sense just described. That problem was solved independently by 
Schütte (1965a, 1965b) and me ("Systems of Predicative Analysis," 1964), in terms of the 
Veblen hierarchy χ α α of critical functions of ordinals defined for each ordinal α by χ 0 

(ξ) = ωξ, and when α ≠ 0, χ α enumerates in order of size the set of common fixed points ξ 
of all χ β for each β < α; that is {ξ: for all β < α, χ β (ξ) = ξ}. Then the function of ξ given by 
χ ξ (0) is normal; let Γ α be the αth fixed point ξ of the equation χ ξ (0) = ξ. Then what 
Schütte and I showed is that the least nonpredicatively provable ordinal is Γ 0 . Outlines of 
proofs are to be found in the cited references. A full exposition can be found in Schütte's 
book Proof Theory (1977), chapter VIII.

Predicatively Reducible Systems

Taking the intrinsic interest of predicativity given the natural numbers for granted, after 
determining Γ 0 to be the least nonpredicatively provable ordinal according to the above 
proposal, one had to return to the question of how much mathematics could be developed 
predicatively. This was pursued both theoretically, via alternative formal systems, and by 
means of case studies, to be discussed below. On the theoretical side, since (as Weyl 
stressed) ramified theories are unsuitable as a framework for the development of analysis, 
the first question was to see which unramified systems could be justified on predicative 
grounds. A formal system T is said to be (locally) predicatively reducible if it is proof-
theoretically reducible to the autonomous progression of ramified systems described in the 
previous section.7 If T has 
end p.607

the same proof-theoretic strength as that progression, then its proof-theoretic ordinal is Γ 0 . 
In that case, though the system T as a whole may not be justifiable predicatively, each 
theorem φ of T rests on predicative grounds, at least indirectly. In practice, more can be 
said: T is conservative over the autonomous ramified progression for arithmetic sentences 
(i.e., if φ is arithmetical and provable in T, then it is provable in that progression). For 
second-order T this can often be strengthened to conservativity for Π1 1 sentences (i.e., for 
φ of the form ( X)A, where A is arithmetical), which on the ramified side is taken to be (
X0)A. In particular, in that case, any provable well-ordering of T is also predicatively 
provable.



The first two examples of unramified second-order predicatively reducible systems were 
given in Feferman (1964). The first of these was obtained by replacing the progression of 
ramified theories RA α with a progression HC α of unramified second-order theories, based 
on the Hyperarithmetic (or Δ1 1 ) Comprehension Rule: 
(Δ1 1 -CR) From ( x)[P(x) ↔ Q(x)] infer ( X)( x)[x X ↔ P(x)], 
where P(x) is any Π1 1 formula and Q(x) is any Σ1 1 formula (parameters allowed).
The motivation for Δ1 1 -CR is the recognizable absoluteness (or invariance) of provably Δ1 

1 definitions, in the following sense. At each stage one has recognized certain closure 
conditions on the "open" universe of sets, and the definitions D(x) of sets introduced at the 
next stage should be independent of what further closure conditions may be accepted. In 
the words of Poincaré, the definitions used for objects in an incomplete totality should not 
be "disturbed by the introduction of new elements." Thus, if U represents a universe of sets 
(subsets of N) satisfying given closure conditions and is extended to U′ (satisfying the 
same closure conditions and possibly further ones), one wants D to be provably invariant  
or absolute in the sense that ( x)[DU(x) ↔ DU′(x)]. This requirement is easily seen to hold 
for provably Δ1 1 formulas in the sense that ( x)[D(x) ↔ P(x)] has been proved, where P 
and Q satisfy the hypothesis of the rule Δ1 1 -CR.8 The progression of theories HC α is then 
obtained by suitable transfinite iteration of the rule HCR. Again, one can apply the notion 
of autonomy to such a progression: it was shown that the least nonautonomous ordinal of 
this progression is Γ 0 ; that the union of the HC α for α < Γ 0 is of the same proof-
theoretical strength as the union of the autonomous ramified progression; and that one has 
conservativity for Π1 1 formulas.
The second predicatively reducible system introduced in Feferman (1964) was obtained by 
replacing the autonomous progression of the HC α with a single second-order system, 
denoted IR. This is axiomatized by the rule Δ1 1 -CR together 
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with what is called the Bar Rule in the proof-theoretic literature, which allows one to infer 
the full scheme of transfinite induction on a recursive ordering W when WO(W) has been 
established; correspondingly, one has a rule for inferring a scheme of transfinite recursion 
on W under the same hypothesis. (The "I" in "IR" is for Induction, and the "R" is for 
Recursion.) The main result concerning IR stated in Feferman (1964) is that it proves the 
same theorems as the union of the HC α for α < Γ 0 , and thus it is predicatively reducible 
with conservativity for Π1 1 formulas.
The system of what is often referred to as second-order arithmetic has the full (Π∞ 1 ) 
comprehension axiom, 

(Π∞ 1 -CA) ( X)( x) [x X ↔ φ], 



where φ is an arbitrary second-order (Π∞ 1 ) formula which does not contain "X" free. In 
1976, Harvey Friedman introduced several subsystems of second-order arithmetic whose 
common feature is that induction is restricted to its second-order form, the induction  
axiom, 

(IA) ( X) [(0 X) ( x)(x X → x′ X) → ( x)(x X)]. 

In the presence of the full comprehension axiom, one can infer from the induction axiom 
IA the induction scheme, considered as the collection of all formulas of the form 

(IS) φ(0) ( x)[φ(x) → φ(x′)] → ( x) φ(x) 

for arbitrary second-order formulas φ. But in the restricted systems considered by 
Friedman, in which the comprehension axiom is considerably weakened, that step is not 
possible. Following Friedman, these systems are indicated by a subscript 0. An obvious 
choice for such to consider with respect to the present subject is the system ACA 0, 
obtained by replacing the full comprehension axiom scheme with the subscheme in which 
only arithmetical formulas φ (no bound second-order variables) are admitted. It is a 
classical result of proof theory that the system ACA 0 is a conservative extension of the 
first-order system of Peano Arithmetic (PA). On the other hand, the system ACA, which is 
obtained by use of the full induction scheme (IS) in place of (IA), is stronger than PA; it is 
still predicatively reducible, but its proof-theoretical ordinal is far below Γ 0 .
Another predicatively reducible system introduced in Friedman (1976) is denoted ATR 0 . 
It has a certain similarity to IR, using axioms in place of rules, as follows. In place of the 
Δ1 1 -CR one has the Δ1 1 -CA, that is, the axiom scheme 

( x)[P(x) ↔ Q(x)] → ( X)( x)[x X ↔ P(x)], 

where P is Π1 1 and Q is Σ1 1 . In place of the transfinite recursion rule of IR, one has an 
axiom expressing that for all well-ordering relations Z, one can construct the Turing jump 
hierarchy along Z starting with any set X (i.e., the relative hyperarithmetical 
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hierarchy along Z). The transfinite induction rule in IR is not replaced by the 
corresponding axiom, since that would be too strong; in place of it, the system ATR 0 uses 
only the induction axiom (IA) for natural numbers as above. Friedman's main result 
announced in 1976 was that ATR 0 is predicatively reducible with proof-theoretical ordinal 
Γ 0 and is conservative over IR for Π1 1 sentences; a full proof of this with further 
interesting results about ATR 0 is given in Friedman, McAloon, and Simpson (1982).



Various predicatively reducible systems of higher type are surveyed in Avigad and 
Feferman (1998), sections 8.2 and 8.3. Predicatively reducible systems of set theory related 
to IR were treated in Feferman (1974), and ones related to ATR 0 have been dealt with in 
Simpson (1982). See also Simpson (2002),"Predicativity: The Outer Limits."

The Mathematical Reach of Predicativity: Positive Developments

Having established theoretical bounds to predicativity and workable unramified 
predicatively reducible systems, the next questions of interest are to see what parts of 
"everyday" mathematics can be carried out within those bounds, and what parts are 
essentially impredicative; the latter question is treated in the next section. It turns out in 
practice that if a known mathematical result can be established predicatively, it can already 
be done in a system conservative over Peano Arithmetic (PA). In other words, the 
predicative part of everyday mathematics is robustly predicative. There is no theorem 
which can establish this; one can only depend on various case studies for confirming 
evidence. One avenue is that pursued in the so-called Reverse Mathematics (RM) program 
due to Friedman and carried on most extensively by Simpson in his book Subsystems of  
Second Order Arithmetic (1999). The primarily relevant system for the positive work on 
predicative mathematics in that framework is ACA 0 , described above, and conservative 
over PA. Another relevant system is much weaker, being based only on the weak König's 
Lemma (i.e., the tree lemma for infinite branching binary trees; it is shown in Simpson 
(1999) that the associated system WKL 0 is conservative over the system PRA of Primitive 
Recursive Arithmetic. A second avenue in which the positive reach of predicative 
mathematics has been studied is via a system W (for Weyl) of flexible finite types 
introduced in the final part of the article "Weyl Vindicated" (Feferman 1988). The main 
proof-theoretical result concerning W is that it is a conservative extension of PA (Feferman 
and Jäger 1993, 1996). Only 
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some points of general character concerning both of these approaches will be indicated 
here.
In W, types are variable; for any two types X and Y, one has existence of their Cartesian 
product X × Y, and the type of all partial functions from X to Y; finally, for any 
type X and bounded formula φ one has the subtype {x X: φ(x)} of X determined by φ. 
Starting from the type N of natural numbers, one can introduce, as usual, the type Q of 
rational numbers, and then, by separation from , the type R of real numbers, 
considered as Cauchy sequences of rational numbers identified under the usual equivalence 



relation. Then (partial) functions of real numbers can be treated as members of , 
and various spaces of such functions (e.g., continuous, measurable, etc.) form examples for 
Hilbert spaces and Banach spaces. Given any such space S, the functionals from S to R are 
then certain members of . In practice, only separable spaces can be treated 
predicatively, via a given countable dense subset.
As for the program initiated by Weyl in 1918, the full classical analysis of continuous 
functions can be carried out directly in W. Turning to more general classes of functions 
from twentieth-century analysis, such as come out of the Lebesgue theory of measure, one 
first notes that the general notion of outer measure can't be defined in W, since it makes 
essential use of the g.l.b. as applied to sets of reals, not sequences of reals. But the notion 
of measurable set can be treated via sequences of open covers whose measure is directly 
defined, and the notion of measurable function can be defined in terms of that or in terms 
of sequences of approximating step functions. One cannot prove the existence of Lebesgue 
nonmeasurable sets of reals; put in other terms, it is consistent with W that all sets of reals 
are Lebesgue measurable. Various parts of standard functional analysis have been verified 
in unpublished notes: the Riesz representation theorem, the Hahn-Banach theorem, the 
uniform boundedness theorem, and the open mapping theorem for separable Hilbert and 
Banach spaces. Finally, one can obtain the principal results of the spectral theory of 
bounded as well as unbounded self-adjoint linear operators on a separable Hilbert space. 
Subsequent to this work, it has been shown in the dissertation of Feng Ye (1999) that much 
of this work can already be carried out in a constructive subsystem of W, conservative over 
PRA.
By comparison, in the RM program, sharper results have been obtained, of the form that 
over a weak base system RCA 0 , various of these results in analysis are actually equivalent 
to ACA 0 (if not already to WKL 0 ); these are detailed in Simpson (1999). However, since 
the systems considered in the RM program are all subsystems of second-order arithmetic, 
there is a cost involved, namely, that higher-type notions, such as those of functions of real 
numbers, function spaces, and functionals, cannot be dealt with directly but must somehow 
be coded in second-order terms. If one is not concerned with obtaining exact equivalences 
between mathematical results, and the second-order set and function existence 
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principles on which they ultimately rest, the positive predicative development of analysis is 
carried out much more naturally in systems like W.

The Outer Mathematical Bounds of Predicativity



Turning now to mathematical results which cannot be carried out predicatively, the easiest 
proofs of independence are those which can be established by models in the 
hyperarithmetic sets. For example, independence of the existence of nonmeasurable sets of 
reals stems from the fact that every Δ1 1 set of reals has HYP Lebesgue measure. Another 
example using HYP, was found by Kreisel (1959), is the impredicativity of the Cantor-
Bendixson theorem, which asserts that every closed set of reals is the union of a perfect set 
and a countable (scattered) set. The HYP model can also be used to obtain examples of 
impredicative theorems in algebra. For example, in the Ulm structure theory of countable 
Abelian p-groups G, one starts by dividing out G by its largest divisible subgroup H, to 
yield a reduced group G/H. An example is given in Feferman (1975) of a recursive Abelian 
p-group G for which the union H of its HYP divisible subgroups is not HYP; thus the 
existence of a largest divisible subgroup of any countable Abelian p-group is not 
predicatively provable.
For independence results closer to the bounds of predicativity, one must fall back on proof-
theoretic results. For example, any theorem equivalent to ATR 0 is at the exact limit Γ 0 of 
predicativity, and is thus impredicative. Simpson (2002) gives a number of examples of 
theorems from descriptive set theory that are equivalent to ATR 0 over RCA 0, including 
the following: (i) every disjoint pair of analytic sets can be separated by a Borel set; (ii) 
every uncountable closed (or analytic) set contains a perfect subset; (iii) clopen (or open) 
determinacy. Also, ATR 0 is equivalent to (iv) comparability of countable well-orderings, 
and (v) Ulm theory for countable reduced Abelian p-groups. Other independence results 
have come from combinatorics rather than analysis, set theory, or algebra. They are of 
interest because the statements are arithmetical, in fact, in Π0 2 form. One group of these 
has to do with variants of the Ramsey coloring theorem, such as the Paris-Harrington 
(1977) version independent of PA. Friedman, McAloon, and Simpson (1982) gave a 
mathematically natural finite combinatorial theorem which is equivalent to ATR 0 over 
RCA 0 . Friedman showed that certain simple Π0 2 consequences of Kruskal's theorem 
about embeddings of finite trees are not even provable in ATR 0 (cf. Simpson 2002 for 
references and further developments).
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Predicativity and the Indispensability Arguments

The idea that natural science justifies a part of mathematics because of its indispensability 
to science—and that that is the only part of mathematics that is justified—is due to Willard 
Quine and Hilary Putnam, among others. Famously, Quine has written: 
So much of mathematics as is wanted for use in empirical science is for me on a par with 
the rest of science. Transfinite ramifications are on the same footing insofar as they come 



of a simplificatory rounding out, but anything further is on a par with uninterpreted 
systems. (Quine 1984, p. 788) 
(See chapters 12 and 13 above.) Quine argued that we need the power set operation in set 
theory to establish the existence of the real numbers R and then its application once more 
to obtain such sets as that of all functions from R to R. That led him by a "simplificatory 
rounding out" to acceptance of finite iterations of the power set, but not its ωth iteration 
over the natural numbers. In other words, Quine was led thus to accept Zermelo set theory 
but nothing stronger, which he looked upon as "mathematical recreation and without 
ontological rights" (Quine 1986, p. 400). Penelope Maddy has characterized the 
indispensability arguments (for critical purposes) as follows: 
We have good reason to believe our best scientific theories, and mathematical entities are 
indispensable to those theories, so we have good reason to believe in mathematical entities. 
Mathematics is thus on an ontological par with natural science. Furthermore, the evidence 
that confirms scientific theories also confirms the required mathematics, so [that part of] 
mathematics and science are on an epistemological par as well. (Maddy 1992, p. 278) 
In (Feferman 1993, reprinted 1998) I considered the significance for the indispensability 
arguments of the positive developments of parts of mathematics by predicative means 
described above in the following terms (1998, p. 284): "If one accepts the indispensability 
arguments [of course one might argue against them on philosophical grounds] there remain 
two critical questions: 
Q1. Just which mathematical entities are indispensable to current scientific theories? 
Q2. Just what principles concerning those entities are needed for the required 
mathematics?" 
The positive developments described above are brought to bear on these questions as 
follows. On their basis, I had formulated the working hypothesis that all of scientifically  
applicable analysis can be developed in the system W, and argued that this has been 
verified in its core parts (cf. 1998, pp. 280-283, 293-294). Of course, 
end p.613

there are results of theoretical analysis which cannot be carried out predicatively, either 
because they are essentially impredicative in their very formulation or because they are 
independent of predicative systems such as the examples given above. However, none of 
those affects the working hypothesis because they do not figure in the applicable 
mathematics. What is more to the point are examples closer to the margin scientifically 
(e.g., the proposed use of certain nonseparable spaces for a quantum-mechanical model 
involving infinitely many degrees of freedom in Emch [1972, p. 103]; contra that, one can 
appeal to the arguments on physical grounds by Streater and Wightman [1978, p. 87]).9 Of 
course the working hypothesis may yet prove to be wrong by other examples, but as of 



now, all evidence is in its favor. If one accepts it, one can return to questions Q1 and Q2 as 
follows: 
By the fact of the proof-theoretical reduction of W to PA, the only ontology it commits one 
to is that which justifies acceptance of PA. But even there, the answer to Q1 and thence to 
Q2 is underdetermined. One view of PA is that it is about the natural numbers as 
independently existing abstract objects; that is … a platonistic view, albeit an extremely 
moderate one. … Or one can make use of the fact that PA is reducible to HA [Heyting 
Arithmetic] to justify it on the basis of a more constructive ontology. (Feferman 1998, p. 
296) 
From this and related arguments, I drew the conclusion that 
 … if one accepts the indispensability arguments, practically nothing philosophically 
definitive can be said of the entities which are then supposed to have the same status—
ontologically and epistemologically—as the entities of natural science. That being the case, 
what do the indispensability arguments amount to? As far as I'm concerned, they are 
completely vitiated. (ibid., p. 297) 

Rethinking Predicativity II: 1970-1996

In Kreisel's "Principles of Proof and Ordinals Implicit in Given Concepts" (1970), he 
criticized existing proof theory for "the lack of a clear and convincing analysis of the  
choice of methods of proof," and took as his ultimate aim "the discovery of objective  
criteria for such a choice" (italics in the original). "What one is after is a 
(phenomenological) description of certain kinds P of mathematical reasoning; the 
objective question is then simply this: whether the proofs represented … by derivations of 
a given formal system F are in P (soundness of F); [and] whether all proofs in P are 
represented in F (completeness with respect to … provability in P)." The particular kinds 
of reasoning P considered with respect to this aim were 
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described as an answer to the following: "What principles of proof do we recognize as 
valid once we have understood (or, as one sometimes says, 'accepted') certain given 
concepts?" (Kreisel 1970, p. 489). As a further elaboration, "[t]he process of recognizing 
the validity of such principles (including the principles for defining new concepts, that is, 
formally, of extending a given language) is here conceived as a process of reflection … . 
Granted that we have to do with an area P which lends itself to the kind of analysis 
indicated, it is evident that ordinals play a basic role. They index the stages in the 
reflection process." (ibid.)



The two principal basic concepts considered by Kreisel (p. 490) are, in his terminology: 

1.  The concepts of ω-sequence and ω-iteration 
2.  The concepts of set of natural numbers and numerical quantification. 

Kreisel pointed out that this is related to earlier work on autonomous progressions for 
finitist mathematics (in Kreisel 1958, 1965) and for predicative mathematics (in Feferman 
1964).
This rethinking of predicativity and, relatedly, of finitism was persuasive to me except for 
the idea that one would expect the stages of reflection to be indexed by (possibly) 
transfinite ordinals, though such ordinals might well be used metamathematically in an 
evaluation of the proof-theoretical strength of the system F proposed to represent P. In my 
view, the F considered for a given P should not be taken to involve the notions of ordinal 
or well-ordering in any way that is not already contained in the basic concepts of P. The 
formulation of this went through several stages, marked by, among others, the publications 
Feferman (1979, 1991), arriving most recently at the general notion of unfolding, as first 
explained in "Gödel's program for new axioms: why, where, how, and what?" (Feferman 
1996). That also pointed to the possible applicability of the notion to systems of set theory 
at the other extreme to finitism, in which certain axioms for "large cardinals" would be 
derived that one could argue would fulfill Gödel's view that the familiar systems such as 
ZFC "can be supplemented without arbitrariness by new axioms which are only the natural 
continuation of those set up so far" (Gödel 1947, p. 520). The idea of unfolding is outlined 
next.

Predicativity as Unfolding

It is of the essence of the notion of unfolding that we are dealing with schematically 
presented formal systems.10 In the usual conception, formal schemata for 
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axioms and rules of inference employ free predicate variables P, Q, … of various numbers 
of arguments n ≥ 0. An appropriate substitution for P(x 1 , … , x n ) in such a scheme is a 
formula φ(x 1 , … x n ), possibly with additional parameters. Familiar examples of axiom 
schemata in the propositional and predicate calculus are 

¬P → (P → Q) and ( x)P(x) → P(t). 



The induction axiom scheme in nonfinitist arithmetic is given by 

P(0) ( x)[P(x) → P(x′)] → ( x)P(x). 

In set theory, familiar axiom schemes which can be represented similarly are those for the 
Separation and Replacement axioms.

Also, rules of inference may be represented schematically, such as modus ponens in the 
propositional calculus and universal generalization in the predicate calculus, given 
respectively by 

P, P → Q / Q and [P → Q(x)] / [P → ( x)Q(x)]. 

In finitist arithmetic, in which quantification over the natural numbers is not accepted, the 
basic principle of induction is given by the rule: 

P(0), P(x) → P(x′) / P(x). 

The informal philosophy behind the use of schemata in the concept of unfolding is their 
open-endedness. That is, they are not conceived of as applying to a specific language 
whose stock of basic symbols is fixed in advance, but rather as applicable to any language 
which one comes to recognize as embodying meaningful basic notions. Put in other terms, 
implicit in the acceptance of given schemata is the acceptance of any meaningful  
substitution instances. But which ones those substitution instances are, need not be 
determined in advance. Thus, for example, if one accepts the axioms and rules of the 
classical propositional calculus given in schematic form, one will accept all substitution 
instances of these schemata in any language which one comes to employ.
The question which the notion of unfolding is supposed to address is: given a schematic  
system S, which operations and predicates—and which principles concerning them—ought  
to be accepted if one has accepted S? The answer for operations is straightforward: any  
operation from and to individuals is accepted which is determined explicitly or implicitly  
from the basic operations of S. Moreover, the principles which are added concerning these 
operations are just those which are derived 
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from the way that they are introduced. Ordinarily, we would confine ourselves to the total  
operations obtained in this way (i.e., those which have been proved to be defined for all 
values of their arguments), but it should not be excluded that the introduction might 



depend on prior partial operations (e.g., those introduced by recursive definitions of a 
general form). The question concerning predicates in the unfolding of S is treated in 
operational terms as well; that is, which operations on and to predicates—and which  
principles concerning them—ought to be accepted if one has accepted S? For this, it is 
necessary to tell at the outset which logical operations on predicates are taken for granted  
in S. For example, in the case of nonfinitist classical arithmetic, these would be (say) the 
operations ¬, , and , while in the case of finitist arithmetic we would be limited to 
positive propositional connectives and (in one formulation) the operator.
As a general background theory to unfolding for arbitrary S, one assumes a kind of 
protomathematical theory of operations and predicates, which makes only those 
assumptions that appear in every mathematical theory. The theory of operations can be 
typed or untyped; the latter, which is formally simpler, is taken to be a form of partial 
combinatory algebra with pairing and projection operations. These provide for closure of 
both operations and predicates under explicit definition. In addition, the combinatory setup 
allows one to construct a generalized recursion or fixed point operator r, satisfying 

r(f) = f(rf) 

for any f. In other words, we allow implicit definitions of operations g via 

g = (fg) 

for any given f. One general (logic-independent) operation on predicates is given a 
distinguished role, since we consider the case when it is not used. Given an operation f on a 
domain M to n-ary predicates over M, fx = P x for each x M, form the join predicate 
J(f) = P, where 

P(x, x 1 , … ,x n ) ↔ P x (x 1 , … ,x n ). 

The operational unfolding of a schematic system S, in symbols U 0 (S), makes use only of 
the background theory of operations over the given operations of S (i.e., it does not make 
use of any operations on or to predicates. The full (operational and predicate) unfolding of 
S, in symbols U(S), also admits the background theory of operations on and to predicates 
over the given logical operations of S, including the join operator J. The intermediate  
(operational and predicate) unfolding of S, in symbols U 1 (S), is the same without the join 
operator. Systems 
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are unfolded by establishing the definedness and uniqueness of more and more operations 
of the various kinds. These serve to expand the language, and thence theS formulas φ 
which can be admitted to the 
$$(Substitution Rule) A(P)A(XQ(x)).$$ 
As an example, the schematic system NFA of nonfinitist arithmetic is given with basic 
operations on individuals of successor Sc, predecessor Pd, and the 0-ary operation 
(constant) 0, and a schematic predicate symbol P(x). In the intermediate and full 
unfoldings, the basic logical operations assumed are ¬, , and . The basic axioms of NFA 
are simply the following three, where we write x′ for Sc(x): 

Ax 1. x′ ≠ 0. 
Ax 2. Pd(x′) = x. 
Ax 3. P(0) ( x)[P(x) → P(x′)] → ( x) P(x). 

In my paper with Thomas Strahm, "The Unfolding of Non-finitist Arithmetic" (2000), the 
following theorem is proved, where ≡ is the relation of proof-theoretical equivalence, PA is 
the usual system of Peano Arithmetic, and RA <α is the union of the systems RA β of 
ramified analysis to level β, for β < α. 

THEOREM 1. 
(i) U 0 (NFA) ≡ PA 
(ii) U 1 (NFA) ≡ RA <ω 
(iii) U(NFA) ≡ RA <Γ0 . 

In other words, the full operational and predicate unfolding of NFA is proof-theoretically 
equivalent to predicative analysis as characterized via the autonomous progression of 
ramified theories. The first step in getting PA contained in U 0 (NFA) is to establish 
successively the definedness of all primitive recursive functions.11 
In an abstract with Strahm, "The Unfolding of Finitist Arithmetic" (2001) we announced 
the following result for a system FA of Finitist Arithmetic with the restricted operations on 
predicates indicated above, and with the induction axiom replaced by the quantifier-free 
induction rule. Here we obtained, in terms of the system PRA of Primitive Recursive 
Arithmetic: 

THEOREM 2. U 0 (FA) ≡ U 1 (FA) ≡ U(FA)≡ PRA.12 
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This is in accord with Tait's argument (1981) that finitism is formally represented by PRA.



Kreisel's work on finitism in terms of certain autonomous progressions (1958, 1965) led to 
a system whose proof-theoretical strength is Peano Arithmetic (PA). It should be possible 
to expand the system FA to a system FA* whose unfolding is exactly PA in strength. The 
guess is that this would be obtained by adding a suitable form of the Bar Rule in the 
language of FA, informally expressed as follows: if W is a decidable ordering and it has 
been proved (with free variable f) that f is not descending in W, then one can apply 
transfinite induction to W. 

CONJECTURE. U(FA*) ≡ PA. 

If this is right, what gives Kreisel's characterization of finitism its unexpected strength is 
his implicit use of a notion of finitist well-ordering.

What Is Predicativity? Summary

The idea of predicativity started in a negative frame of mind with the identification of a 
vicious circle in the use of definitions purported to single out an object D from a supposed 
totality V by essential reference to the entirety of V. Such a definition was considered to be 
problematic when V is in some sense essentially ill-defined, not "actual" or "complete." To 
begin with, the focus was on the supposed totalities of all sets or all ordinal or cardinal 
numbers in the framework of Cantorian set theory. The radical diagnosis of Kronecker, 
Poincaré, and Brouwer saw a threat to mathematics in all assumptions of the actual 
infinite, even down to the natural numbers. Hilbert, too, in his consistency program to 
secure infinitistic mathematics, was infected in this way and, in the words of Paul Bernays, 
"It became his goal to do battle with Kronecker with his own weapon of finiteness" by way 
of inoculation.
Less radical at first, Weyl accepted the set N of natural numbers as a completed totality, 
but not the real numbers or, what comes to the same thing foundationally, the totality of all 
subsets of N. Thus was born the concept of predicativity given the natural numbers, and the 
investigation of its reach in practice. That there is a fundamental difference between our 
understanding of the concept of natural numbers and our understanding of the set concept, 
even for sets of natural numbers, is undeniable. The study of predicativity given the natural 
numbers is thus of special foundational significance, and is the one that has received the 
most detailed study, as described above. This is not to say that only what is predicative in 
that sense is justified. What we are dealing with here are questions of relative conceptual  
clarity and foundational status. Parallel to the development of predicative mathematics 
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was the pursuit of finitist mathematics in the hands, to begin with, of Skolem (1923) and, 
much later, Goodstein (1957). Both were overshadowed in the foundational wars by the 
intuitionists, the most radical of the radicals.
With the rise in the 1950s of metamathematics as a substantial discipline and broadly 
applicable tool, these directions became the subject of logical analysis at the hands of 
philosophically motivated but not necessarily ideologically committed logicians such as 
Kleene and Kreisel. Kleene was concerned, in effect, with what definition processes 
(recursive, hyperarithmetic, etc.) were implicit in accepting given notions. Kreisel shifted 
the attention to what proof processes were implicit in these. The notion of unfolding of 
schematic formal systems evolved from his 1970 paper "Principles of Proofs and Ordinals 
Implicit in Given Concepts." The aim was to put that in more general form by not 
assuming the notion of ordinal as part of the basic description. The first results (theorems 1 
and 2 above) are gratifying in this respect: the full unfolding of the system NFA of 
nonfinitist arithmetic is equivalent to the characterization in terms of the autonomous 
progression of ramified systems of predicativity, given the natural numbers, while that of 
the system FA of finitist arithmetic is equivalent to primitive recursive arithmetic.
Are those the only two senses of predicativity to be considered? In one direction, stronger 
notions of predicativity than that, given the natural numbers, were suggested by work in 
the late 1950s of Paul Lorenzen, John Myhill and Hao Wang. In particular, Lorenzen and 
Myhill (1958) involves the acceptance in a certain constructive form of the countable 
ordinals and of inductive proof and definition on them. In metamathematical terms, their 
principles would legitimate a system of strength at least that of ID 1 , the theory of one 
generalized inductive definition. In quite the opposite direction, Edward Nelson published 
a monograph, Predicative Arithmetic (1986), which perhaps more properly should have 
been titled Strictly Finitist Arithmetic, whose admissible principles place it within the 
systems of "feasible" or "poly-time" arithmetic that have been developed by Sam Buss and 
others, systems that form a very weak fragment of primitive recursive arithmetic (cf. Buss 
1986). And somewhere between these are papers by Geoffrey Hellman and myself, 
"Predicative Foundations of Arithmetic" (1995) and "Challenges to Predicative 
Foundations of Arithmetic" (2000), where we argue in particular for a concept of 
predicativity given the notion of finite set, and in general for predicativity as a relative 
rather than an absolute concept. In addition, concepts of predicativity, given the notion of 
finitist ordinal, and even of predicativity, given the notion of the cumulative hierarchy of 
sets, have been indicated above. These open up a series of more or less specific problems 
to be tackled in terms of the concept of unfolding. To begin with, these problems call for 
the formulation of basic schematic systems as simple and natural as NFA and FA for the 
weaker or stronger notions indicated in the various mentioned developments, and then the 
determination of the reach of the corresponding systems of unfolding.
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So if one accepts this more general standpoint, one answer to the question "What is 
predicativity?" is that it is a concept applicable to different foundational stances given by 
the rejection of the actual infinite for various domains, coupled with its possible limited 
acceptance for others. Then the logical problem in each case is to characterize exactly the 
limits of that particular stance. To the extent that such stances are restrictive, the potential 
positive value of this enterprise for mathematics is—to quote another Kreiselian slogan—
to tell us what more we know if we know that something has been proved by limited 
means. And for philosophy, its value is to provide sharp, informative explications in terms 
of which arguments can more pointedly be mounted in favor of, or opposed to, one or 
another of those foundational stances.
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20. Mathematics—Application and Applicability
Mark Steiner 



I. 

At the beginning of a book titled Symplectic Techniques in Physics (Guillemin and 
Sternberg 1990a), the authors (both mathematicians) state: "Not enough has been written 
about the philosophical problems involved in the application of mathematics, and 
particularly of group theory, to physics."1 While I applaud this statement, and mean this 
chapter to address their concerns, if only partially (hoping to avoid replacing their "not 
enough" with "too much"), I must point out that the disregard by the philosophical 
community of issues of mathematical application is quite recent.
To an unappreciated degree, the history of Western philosophy is the history of attempts to 
understand why mathematics is applicable to Nature, despite apparently good reasons to 
believe that it should not be. A cursory look at the great books of philosophy bears this out.
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Plato's Republic invokes the theory of "participation" to explain why, for instance, 
geometry is applicable to ballistics and the practice of war, despite the Theory of Forms, 
which places mathematical entities in a different (higher) realm of being than that of 
empirical Nature. This argument is part of Plato's general claim that theoretical learning, in 
the end, is more useful than "practical" pursuits.
Descartes's Meditations invokes no less than God to explain why the ideas of "true and 
immutable essences" of mathematics (triangle, circle, etc.) that we grasp with our mind 
must represent existing entities in nature (meaning empirical space). Thus the applicability 
of mathematics is co-opted by the mind-body problem. And Spinoza's monism, such as it 
is, is intended to solve the same problem without invoking the explanatory, or other, power 
of the Deity.2 
Berkeley's problem is the same as Plato's, except in reverse: for Berkeley, standard 
mathematics is an obfuscation, and is even incoherent; examples of incoherent ideas in 
mathematics are the dimensionless point, the infinitesimal, and numbers (understood as 
abstract objects). His problem, then, is: How does an inconsistent theory like Newtonian 
calculus give the right numbers? (Note that Hartry Field's explanation in the twentieth 
century would not help Berkeley, because it applies only to consistent mathematical 
theories.) His instrumentalist explanation is ingenious: the infinitesimal calculus gives the 
right predictions by a sort of canceling out of errors, which reminds me of our 
contemporary practice of renormalization in quantum field theory.
Kant's Critique of Pure Reason returns mathematics to its status of synthetic a priori truth 
without a return to Plato. Kant's transcendental idealism, according to which the mind itself 
imposes mathematical order on empirical reality, is an answer to the question of how a 



synthetic a priori truth can be applied to empirical reality, an answer which avoids the 
Theory of Forms, theology, and instrumentalism. It turns out, contrary to Plato, that the 
only synthetic a priori truths are about empirical reality.
John Stuart Mill's account of the applicability of mathematics to nature is unique: it is the 
only one of the major Western philosophies which denies the major premise upon which 
all the above accounts are based. Mill simply asserts that mathematics itself is empirical, so 
there is no problem to begin with.3 
This short sample of Western philosophy illustrates that the central philosophical doctrines 
of these major philosophers were conceived in great measure 
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to explain the applicability of mathematics to Nature. What is more, we conclude that 
(though they didn't use the word "apply") all the doctrines presupposed the same concept 
of application: they all assumed that application is a relation (some approximation to a 
homomorphism) between mathematical theorems and empirical facts, a relation which can 
be used to "read off" empirical facts from mathematical theorems. The question they ask is: 
Given the nature of mathematics, why should such a homomorphism exist? And their 
strategy is either to provide an explanation (participation, God, etc.) or to deny the 
existence of applicability in the first place—like Berkeley or Mill, but to explain only why 
it looks as though mathematics were applicable (what my teacher, Professor Sidney 
Morgenbesser, called "explaining away" the phenomenon).
We must now ask a question which is not often asked: What do we mean when we say that 
mathematics is "applicable"? And before this question, another: What are we doing when 
we "apply" mathematics to Nature?

II.  Canonical and Noncanonical Empirical Applications

The sort of applications the classical philosophers puzzled over could be called "canonical 
empirical applications" of mathematics, because the available empirical applications of 
mathematics were either canonical or reducible to canonical explanations. The classical 
philosophers, like their counterparts today, mostly did not realize that some of the 
canonical applications of (even elementary) mathematics are not empirical, nor of course 
could they have predicted the rise of empirical applications that are not canonical. But let's 
define these terms.
I call an application of a mathematical theory canonical if the theory was developed in the 
first place to describe the application. For example, suppose we have an apparent empirical 
regularity R of some kind; mathematics M is developed in an attempt to describe this 



regularity; perhaps we should say that mathematics M is developed so that R should be, at 
least approximately, its model. Then R is a canonical empirical application of M. Our 
classical philosophers want to understand this procedure and how it could work—but they 
don't need an explanation why R, rather than some other regularity R*, is an application of 
M, because M was introduced for this purpose.
An obvious case of canonical empirical application is the use of the differential calculus to 
describe accelerated motion. This was developed by Newton precisely for this purpose. 
Any philosophical problem concerning this that we find 
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in the philosophers would be equally a problem concerning any canonical empirical 
application.4 
Ironically, it is much harder to see the role of canonical empirical applications in 
elementary mathematics, because in these cases, typically, the mathematics evolved 
together with the applications over a long period of time, rather than being invented; and 
there is thus a tendency to confuse the applications of elementary mathematical theories 
with the theories themselves.
An example of what I speak is the "application" of addition to finding the size of 
collections of bodies. Many people, even mathematicians, find it hard to recognize that we 
are speaking of application of mathematics rather than mathematics itself, but let me try to 
get things clear.
Consider a set S of bodies. Consider the scattered physical object S* which is the 
"mereological sum" of the elements of S. (The mereological sum of a set of objects is the 
smallest body of which each of the objects is a part.) A mereological sum is not a set and 
does not have members, but only parts; a set has both members and subsets.5 Another 
difference is that the sum of a sum of bodies is no different from the sum itself; yet the set 
containing a set of objects is different from the latter.
Suppose, however, we think of bodies as maximal irregular polyhedrons (i.e., polyhedrons 
not part of larger polyhedrons). Then these bodies play the role, to some extent, of set 
members—since the parts of these bodies are not themselves bodies. There is, therefore, a 
sense in which a mereological sum of bodies is a model or image of a set of those same 
bodies. And since this is true because of the empirical properties of those bodies (stability, 
for example, as well as discreteness), we can say that mereological sums of bodies are 
empirical applications of the set concept. Let us call the mereological sum of bodies a 
"collection" of those bodies, so that collections are empirical applications of sets.6 
But this works in the opposite direction as well: we can read some of the properties of the 
sets from the collections for reasons which are both mathematical and empirical.
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Consider "counting." This is basically an empirical process in which we point to all the 
bodies in a collection while reciting numerals in order. The last numeral recited expresses 
the number or size of the set of those same bodies. This is true because, as we say, the 
collection is a physical model of the set. But it is also true for a mathematical reason: the 
finite numbers are both ordinal and cardinal numbers. (For infinite sets, it matters a great 
deal in what order we place them—the ordinal number of the natural numbers in the 
standard ordering is called ω, but if we "count" the numbers starting from 1 and put 0 after 
the rest, we get the ordinal ω + 1.) This means, for example, that it matters not in what 
order we count the bodies in a collection—we will get the same result. The result, invariant 
over order, is thus the size of the set of those bodies. Once again reversing the story, if we 
know the cardinal number of a set of bodies, we can predict the result of counting the 
collection of the bodies, an empirical prediction which has a mathematical explanation.
Next consider addition. Thought of as an operation on cardinal numbers, m and n, which 
are the sizes of disjoint sets X and Y, m + n is the size of the union of X and Y. Suppose X 
and Y are sets of bodies, as before, and X* and Y* the corresponding collections of those 
same bodies. Then the mereological sum of X* and Y* is an image or model of the union of 
X with Y. If we know the sum m + n in canonical notation, we can then predict the result of 
counting the collection of X* with Y*. This is, of course, because of the above-mentioned 
identity between cardinal and ordinal finite numbers.
But the cardinal-ordinal equivalence has another implication, and a profound one. This is 
that cardinal addition is equivalent to ordinal addition; extensionally, they are the same 
operation. But ordinal addition is based on recursion (iteration), and recursion yields 
computational algorithms, such as the ones we learn in school. Many educators today 
decry the emphasis placed on these algorithms, and they have a point: these algorithms are 
for ordinal arithmetic, which has little to do with the more applicable cardinal arithmetic, 
which measures the sizes of various sets. On the other hand, the mathematicians have a 
point as well, since ordinal arithmetic can be immediately applied to cardinal arithmetic to 
make calculation a cinch. The mathematicians suffer from the lack of algorithms in infinite 
cardinal arithmetic, and as a result cannot make the simplest calculations, such as 
2  

0
 . 

Cardinal arithmetic, then, is of great application but does not allow calculation; ordinal 
arithmetic has no great application, but does allow algorithmic calculation. Together we 
have the following story: take two distinct collections—of bodies—and count them both. 
We then have the ordinal number, and thus the cardinal number, of the two sets 
corresponding to the collections. The cardinal number of the (disjoint) union of the sets 
corresponds to the sum of the two 
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cardinal numbers. This can be calculated using ordinal arithmetic (i.e. algorithms). From 
this we can predict the result of counting the (mereological) sum of the two collections, the 
smallest collection of which the two original collections are parts.
It is a considerable intellectual strain, we see, to separate pure arithmetic from its canonical 
empirical applications. Small wonder that the distinction is seldom made.
To sum this all up (pardon the pun), the applicability of addition algorithms to counting 
physical collections is based on an amazingly complicated series of facts and mathematical 
"accidents": (a) the empirical stability of many objects; (b) the resulting model of sets of 
physical objects as collections of those objects; (c) the equivalence of cardinal and ordinal 
finite addition, which allows (1) finding the cardinal number of a set by counting the 
corresponding collection and (2) the use of powerful algorithms of ordinal arithmetic to 
solve problems in cardinal arithmetic.
A noncanonical, yet still empirical, application of addition would be to weights. Seven unit 
weights and another five give twelve unit weights. This is an empirical application, so 
empirical that it is even (slightly) wrong—according to Einstein's General Theory of 
Relativity, weight is not quite linear, just as velocity is not quite linear in Special 
Relativity. However, for ordinary purposes we can speak of the "linearity" of weight. In 
that case, we can use arithmetic to predict the weight of a collection of unit weights. (Of 
course, for a fuller story one would discuss the application of the theory of real numbers to 
weights which are incommensurable.)
This is not, strictly, a canonical application, insofar as the theory of arithmetic operations 
was not put together to do weights, but to count. However, weight is "near" canonical, in 
that (given the empirical properties of the magnitude "weight") we can reduce weighing to 
counting. (I again stress that for simplicity I am discussing only commensurable weights.)
A more advanced empirical, yet noncanonical, application is the application of the 
Apollonian theory of conic sections by Kepler to planetary orbits. Obviously the Greeks 
had not introduced this theory to describe the orbits of the planets, which in any case were 
thought of as strictly circular. Indeed, as far as I know, Kepler was the first to apply the 
theory in physics.
An even more advanced case is the application of non-Euclidean geometry to gravity, as in 
Einstein's General Theory of Relativity. What is noncanonical here is not necessarily the 
description of space as "curved" (it is plausible that both Gauss and Riemann had this in 
mind), but rather the application of Riemannian geometry to space-time.
This raises the question of whether all mathematics is applicable in physics. Of any given 
mathematical theory it is quite risky to say that it has no physical application.7 
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Nevertheless, we can say that the beautiful theory of prime numbers, which so caught the 
imagination of the Pythagoreans, has to this day no certified applications in physics. Of 
course, arithmetic itself is applicable in physics, and arithmetic does treat prime numbers, 
but this is not the sense of "applicability" I have in mind, which demands that the concept 
"prime number" should actually appear in a physical theory. Suppose that the nth energy 
level of hydrogen had a certain property if and only if n is a prime number—that would be 
an example, but there aren't any like that.8 If string theory is ever confirmed empirically, 
the role of the prime numbers in science will finally be established, because string theory 
actually does rest on some characteristic concepts of the theory of numbers.
The converse issue, raised by the celebrated physicist Eugene Wigner in a famous paper 
(Wigner 1967), is whether the level and type of applicability we do see in these 
noncanonical applications is "unreasonable." Wigner argued that it is, because: 

(1) 
 
 Mathematical concepts—at least in the last 150 years—are subject primarily to 
criteria internal to the mathematical community. Among these criteria are aesthetic 
ones; and most of the criteria are not such as to make it likely that mathematical 
concepts should be applicable at all. In some cases, the mathematical concepts have, 
and had, no canonical empirical applications. 

(2) 
 
 In physics, the reliance on mathematical concepts in formulating laws of nature has 
led to laws of unbelievable accuracy. 

Skeptics argue that Wigner suppressed the failures in applying mathematics (there are 
hundreds monthly). Other skeptics argue the reverse, that we should expect mathematics to 
be applicable because (unlike what Wigner asserts) the real and ultimate source of 
mathematical concepts is experience; thus it is not at all unreasonable that mathematical 
concepts should return the favor.
I'm not particularly impressed by these objections (particularly because they contradict one 
another), since I think that each of the examples that Wigner gives is so extraordinary that 
it requires explanation.9 For example, I feel that even 
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Newton's law of gravitation, based on astronomical observations which were wildly 
inaccurate by today's standards, nevertheless has withstood the increase in the accuracy of 
our measurements to the extent that we can now say that the elementary particle known as 
the neutrino falls to earth just like the moon. There is nothing like the accuracy of the 
inverse square law, for example, in economic models, which retain roughly the 
experimental error of the data which suggested them in the first place. Kant once argued 
that the inverse square law is to be expected (if not a priori), because gravity spreads out 
spherically, and the area of the (surface of) the sphere is proportional to the square of its 



radius. But Charles Peirce already answered this by the telling rejoinder that what spreads 
out in space is the potential, not the force, and the gravitational potential goes as the 
inverse, not the inverse square, of the radius! Thus it's not clear that we have anything that 
would count as an explanation for how much more we "got out" of the inverse square law 
than we "put in."
My objection to Wigner's thesis is completely different: it's not a thesis at all. He gives 
persuasive examples of successes that cry out for explanation—but he doesn't prove that 
they add up to one phenomenon that cries out for explanation. Each success is a story in 
itself, which may or may not have an explanation. Wigner does not make a case that what 
is unreasonably effective is mathematics, even though the individual examples he gives are 
of concepts that happen to be mathematical. In other words, Wigner may give examples of 
a number of applications which are "unreasonably effective"—applications of concepts 
which happen to be mathematical. But he doesn't show that these successes have anything 
to do with the fact that the concepts are mathematical. Of course this is connected with 
Wigner's failure or inability to give a definition of "mathematical concept."

III.  Canonical Nonempirical Applications

I would like now to speak, finally, of canonical applications of mathematics that are not 
empirical at all—these are applications in which one uses mathematics to "read off" results 
in another theory which itself is mathematical. One might think that these kinds of 
applications would have to be quite advanced, yet I was surprised to find that there is a 
very elementary example: multiplication.

Multiplication is often "defined" as repeated addition, but this, I hold, is a confusion 
between a definition and an application.
An intuitive way to see that something has gone wrong with the pseudo definition 
"multiplication is repeated addition" is to inquire concerning the 
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commutativity of multiplication. Why is it always the case that adding x, y times, gives the 
same result as adding y, x times? To be sure, this fact can be proved by mathematical 
induction. But the proof is far from trivial, and my experience teaching this material from 
textbooks like Mendelson (1997) is that most college students are not capable of 
discovering the proof. Morever, proofs by mathematical induction usually prove only that, 
but not why, a theorem is true.10 



The "definition" of multiplication as repeated addition has its source in ordinal arithmetic 
(i.e., recursion). We have already seen that ordinal arithmetic is dandy as algorithm, 
horrible for applications. Small wonder that children cannot understand why multiplication 
is commutative (the noted philosopher and logician Saul Kripke recalled—in a class I 
attended—being amazed as a child at the commutativity of multiplication). Nor can they 
understand why one can "add candies to candies" but not "multiply candies by candies." 
What we need is a cardinal definition of multiplication.
Now let's look at the matter from the logician's point of view. To see that "repeated 
addition" cannot be a definition of multiplication, consider the formula xy, having two free 
variables. The "repeated addition" definition (so called) would dictate that xy means 
y + y + y … + y (x times). 
But the ellipsis here ( … ) is not defined mathematically; and the parenthetical comment (x 
times) means only that the letter y is repeated an unspecified number x of times. The most 
coherent interpretation of this "definition," then, is a schema containing infinitely many 
definitions of the following type: 

1 × y = y 
2 × y = y + y 
3 × y = y + y + y 
…………………………. 

The numbers 1, 2, 3, … count the number of occurrences of the letter "y"; to put it another 
way, x is a metalinguistic, rather than a mathematical, variable, where y is a "true" 
variable.11 To see what is wrong with this, take a specific example: 7 × 5 = 35, which, 
according to the standard pseudo definition is to mean 5 + 5 + 5 + 5 + 5 + 5 + 5 = 35. But 
standard rules of logic allow the inference 
(E)   There is x such that x × 5 = 35 
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from 7 × 5 = 35, but not from 5 + 5 + 5 + 5 + 5 + 5 + 5 = 35. Hence the definition of 
multiplication in terms of repeated addition is wrong. The most we can say is that 
5 + 5 + 5 + 5 + 5 + 5 + 5 = 35, if we assume the axioms of Peano (which of course contain 
multiplication as a primitive, undefined notion), is equivalent to 7 × 5 = 35 (and therefore 
implies E), but the equivalence is not purely logical.
A good way to look at multiplication is, in fact, set-theoretic: xy is the (cardinal) number of 
x disjoint sets, each of which has the cardinal number y. The role of x here is different from 
that of y (though it is not metamathematical); suppose we are calculating the number of 
candies we need to give four children five candies each—this is the same as calculating the 
number of elements in four disjoint sets with five candies each. Five, then, tells us the 



number of candies, where four tells us the number of sets. In other words, the "second-
order" concept of "set of sets" is inherent in multiplication. We have already seen that 
though collections, in a sense, can be considered physical models for sets, there is no such 
model for "sets of sets." This is the deeper reason why we can't "multiply candies by 
candies," though we can "add candies to candies": adding candies to candies is to model 
addition by mereological sum, forming a larger collection from two smaller ones; for 
multiplication there is no such model.
At the same time, we see from this definition that each multiplication is equivalent to 
(though not synonymous with) a repeated addition—we can "read off" the results of a 
repeated addition from a product of two numbers. In this sense, it could be said that 
multiplication is being "applied" to addition! But this is not an empirical application at all!
Consider, now, the following table.

Fig. 20.1:

We have labeled the candies with capital letters. If we have four children and have to give 
each child three candies, we need 4 × 3 candies, the cardinal number of a disjoint union of 
4 disjoint sets with 3 members each. The rows of the table, marked out as above, 
symbolize the sets of candies. If we permute "candy" with "child" everywhere and switch 
rows for columns, we get:
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Fig. 20.2:



It is clear from this that multiplication is commutative; from the abstract mathematical 
point of view, what we have done here is set up a one-one map between 

•

all the Bs equinumerous, and A × B, the set of ordered pairs 

{ x, y :x A y B}, 

B being any set eqinumerous to the Bs, and then noted that, obviously, 

|A × B| = |B × A|. 

In effect, we have two set-theoretic definitions of multiplication here which are equivalent: 
in terms of disjoint unions, or in terms of Cartesian products. The former definition is the 
one that leads to applications—but distinguishes between the operands m and n in that the 
latter numbers sets; the former numbers sets of sets. In the latter definition, both m and n 
number sets.
A final comment: I maintained that "repeated addition" should be regarded as a 
nonempirical, if canonical, application of multiplication; what of areas, as in geometry? Is 
this not a canonical empirical application? Didn't the Egyptians and the Greeks develop 
this application of multiplication?
Yes and no. Though it is true that area is certainly an application of multiplication, it 
originally was not an application of the operation we teach today in school. The Greeks 
regarded multiplication as an operation on magnitudes, not numbers; when we multiply 
linear magnitudes, we get square magnitudes. In other words, multiplication of magnitudes 
was not a closed operation.
Furthermore, the use of multiplication in areas is connected with the Euclidean structure of 
the plane. If space is not Euclidean, then the area of a square is not actually the product of 
the lengths of two sides. We will still need multiplication to find the area, which is still 
definable (as an integral) as long as space is 
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still locally Euclidean (the smaller the space we take, the "flatter" it gets). However, I don't 
think that we have here anything like a canonical application anymore.
Let us leave elementary arithmetic, and look at some of the modern theories of 
mathematics. Indeed, let us heed the call of the mathematicians we began with, and discuss 
group theory.



Group theory is known today as the theory of symmetries—we define a symmetry as a 
property which is invariant under a group of transformations. The classical symmetries, 
which are visual symmetries, involve transformations of space, such as rotations, 
translations, and reflections. For example, a cube is invariant under rotations of multiples 
of 90 degrees around axes that go through, and are perpendicular to, its faces. And one 
might have thought that group theory developed in order to describe these symmetries, for 
example, in crystallography—and it is true that group theory can indeed be applied to "read 
off" results in that field. Once we know, for example, the symmetry group of a substance 
like salt, we can predict all the possible forms of the salt crystal, even the forms that occur 
"naturally" and are not regular polyhedra. We can even use group theory to explain why so 
few visual symmetries are seen in nature—crystals are made up of a lattice structure 
(atoms), which restricts the number of symmetry groups possible.12 
Yet this is not how group theory came into existence. In fact, group theory was constructed 
to be applied not to empirical reality, but internally—in mathematics. Namely, group 
theory was introduced into mathematics by Galois, to be applied to algebra. The Galois 
group of an equation, for example, can be thought of as a group of certain permutations of 
the roots of that equation.13 By studying the group of an equation, mathematicians are able 
to extract information about the equation itself—in fact, the application of group theory in 
mathematics has precisely this form: we find that a certain group characterizes a much 
more complicated structure, and we can get needed information about that structure by 
studying the properties of the group. (This is how group theory is used in topology, for 
example.) Thus what Galois did was to inaugurate modern mathematics, in which the main 
applications of mathematics are—to mathematics itself. It would be fair, then, if surprising, 
to state that the canonical applications of group theory are mathematical, not empirical. 
Ironically, the origins of group theory in pure mathematics not only did not prevent 
physicists from applying group theory (after a period of resistance), but made it possible.
Briefly, the reason is this (for a detailed account, cf. Sternberg 1991; Sternberg also 
graciously offered his help in cleaning up this entire section). Already in 
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classical mechanics it was discovered (by the mathematician Emmy Noether) that there is a 
mathematical connection between symmetry groups and conservation laws. For each 
continuous group G of symmetries14 of the laws of nature, there is a magnitude P G which 
is conserved. If the law has rotational symmetry, then angular momentum is conserved, for 
example.
In quantum mechanics, the state of a system is represented by a unit vector in a (complex) 
vector space V of infinite dimension. The group G must act on this vector space V, rather 
than directly on physical space.15 This action is called a "representation" of the group, in 



which each element of the group is represented by a square matrix.16 Suppose that a 
particle has a determinate value ν for property P G , 
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which is conserved under the action of G. Then,17 as G acts, (a) the unit vector never 
moves out of a subspace W of V which is associated with that very value ν and (b) there is 
no subspace Y of W which so confines the unit vector. W, taken together with the action of 
G, is called an "irreducible representation" of G. Suppose W is an n dimensional subspace 
of V. The physical meaning of this is that a particle with value ν of property P G can 
assume n different states. It should not be assumed without proof that G has such an 
irreducible representation for every dimension n.
Consider as an example the electron and let P G be the property known as "spin," so called 
because the electron is a little magnet analogous to a spinning charged ball in classical 
physics. As one might expect, rotating an electron (or, equivalently, rotating the measuring 
device relative to the electron) does not change the value of its spin (which remains at ½ 
Planck's constant). Yet rotating it 360 degrees does not bring the electron back to its 
original state (the unit vector is multiplied by −1); this requires two full turns. What is 
most significant is that no matter how we rotate the electron (or the coordinates), the 
electron is observed in only one of two states: (a) with its north pole "up" or (b) with its 
north pole "down." (This is of course utterly unlike a classical spinning ball, which can be 
observed spinning in any direction.) Rotating the electron changes only the probability of 
observing the electron in an up or down position. Thus it has two states corresponding to 
its spin value.
This might suggest the following group-theoretical description of the electron (in fact, this 
picture was actually resisted by physicists for quite a while): the symmetry group of 
electronic spin is the one called SU(2). This is a continuous group which has a two-
dimensional representation18 just as required, and is also the "double covering group" of the 
rotation group in ordinary space (i.e., a continuous action of this group which brings a unit 
vector back to itself is homomorphic to two rotations, again as required).
So far the group-theoretical description does not seem to add anything to the physical facts, 
which is why physicists referred to Hermann Weyl and his colleagues in the mathematical 
community as the "Gruppenpest." Yet, as Sternberg points out, one can reverse this 
procedure, and go from the group description to the physical facts. For example, in 1932, 
Heisenberg argued that the neutron and proton are actually two different states of the same 
particle (today called the "nucleon"), with the value ½ of some property yet to be explored, 
and with the same symmetry group as the electronic spin. He called the property, again by 
analogy, "isotopic 
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spin," though this is nothing more than saying "the property conserved in the nucleus by 
the spin group SU(2)." Actually, even today, there is no known physical connection 
between the spin of the electron and the isotopic spin (known today as isospin) of the 
nucleus—nature merely utilizes the same symmetry in both places.
Having gone from physics to group theory, we now go back to physics: SU(2) also has a 
three-dimensional irreducible representation, which means that it is possible that there is a 
particle which can take on three different states (we can think of these particles as being 
"made out of," respectively, a neutron-neutron, a proton-proton, and a neutron-proton). The 
different states of the particle will look like three different particles in the laboratory, just 
as the nucleon looks like two different particles. Sure enough, the three pions were found: 
particles analogous to the neutron and proton in that they are hadrons—they exert the 
powerful nuclear force. The three "directions" of the pions are marked out by their charge: 
positive, neutral, and negative. By now the group-theoretical method began impressing 
physicists. These predictions were being made with no knowledge of the properties of 
hadrons, except for their symmetry groups.
The next step was even more startling. The neutron and proton themselves turned out to be 
part of a family of eight hadrons with comparable rest mass. Aside from them, there were 
nine more hadrons with comparable mass (though by no means the same), greater than that 
of the first family. This suggested to Yuval Ne'eman and Murray Gell-Mann 
(independently) that there was a higher symmetry than SU(2). Mathematical analogies 
suggested a group known as SU(3), of which SU(2) is a subgroup, which has 
representations of dimensions 3, 8, 10, … And, indeed, experimental evidence suggested 
that the neutron and proton belonged to a family of eight similar hadrons. Furthermore, 
there was a family of nine heavier hadrons. But if SU(3) were the right symmetry group of 
the hadrons, the family of nine particles would require a tenth. Hence, both Gell-Mann and 
Ne'eman predicted the tenth, calling it in advance the omega minus particle, which was 
later discovered. Gell-Mann then predicted the existence of the triplet from the three-
dimension representation, none of which had been observed—and for good reason: 
mathematical considerations indicated that such a triplet, called by Gell-Mann "quarks" 
after Joyce, would have to have fractional charge. At the same time, the quark hypothesis 
(if one could come up with an excuse why nobody had ever detected these ubiquitous 
particles) could serve as a partial explanation of the SU(3) symmetry: one could use quarks 
to "construct" all the families of the hadrons (as we "constructed" the pions out of 
neucleons). Note, however, that this explanation was ex post facto, like most explanations: 
the success of SU(3) symmetry led to quarks, not the other way around.
One could push back the use of group-theoretic methods even earlier than I have done, by 
including in this story the saga of "identical particles." This is, in fact, what Steven French 



does, in an illuminating attempt to account for the success of the group-theoretical method 
in physics. (cf. French 2000).
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The principle of identical particles is that there is no physical difference between a state of 
two identical particles, A and B (e.g., two photons in which A is in state X and B in state Y, 
or one in which A is in state Y and B in state X. The most straightforward application of this 
principle is the situation where the state vector of the system of two particles simply does 
not change on permuting A with B. Let us also consider the case in which A and B must be 
either in state X or state Y. Then there are three cases: both particles are in state X, both in 
state Y, or they are in different states (not four cases where we distinguish A in state X, B in 
state Y, from the converse case with A in state Y, B in state X). This means that the 
probability of finding the particles in the same state is 2/3, rather than ½, which we might 
have thought. Another application of this principle is that permuting A with B brings the 
state vector to minus itself, since there is no observable difference in quantum mechanics 
between the vector ψ and the vector −ψ. These two group actions lead to an important 
classification of particles: those that change sign are called "fermions," and those that do 
not are called "bosons."
Now there is no question that we can see this is as an application of group theory—in 
hindsight, though, the historical players would mostly have rejected this characterization. 
They did not see the category of "groups" as a natural way to categorize phenomena; hence 
the "success" of applying one group could not, for them, suggest the application of a 
completely different one (such as SU(2)).19 The fact that we today see the permutation 
group and SU(2) as examples of the "same thing" and as relevant to physics does not mean 
that the previous generations did. Our inclination to see the quantum mechanical treatment 
of "identical particles" as a triumph of group theory betrays our implicit belief that 
mathematical language is the deepest language of physics and that mathematical 
classification of structures is the ultimate physical classification, too. But this belief 
amounted to nothing less than a revolution in thinking about nature, and prominent in this 
revolution was Eugene Wigner, one of the greatest pioneers of the group-theoretical 
approach to physics. For him, it could be said, a physical object is not much more than the 
sum of all its symmetries, including the symmetries of the geometry of space-time.20 
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We have, then, a new kind of application of mathematics. In the past, mathematics was 
used to get quantitative descriptions of phenomena that could also be described 
qualitatively. Today mathematics gives even the qualitative descriptions, because we often 
have no deeper language than mathematics. Related to this is the use of mathematics to 



make discoveries and "predictions." Our story here has shown that pure mathematics was 
the basis of analogies for which there was (at least at the time) no underlying physical 
basis. Scientists postulated symmetries without knowing what they were symmetries of. 
"Predictions" were made in a new way: in the past, mathematical calculations were made 
to show what necessarily had to be the case. In our story here, mathematics was used to 
show what is possible, the assumption being that what is mathematically possible is 
physically actual.
All of this suggests (and Ne'eman has recently written this explicitly) that modern physics 
has a Pythagorean streak to it. So far, at least the quality of mass has not been shown to be 
amenable to a group-theoretical treatment. If that one day happens, however, the world 
itself could turn out to be nothing but a mathematical structure: a reducible representation 
of the ultimate symmetry group,21 a bizarre possibility we will nevertheless discuss in the 
concluding section of this essay.

IV.  Logical Applications

Another nineteenth-century development that influences our subject is the development of 
modern logic and the foundations of mathematics. An attempt was made to put 
mathematical deductions on an a rigorous footing and, at the same time, to find the 
foundations of mathematics. This research program presupposed, or perhaps introduced, 
concepts of application of mathematics which could not have been formulated before. 
These are the logical concepts of application which we can now survey.
For example, one sense in which mathematics is applied is as an engine of deduction. Even 
if mathematics is not literally logic, as Frege and many others once thought, one of its 
functions is certainly akin to that of logic: as what some called a "juice extractor" in which 
we use mathematics to derive consequences of nonmathematical premises. Of course, any 
set of sentences can be used to derive consequences from others, but mathematical 
sentences seem "topic neutral" in a way other sentences are not.
But for this purpose, attention must be paid to the logical form both of pure mathematics 
and of "mixed" contexts, in which the same sentence contains both mathematical and 
nonmathematical references. An elementary example is that of 
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the use of arithmetic to shorten or eliminate counting, as when we conclude that there are 
twelve fruits on the table after observing that there are seven apples and five pears, and no 
other fruits on the table, from the pure mathematical proposition 7 + 5 = 12.



The question arises: What does the pure mathematical proposition, which on its face is 
about "natural numbers," have to do with fruits? This question has two aspects, the logical 
and the metaphysical. The metaphysical question arises from the ontological gap, noted 
already by Plato, between mathematical and empirical objects. How can truths about 
mathematical objects be in any way relevant to the empirical world?
The logical question arises from the difference between the numerals "seven" and "five," 
used as adjectives, and the numerals 7 and 5, used as nouns. This ambiguity produces an 
equivocation which threatens to spoil the logical validity of our deduction. Obviously the 
two questions are related.
A strategy which suggests itself to many observers, past and present, is to argue that there 
is no such thing as pure mathematics, or at least that there are two kinds of mathematics, 
pure and applied. Applied mathematics (whether or not it is the only mathematics) is the 
empirical theory of certain properties, such as "seven" and "five." There are no 
mathematical entities, but only mathematical properties, and these are empirical properties 
like any other. The seven apples are a collection with the property "seven," for example. 
The arithmetical statement 7 + 5 = 12, then, is a general empirical law about any such 
collections. This is the position, in fact, of the great nineteenth-century British philosopher 
J. S. Mill in his A System of Logic.
However, there are so many problems with this view that, strikingly, even the empiricists 
have by and large rejected it—with some notable exceptions. Most of the objections have 
been epistemological—the empiricist account of arithmetic does not seem to account for 
the various peculiarities of mathematical knowledge. I would like, however, to draw 
attention to a logical objection: What is the status of a "collection" of which a number is a 
property? If a collection is a physical object (as is probably intended) rather than, say a set, 
then there is no one number that characterizes it: A heap of socks could be characterized by 
the number of socks, the number of pairs of socks, or the number of molecules in the heap, 
or perhaps the number of atoms, and so on. Thus numbers cannot be regarded as properties 
of empirical bodies like collections. This objection was raised by Frege in his Grundlagen, 
which contains a scathing critique of "pebble and gingerbread arithmetic," referring to 
Mill. Frege does not seem to be aware, however, that basically the same objection was 
raised by Plato in the Theaetetus, against the more general view that "perception is 
knowledge."22 
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Instead, Frege, like Plato before him, took the opposite tack: he eliminated the adjectival 
numerals, and with them the numerical properties, entirely, leaving only the mathematical 
entities. Plato's solution, however, is not entirely coherent (as he himself pointed out in 
various places): he thought of the empirical world as participating in the mathematical 
world. Since, however, as he himself had argued, the empirical world can participate in the 



mathematical world in conflicting ways, he ended up arguing that the empirical world itself 
is subject to logical conflict (and thus is not the object of knowledge). Frege, though he 
gives no credit to Plato, in fact made two revisions in Plato's account: first, he replaced 
"participation" with something like "class membership." Second, he eliminated the logical 
incoherence by denying outright that arithmetic relates directly to the world of empirical 
objects. Rather, it is the empirical (and nonempirical) concepts which are members of the 
different numbers. Thus, the number two is the class of all concepts which are true of two 
objects.23 The metaphysical problem (How can facts about the world of abstract entities be 
relevant to the empirical world? also is dissolved: in Frege's scheme, numbers are related 
(directly) only to concepts.
Frege's account of (deductive) applicability comes with a price, however. It is heavily 
committed to the existence of nonmaterial objects (and, of course, concepts), and thus heir 
to all the traditional attacks on Platonism. I cannot discuss those attacks here, except to 
point out that some philosophers have been influenced enough by these attacks to attempt 
to gain the benefits of Frege's account of logical applicability without paying the price. 
One of these strategies is "fictionalism," understood as the doctrine that the Platonist 
commitments of Frege's account are real, in the same way that Shakespeare's The  
Merchant of Venice is committed to Shylock as well as to Venice.
The version of fictionalism set forth in Field (1980) is actually a research project: given a 
theory MT of mathematical physics, to find a "nominalist" theory 
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T which has the same "nominalist" consequences as MT. Field claims to have done just that 
for the classical equation of the gravitational field. Success in such a replacement program 
shows that mathematics is theoretically not necessary and thus can be regarded as pure 
fiction. Mathematics, Field argues, has only an instrumental value in shortening proofs. 
Hence it need not be regarded as true, but only as useful.
Field's book occasioned a great deal of comment and criticism, much of it centering around 
his major example of classical gravity: whether his replacement for it was truly nominalist 
(he helps himself to the entire continuum of space-time points, whereas Aristotle had 
rejected even one space-time point as too Platonist for his liking); whether he had truly 
demonstrated that it was a replacement; whether he had demonstrated that mathematics is 
really not deductively necessary in physics;24 whether he could reproduce his success in 
other areas of physics, particularly quantum mechanics, where, as we have already seen, 
the mathematical formalism is central in a way that it is not in classical mechanics. Many 
of these criticisms seem to me cogent; in fact, I made some of them myself,25 although in 
Hebrew.26 
I would like to point out something else in this connection that seems to have been missed: 
we have seen already that mathematics is not only a medium of proof; it is an engine of 



discovery. We have seen, that is, how the mathematical form of a theory can serve as a 
springboard for its development or even, paradoxically, its replacement. The great 
scientists relied on mathematical analogies to suggest replacements or at least 
generalizations of existing theories. The idea was to replace false theories by (hopefully) 
true ones, in which what was preserved was mathematical structure.
Consider the following example. Measuring devices, no matter how accurate, give results 
in rational numbers only. On the other hand, the solutions of differential equations are 
functions on the continuum. One could presumably replace current theories, involving the 
continuum, with physical theories invoking only rational numbers—with no observable 
difference. Differential equations, for example, can be replaced by "difference equations," 
which are used as algorithms 
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to calculate the solutions of differential equations. In so doing, however, we would destroy 
the mathematical form of the latter; and it is the mathematical form which was used in 
finding generalizations or corrections of present equations. Physicists insist on the form of 
equations even when their content is obscure. For example, Richard Feynman introduced 
mathematical notation for calculations in quantum electrodynamics which he himself 
suspected of inconsistency and which, in any case, lacks a consistent mathematical 
interpretation even today. The inconsistency of this notation, however, has not prevented 
scientists from using it to calculate the magnetic moment of the electron correctly to twelve 
decimal places!
Why is this relevant to Field's program? Field regards Platonism as refuted if, for each 
"Platonist" physical theory A with nominalist consequences N, we can replace it with a 
"nominalist" theory B with the same nominalist consequences N. Since, then, B "can do 
everything that A can," Ockham's razor suggests that we are committed only to what B is 
committed to. This being a pragmatist concept of ontology, one could argue that epistemic 
values should be factored into this equation: there is an epistemic sense in which B cannot 
do everything that A can.27 

V.  Speculative Concluding Remarks

What philosophical problems are presented by the applicability of mathematics?
Since we have seen there is more than one concept of applicability, there is more than one 
problem. In discussing them, I will begin with the issues raised by the logical application 
of mathematics.



We saw that Frege showed how to use pure arithmetic alone in making deductions about 
the number of physical bodies. He did this by standardizing the expressions of the form 
"There are n Fs" as "The number of Fs = n," an equation. The variable F, for Frege, takes 
concepts as values. Hence the number n is directly associated only with a concept when 
saying "The number of Fs is n." The number n is not related to the Fs themselves, thus 
eliminating the traditional puzzlement concerning the relevance of mathematical objects to 
the empirical world. In fact, they are not relevant, and need not be.
However, Frege's solution raises the specter of Platonism, since his reduction of applied to 
pure mathematics involves the commitment to mathematical objects at the most elementary 
level. One can, of course, say that Frege's accomplishment was to reduce the (logical) 
problem of applicability (of arithmetic, since his success with analysis is questionable) to 
that of Platonism. Of course, Platonists 
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don't see any problem with Platonism; they feel entitled to say that Frege has solved the 
(logic) problem of applicability. What of the nominalists?
Earlier, we saw how Hartry Field attempts to have his cake and eat it, too: he accepts all 
the details of the Fregean solution, but whisks away the ontological commitment involved 
with the claim that one "could," in principle, dispense with numbers (i.e., "number-talk") 
entirely. Fregean or "Platonist" mathematics can be regarded instrumentally. Field thus 
claims that he can get all the benefits of Frege's program without paying any ontological 
price.
Although I have given some of my reasons for being skeptical about Field's "free lunch" 
solution, I would like to point out an underappreciated virtue of Field's "piecemeal" 
approach to eliminating Platonism. That Field aims to replace each physical theory 
individually with a nominalist counterpart is regarded as a serious flaw to his argument by 
writers such as Dummett (cf. Dummett 1991), who complain that what he really should do 
is replace all the theories simultaneously, or are suspicious that Field won't be able to carry 
through the program in other, more intractable cases (like quantum mechanics). Yet the 
very piecemeal character of the project makes it ideal for solving a completely different 
problem of applicability, Wigner's problem of the noncanonical empirical applications of 
mathematics. This is not a logical problem but a descriptive problem, involving the use of 
mathematics in describing nature—rather than in making deductions.
For, as I suggested above,28 Wigner's problem is not one problem: every unreasonable 
success in using mathematics to describe any physical phenomenon is a separate problem. 
Field's reduction of classical gravitational field theory to a theory of spatial regions may 
not be a nominalist reduction, but it does give an account of the usefulness of analysis in 
physics without using analysis. The bugaboo of Platonism—and the inability of most 
philosophers, including perhaps Field himself—is to see that there is more than one 



problem of the applicability of mathematics. Wigner's problem is not Frege's. Wigner's 
problem, for each application of a mathematical theory M, is solved by articulating, 
without using M, the conditions under which M applies.
Wigner's problem—or really problems, as I believe—is to give an account of various 
noncanonical empirical applications. Wigner says this is difficult to do on account of the 
gap between the goals of mathematics and the goals of physics, so that it is unreasonable to 
expect a mathematical concept to describe an empirical phenomenon with as much 
precision as we find in physics, typically. Field's method gives an example of a solution.
We have seen, moreover, that there are also philosophical problems connected with 
canonical empirical applications. Here, of course, Wigner's problem does not arise—by 
definition. But the opposite problem arises—the close relationship 
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between the mathematics and its application makes it often quite difficult to distinguish 
between them. We saw an example of this in the application of addition to predict the 
result of empirical counting. Inability to distinguish between mathematics and its 
canonical applications leads to positions like that of J. S. Mill, according to which 
mathematics is a crudely empirical science, a position which most philosophers regard as 
severely flawed.29 
Finally, we discussed the application of mathematics within mathematics itself. For 
example, we use one kind of mathematical structure in order to characterize another. A 
striking illustration of this is the concept of group representations, in which the elements of 
a single group G are homomorphically "represented" by square matrices (i.e., linear 
transformations of a vector space). The existence of irreducible representations of various 
dimensions characterizes G by its possible actions.
The reason that these internal applications are so important to our subject is the existence 
of mathematical formalisms in physics. These are mathematical structures which, though 
they do not directly describe physical systems, nevertheless contain an enormous amount 
of information about those systems, which can be extracted from the formalism by rules 
whose major justification is that they work (or at least, they worked). Of course the 
mathematical structure of quantum mechanics is such a formalism. In this formalism a 
particle "is" (Pythagoreans will remove the scare quotes) not much more than an 
irreducible representation of its most comprehensive symmetry group. In that case, the 
theory of group representations, and the categories it works with, turn into the fundamental 
classification of reality, deeper than the fire/air/earth/water of the ancients, and even deeper 
than the periodic table of the elements. And this classification, in turn, makes it possible to 
draw analogies even from false theories in the process of guessing the true ones, using the 
mathematical hierarchies as (what Nelson Goodman called) "projectible predicates," or 
what were called, in the Middle Ages, natural kinds.



My claim, then, is that a good deal of what passes for applications of mathematics in 
physics, is really the application of mathematics to itself.30 The end result remains 
empirical—make no mistake—because there are rules connecting the mathematical 
formalism to empirical predictions which could, but don't, fail. Nevertheless, the procedure 
is deeply Pythagorean, because the classification of empirical phenomena is induced by the 
classification of mathematical structures by mathematicians.
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There is a great vindication here of Galileo's vision of the "Book of Nature," written in the 
language of circles and triangles, except of course that the circles and the triangles 
themselves are replaced by their symmetry groups. The vision is still empiricist, as long as 
we distinguish between the Book and Nature itself. It is Nature which gives validity to the 
Book, but we use the Book as a map of Nature.
Yet the boundary between the Book and Nature itself has recently been becoming more 
and more blurred. Good old space-time is now in some quarters regarded as a mere low-
energy approximation to what there really is in the way of dimensions (I have heard 
lectures in which over fifty dimensions were postulated).31 We can detect by observation 
only four dimensions, or at least it appears to us that we do—and these appearances remain 
the basis for accepting the various hypotheses offered. Other dimensions may be, for 
example, cylindrical, so tightly rolled up that we cannot detect them. We may 
fundamentally misrepresent what we do detect—for example, when we think that the four 
dimensions of space-time are continua (they may, for all we know, be lattices). Finally, 
mass itself, together with gravitation, may be amenable to the group-theoretic approach. 
This would be the ultimate irony: Pythagoras and Democritus might turn out ultimately to 
have been saying exactly the same thing—of course, the world is made only of matter, but 
look what matter is! Materialism as a doctrine might turn to be not so much wrong as 
pointless—in a world in which matter, energy, and space-time turn out to be mathematical 
structures. What of atomism? Well, what are atoms? When we say "protons are made of 
quarks," all we might mean is that a certain irreducible representation of the symmetry 
group SU(3) is "constructed" from its basic ("atomic"), three-dimensional, irreducible 
representation, by means of mathematical operations such as "tensor product."32 

(Pythagoras thought the world is made of numbers, but that is too simple: it's made of 
matrices of numbers, and the numbers are not real, but complex!) In such a world, by the 
way, causality itself would be a pointless concept,33 valid only of the world as it appears to 
our poor receptors (as Bertrand Russell argued almost one hundred 
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years ago). For as the late Pythagoreans argued, Aristotle's Four Causes can themselves be 
reduced to mathematical properties and relations.34 
Does this raise any philosophical problems? You bet. First of all, there is the question of 
whether Pythagoreanism is a coherent doctrine—I believe that it is. I am persuaded by 
John Locke's central insight that the world could turn out to be fundamentally unlike what 
it appears to be, and the framework of space and time is no exception. Of course, Locke's 
rigid separation of primary from secondary qualities makes it seem as though it is some 
kind of an a priori truth that the world has the geometric properties it seems to have. Yet 
some astute commentators have pointed out passages in the Essay that hint that Locke saw 
that even the primary qualities may not be the last word, and that if we had the ability to 
perceive what is going on at the atomic level, even the primary qualities might turn out to 
be appearances.
The ultimate problem, then, would be whether Pythagoreanism is an acceptable doctrine. 35 

If it is, then we end this article with the greatest irony of all.
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21. Logical Consequence, Proof Theory, and Model Theory
Stewart Shapiro 

1.  Proof Theory and Model Theory

The first entry under "logic" in the Oxford English Dictionary is "the branch of philosophy 
that treats of the forms of thinking in general, and more especially of inference and of 
scientific method." The corresponding entry in Webster's New Twentieth Century  
Unabridged Dictionary is "the science of correct reasoning; the science that deals with the 
criteria of valid thought." Of course, it is not a good idea to let Oxford and Webster dictate 
our agenda, but they are correct that logic is, at root, a philosophical enterprise. Since at 



least the beginning of the twentieth century, however, logic has become a branch of 
mathematics as well as a branch of philosophy. As a youngster, I was informed of the four 
great fields of mathematical logic: proof theory, model theory, set theory, and 
computability. Our main question here concerns how that wonderful mathematics relates to 
the philosophical targets: correct reasoning, valid thought, inference. Model theory and 
proof theory each provide for a notion of logical consequence, but the notions employed by 
these two branches are quite different from each other, at least conceptually. Although set 
theory and computability are interesting and important in their own right, their connection 
to "correct reasoning" is more indirect. Set theory deals with the realm of models for model 
theory, and computability relates to the notion of a formal deductive system, in proof 
theory.
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Textbooks and advanced treatments in mathematical logic work with formal languages, 
which are rigorously defined sets of strings on a fixed alphabet. The resulting mathematics 
is, of course, interesting and important, but we can query its philosophical ramifications 
and its relation to correct reasoning.
Typically, parts of a formal language roughly resemble parts of a natural language. 
Characters like "&," "V," "→," "¬," " ," and " " correspond to the English expressions 
"and," "or," "if … then," "it is not the case that," "for every," and "there is," respectively. 
These are sometimes called the logical terms of the formal or natural language. Some 
formal languages include specific nonlogical terms, such as the sign for the "less-than" 
relation over the natural numbers, but it is more common to include a stock of schematic 
letters which stand for arbitrary, but unnamed, nonlogical names, predicates, and functions.
In this chapter, I shall use lower-case Greek letters for items from formal languages and 
upper-case Greek Letters for corresponding sentences from natural languages (or 
propositions, or whatever the medium of correct reasoning is). Let γ be a set of formulas 
and a single formula of a formal language. A typical logic text formulates two rigorous 
notions of consequence, two senses in which follows from γ. For one of them the author 
presents a deductive system D. The simplest of these consist of a list of axioms and rules of 
inference. An argument γ,  in the formal language is deductively valid (via D) if there is a 
sequence of formulas ending with , such that each member of the sequence is either a 
member of γ or an axiom of D, or follows from previous formulas in the sequence by one 
of the rules of inference of D. Natural deduction systems and sequent calculi are a bit more 
complex, but similar in spirit. In each case, there is a rigorous notion of deductive validity. 
If γ,  is deductively valid in a system D, we write γ  D  , or simply γ   if it is safe to 
suppress mention of the deductive system.
The other notion of consequence invokes a realm of models or interpretations of the formal 
language. Typically, a model is a structure M = d,I , where d is a set, the domain of M, and 



I is a function that assigns extensions to the nonlogical terminology. For example, if c is a 
constant, then Ic is a member of the domain d, and if R is a binary predicate, then IR is a 
set of ordered pairs on d. Then one defines a relation of satisfaction between 
interpretations M and formulas . An interpretation M satisfies , written M  , if is true 
under the interpretation M. Finally, one defines to be a model-theoretic consequence of γ 
if every interpretation that satisfies every member of γ also satisfies . In other words, is a 
model-theoretic consequence of γ if there is no interpretation that satisfies every member 
of γ and fails to satisfy . In this case, we write that the argument γ,  is model-
theoretically valid, or γ  .
Recall that the deductive notion of consequence is defined relative to a deductive system. 
Although, to be consistent, one should define the model-theoretic notion relative to the 
background set theory, or the background class of models, this is not often done. It is 
usually assumed, perhaps tacitly, that either the background 
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set theory is ZFC, or else that all of the reasonable, competing set theories deliver the same 
relation of logical consequence.
Since model-theoretic consequence (via a set theory) and deductive validity (via a 
deductive system D) are sharply defined notions on a given formal language, relations 
between them are mathematical matters. The system is sound if every deductively valid 
argument is also model-theoretically valid, and the system is complete if every model-
theoretically valid argument is also deductively valid.
Typically, soundness is easily established. One just checks each axiom and rule of 
inference to make sure that it does not lead from true premises to a false conclusion in any 
interpretation. Virtually every system presented in treatments of logic is sound. When 
completeness obtains, it is a usually a deep and interesting mathematical result. Gödel's 
[1930] completeness theorem entails that first-order logic (with or without identity) is 
complete. It is a corollary of Gödel's incompleteness theorem that second-order logic is not 
complete (see Shapiro [1991, ch. 4]). Its consequence relation is not recursively 
enumerable, and so no effective, sound deductive system is complete for it.
Our main concern here is the notion of model-theoretic consequence. What does it have to 
do with correct reasoning? We will take on deductive consequence only by way of 
contrast. Do these two notions answer to different intuitive notions of consequence? Is one 
of them primary, and the other secondary? Or perhaps they are autonomous and 
independent. Maybe there are two distinct notions of correct reasoning, valid thought, 
and/or inference.
For what it is worth, treatments of mathematical logic usually presuppose that the model-
theoretic notion is the primary one. For example, one says that a deductive system is sound 
or complete (or not) for the semantics—not the other way around. If a deductive system is 



not sound for a given semantics, then that alone disqualifies the deductive system. Why? 
Because the deductive system allows us to deduce a falsehood from truths in some 
interpretation of the language. But one could perhaps argue instead that it is the model 
theory that is at fault. Any counterexample to soundness—any "interpretation" in which we 
can deduce a false conclusion from true premises—is perhaps not a legitimate 
interpretation of the language. For better or worse, however, most mathematical logicians 
do not think that way.
To a lesser extent, it is the same for completeness. Suppose that a given deductive system 
is not complete for a given semantics. Again, a typical, but not universal, response is that 
the deductive system is at fault. Why? Because the deductive system does not have the 
resources to establish every valid argument. Again, one might argue instead that it is the 
semantics that is at fault. It does not have enough interpretations to provide 
counterexamples to every argument that is not deducible in the deductive system.
In this case, some logicians do put things this way. As noted, the usual deductive systems 
for second-order languages are not complete for the so-called 
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standard semantics. It is not a matter of having left out one or two invalid deductions. No 
effective deductive system is sound and complete for second-order validity—assuming 
standard semantics. Among those who accept second-order logic, the most common 
conclusion is that no sound, effective deductive system captures the relevant notion of 
consequence. But some thinkers take a different line. The usual deductive systems for 
second-order languages are complete for Henkin semantics. This last, in effect, contains 
more interpretations of the language—so-called nonstandard interpretations (see Shapiro 
[1991, ch. 4] for details more). Some philosophers and logicians argue that Henkin 
semantics (or something equivalent to it) is the appropriate model theory, not standard 
semantics.
We won't delve any deeper here into the specific issues concerning second-order logic (see 
chapters 25 and 26 of this volume), except occasionally for purposes of illustration. Present 
concern is with the general notion, or notions, of logical consequence, and how those relate 
to model theory.

2.  Logical Consequence

Our next task is to explore the intuitive, or pretheoretic, notion of logical consequence. 
What are correct reasoning, valid thought, and inference—the supposed subject matter of 
logic? Answers to this question will lend perspective to the mathematical notions of 



model-theoretic consequence and deductive consequence. What follows is based loosely 
on Shapiro [1998] and [2002].

2.1.  Modality

Aristotle provided the earliest systematic treatment of logical consequence (or at least the 
earliest surviving treatment): 
A syllogism is a discourse in which, certain things having been supposed, something 
different from the things supposed results of necessity because these things are so. By 
"because these things are so," I mean "resulting through them" and by "resulting through 
them," I mean "needing no further term from outside in order for the necessity to come 
about." (Prior Analytics, book I, ch. 2) 
Aristotle thus holds that a given proposition Φ is a consequence of a set Γ of propositions 
only if Φ is different from any of the propositions in Γ. Nowadays, logicians reject this and 
allow that Φ trivially follows from Γ when Φ is a member of Γ. But this is not a substantial 
issue. Aristotle's phrase "because these things are so" might indicate that in order to have a 
consequence, or "syllogism," the 
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premises in Γ must all be true. We will not enter into this exegetical issue. With the 
possible exception of Gottlob Frege, most modern conceptions of consequence allow 
instances of logical consequence in which the premises are false. For example, "Socrates is 
a puppy" follows from "All men are puppies" and "Socrates is a man."
With the phrase "results of necessity," Aristotle introduces a modal element into the 
definition. He glosses the phrase "because these things are so" as "resulting through them," 
and he glosses that as "needing no further term 
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from outside in order for the necessity to come about." These clauses seem to indicate that 
in a valid argument the premises alone guarantee the conclusion, or that the premises are 
sufficient for the conclusion.
Our first conception of logical consequence is modeled on this reading of Aristotle's 
definition: 

(M) Φ is a logical consequence of Γ if it is not possible for the members of Γ to be true and 
Φ false. 



Following the contemporary practice of phrasing modal notions in terms of possible 
worlds, the thesis (M) becomes 
(PW) Φ is a logical consequence of Γ if Φ is true in every possible world in which every 
member of Γ is true. 

According to (M) and (PW), "Bill is heavier than Joe" follows from "Joe is lighter than 
Bill," since it is impossible for Joe to be lighter than Bill and for Bill to fail to be heavier 
than Joe. Surely, Bill is heavier than Joe in every possible world in which Joe is lighter 
than Bill. Or so one would think. To adapt an example from Bernard Bolzano, a religious 
person who accepts (M) or (PW) would say that "Caius has an immortal soul" follows 
from "Caius is a human" since (according to the person's theology) the premise cannot be 
true and the conclusion false.
On most contemporary accounts of logic, neither of these conclusions is a logical 
consequence of its corresponding premise. It is a routine exercise to formalize these 
arguments and show that the conclusions do not follow on either model-theoretic or 
deductive notions of consequence. Perhaps we can bring (M) and (PW) closer to the 
contemporary notions by invoking a special notion of logical possibility and necessity. It is 
perhaps physically or metaphysically or analytically impossible for Joe to be lighter than 
Bill and Bill to fail to be heaver than Joe, but it is logically possible for this to happen. 
Along similar lines, there are perhaps no theologically possible worlds in which Caius is 
human and fails to have an immortal soul, but perhaps our theologian will concede that 
there are logically possible worlds where this happens.
To pursue this tactic, we would have to articulate the distinctive notion of logical 
possibility. Aristotle's final clause, that a syllogism needs "no further term from outside in 
order for the necessity to come about," seems appropriate for this purpose. In the example 
about Bill and Joe, we need to invoke some "outside" fact about the relationship between 
heaviness and lightness in order for the "necessity to come about," or at least in order to 
understand the necessity. In the theological example, we need the fact (if it is a fact) that, 
necessarily, all humans have immortal souls. "Caius has an immortal soul" does follow 
logically from "Caius is a human" together with the relevant theological thesis that all 
humans have immortal souls.
On the other hand, I would think that there just is no possible world in which Bill is 
heavier than Joe without Joe being lighter than Bill. Joe being lighter than Bill is part of 
what it is for Bill to be heavier than Joe. And I presume that most theologians would insist 
that having an immortal soul is part of what it is to be a human. There is no possible world 
in which Caius is a man and yet fails to have an immortal soul. To adequately understand 
the formal notions of model-theoretic and deductive consequence, we must supplement the 
modal notions.



2.2.  Semantics

According to Alberto Coffa [1991], a major concern of philosophers throughout the 
nineteenth century was to account for the necessity of mathematics without invoking 
Kantian intuition. Coffa proposed that the most successful line came from the "semantic 
tradition," running through the work of Bolzano, Frege, and Ludwig Wittgenstein, and 
culminating in the Vienna Circle. The idea is that the relevant necessity lies in the use of 
language, or meaning. Although this is a departure from Aristotle, we can invoke the 
semantic program to further articulate the notion of logical consequence: 
(S) Φ is a logical consequence of Γ if the truth of the members of Γ guarantees the truth of 
Φ in virtue of the meanings of the terms in those sentences. 
Thesis (S) takes care of our theologian. I presume that even the most religious linguist or 
philosopher of language does not take it to be part of the meaning of the word "human" 
that humans have immortal souls. If someone who denies that humans have immortal souls 
merits divine or earthly retribution, it will not be on account of a linguistic deficit. Indeed, 
outside the classroom, one does not usually get punished for failing to understand certain 
words. So everyone should agree that according to (S), "Caius has an immortal soul" does 
not follow from "Caius is human."
Nevertheless, our other troubling example is left intact. According to (S), "Bill is heavier 
than Joe" does indeed follow from "Joe is lighter than Bill," since the 
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meanings of "heavier" and "lighter" determine that these relations are converses of each 
other. Someone who understands the meaning of the two sentences has all she needs to 
know that if the premises are true, then so is the conclusion.
The thesis (S) captures what is sometimes called "analytic consequence," which is often 
distinguished from logical consequence, due to examples like the one considered here. We 
now refine the semantic idea.

2.3.  Form

There is a long-standing view that logical consequence is a matter of form. The idea is that 
an argument is valid if and only if every argument with the same (logical) form is valid. As 
far as I know, Aristotle does not explicitly say that validity is a matter of form, but his 
work in logic presupposes this. He sometimes presents "syllogisms" by just giving the 
forms of the propositions in them, not bothering with their content. More telling, perhaps, 



is that when Aristotle wants to show that a given conclusion does not follow from a given 
pair of premises (i.e., that a given sequence is not a syllogism), he typically gives an 
argument in the same form with true premises and false conclusion. Prima facie, this 
practice presupposes that if an argument is valid, then every argument in the same form is 
valid. The presented "counterargument" is surely invalid, since its premises are true and its 
conclusion is false. The original given argument has the same form as the presented 
counterargument. Thus, the original argument is not valid.
Consider a paradigm case of a valid argument: 
All men are mortal; Socrates is a man; therefore, Socrates is mortal. 
The validity of this argument does not turn on anything special about mortality and 
Socrates. Any argument in the following form is valid: 

All A are B; s is an A; therefore s is a B. 
That is, if one replaces the schematic letters A, B with any predicates or common nouns 
and s with any name or definite description that describes something, the result is a valid 
argument. 
However, one might say similar things about our examples. Consider the following 
"forms": 
s is lighter than t; therefore t is heavier than s. 
s is human; therefore s has an immortal soul. 
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An argument in one of these forms has the same status, vis-à-vis (M), (PW), and even (S), 
as the argument it was taken from. So one can still think of the arguments about Bill, Joe, 
and Caius as valid in virtue of their forms.

Nevertheless, the prevailing view is that neither of these arguments has a valid form. 
Although the argument about weight does not turn on anything special about the 
denotations of "Bill" and "Joe," it does turn on specific facts about (the meaning of) 
"heavier" and "lighter," namely, that these relations are converse to each other. Similarly, 
the argument about immortal souls does not turn on anything about Caius, but it does turn 
on putative theological facts about humans. On the prevailing view, the requisite logical 
form of both of the above arguments is 
s is A; therefore s is B. 
It is, of course, straightforward to find an argument in this form with a true premise and a 
false conclusion. Consider: "Kansas City is in the United States, therefore Kansas City is in 
Ohio." Thus the original arguments are not valid in virtue of this form, and for the 
arguments at hand, this is the form that matters.



If someone wanted to be stubborn, he could point out that even though the paradigm valid 
argument does not turn on anything special about Socrates, humanity, or mortality, it does 
turn on the specific meaning of "all," "are," and "is." We can give the following "form" to 
the paradigm valid argument: 
Π A is B; s is A; therefore, S is B, 
and then give a counterargument in that "form":
Some people are senators; Jorge Posada is a person; therefore Jorge Posada is a senator. 
This has true premises and a false conclusion. So even the paradigm argument is not valid 
in virtue of the last-displayed "form."
Of course, the standard response is to claim that the last-displayed "form" is not a logical 
form of the paradigm argument. But this raises the next question. How are we to 
characterize logical form? One might say that a form is logical if the only terms it contains 
(besides the schematic letters) are logical terms.
We now face the task of characterizing the logical terms. How do we go about designating 
a term as logical? The logician, or philosopher of logic, has three options. One is to attempt 
a principled definition of "logical term," perhaps by focusing on some of the traditional 
goals and purposes of logic (see, e.g., Peacocke [1976], Hacking [1979], McCarthy [1981], 
Tarski [1986], Sher [1991]). The proposals and theories cover a wide range of criteria and 
desiderata, such as a priori knowledge, analyticity, formality, justification, and topic 
neutrality. It would take us too far afield to examine the proposals here. A second tactic, 
implicitly followed in most logic textbooks, is to merely provide a list of the logical terms 
and leave our task with this act of fiat. Typically, logical terms consist of truth-functional 
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connectives ("not," "and," "or," "if … then"), quantifiers ("some," "all"), variables, and 
perhaps the sign for identity. This might leave the readers wondering what is going on, and 
of course it provides no insight into the choice of logical terms. A third option (following 
Bolzano [1837] and Tarski [1935]) is to make the notions of logical form and logical 
consequence relative. That is, one defines an argument to have a certain logical form 
relative to a given choice of logical terms. The same argument might be valid relative to 
one set of logical terms and invalid relative to another. Here we just adopt the easier, 
second course.
Our next notion of consequence combines the notion of logical form with a semantic 
conception like (S) above: 
(FS) Φ is a logical consequence of Γ if the truth of the members of Γ guarantees the truth 
of Φ in virtue of the meanings of the logical terminology. 

2.4.  Epistemic Matters



We still have not addressed the role of logical consequence in organizing and extending 
knowledge. As noted above, a common slogan is that logic is the study of correct 
reasoning. Truth be told, we have not said much about reasoning yet. It seems that one 
reasons from premises to conclusion via valid arguments. If we believe the premises, we 
must believe the conclusion, on pain of contradiction.
Let us propose another definition of consequence: 
(R) Φ is a logical consequence of Γ if it is irrational to maintain that every member of Γ is 
true and that Φ is false. The premises Γ alone justify the conclusion Φ. 
This much also seems consonant with at least part of Aristotle's definition of syllogism.
Back to our examples. A theologian might admit that it is not irrational to hold that Caius 
is a human being without an immortal soul. Indeed, our theologian should concede that 
someone can know that Caius is a human without knowing that he has an immortal soul. 
Some wretched folks are simply ignorant of the relevant theology, or too stubborn to 
understand it. On the other hand, there does seem to be something irrational in maintaining 
that Bill is shorter than Al while denying that Al is taller than Bill—unless, of course, one 
does not know the meaning of "shorter" or "taller." But perhaps one can also rationally 
deny that Socrates is mortal while affirming that all men are mortal and Socrates is a man
—if one pleads ignorance of the meaning of "all."
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Surely, in attributing rationality and irrationality to our subjects, we must credit them with 
understanding of the meanings of the terms in their arguments. So (R) seems related 
somehow to the semantic notion (S) from section 2.2.
What is the penalty for being irrational? What, exactly, is the "pain" of contradiction? The 
idea is that one who affirms the premises and denies the conclusion of a valid argument has 
thereby said things which cannot all be true. This broaches modal notions, as in (M) and 
(PW) from section 2.1. I submit, however, that the pain of contradiction goes further than 
this. The charge is not merely that our subject has said something impossible, but that she 
could have known better, and indeed should have known better. In this sense, logical 
consequence is a normative notion. It concerns the epistemic burdens on those who reason.
The most common way to articulate the normativity here is in terms of deduction. A 
sentence Φ is a consequence of Γ in this sense if there is a process of inference taking one 
from members of Γ to Φ. The purpose of deduction is to provide a convincing, final case 
that someone who accepts the members of Γ is thereby committed to Φ. So we have: 
(Ded) Φ is a logical consequence of Γ if there is a deduction of Φ from Γ by a chain of 
legitimate, gapfree (self-evident) rules of inference. 



Arguably, this notion also has its pedigree with Aristotle. He presents a class of syllogisms 
as "perfectly" valid, and shows how to reduce other syllogisms to the perfectly valid ones 
by inference (see Corcoran [1974]).

2.5.  Recapitulation

I do not claim that the foregoing survey includes every notion of logical consequence that 
has been seriously proposed and maintained. For example, there is a tradition, going back 
to antiquity and very much alive today, that maintains that Φ is not a logical consequence 
of Γ unless Γ is relevant to Φ (see chapter 23 of the present volume). But to keep the 
treatment from getting any more out of hand, we will stick with the above notions. Here 
they are: 

(M)   Φ is a logical consequence of Γ if it is not possible for the members of Γ to be true 
and Φ false. 

(PW) 
 
 Φ is a logical consequence of Γ if Φ is true in every possible world in which every 
member of Γ is true. 

(S)   Φ is a logical consequence of Γ if the truth of the members of Γ guarantees the 
truth of Φ in virtue of the meanings of the terms in those sentences. 
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(FS)   Φ is a logical consequence of Γ if the truth of the members of Γ guarantees the 
truth of Φ in virtue of the meanings of the logical terminology. 

(R)   Φ is a logical consequence of Γ if it is irrational to maintain that every member of 
Γ is true and that Φ is false. The premises Γ alone justify the conclusion Φ. 

(Ded) 
 
 Φ is a logical consequence of Γ if there is a deduction of Φ from Γ by a chain of 
legitimate, gap-free (self-evident) rules of inference. 

3.  Proof Theory and Model Theory Again

Each of these ideas captures, or models, a different notion of logical consequence, and 
there are some issues concerning their interrelations. The framework lends some 
perspective to the differences between the formal, mathematical notions of deductive 
consequence and model-theoretic consequence.



Deductive consequence is a formal analogue, or model, of (Ded). Let us say that a 
deductive system is correct if—or to the extent that—each of its primitive rules of 
inference corresponds to a legitimate, gapfree move in reasoning. This is a measure of the 
extent to which a deductive system is an accurate account of reasoning in natural language, 
or whatever the medium of actual reasoning is. Unlike soundness and completeness, which 
are sharp mathematical notions, correctness is a vague matter, not an all-or-nothing affair. 
If a deductive system D is (more or less) correct, then each deduction in D (more or less) 
corresponds to a legitimate, or valid, derivation in ordinary reasoning. That is, γ  D   only 
if (Ded) holds for any natural language argument in that form. And (Ded) entails (R). So if 
γ  D  , then for any natural language argument in that form, it is not rational to maintain 
the premises and deny the conclusion.
What of the converse of correctness? Say that a deductive system D is adequate if every 
chain of legitimate gapfree inferences in natural language (or every chain that turns on 
certain features of certain natural language terms, or on certain formal features) can be 
recaptured in D. That is, D is adequate if, for each correct chain of reasoning (of the right 
sort), there is a deduction in D that captures its form. Like correctness, adequacy is a vague 
matter, especially if we are limiting its scope to certain kinds of arguments.
Prima facie, we have intuitions concerning what is a legitimate, gapfree inference in 
ordinary language. Aristotle's perfect syllogisms are a perfect example (pun intended). If 
there are such intuitions, they can pronounce on the correctness 
end p.661

of a given deductive system D. We just check each primitive rule of D, to make sure that it 
corresponds to a gapfree inference. I take it, without much in the way of further argument, 
that standard first- and higher-order deductive systems are correct.
The intuitions in question, plus a bit of mathematical work, might tell us that a given 
deductive system D is not adequate. This will happen if we recognize a gapfree inference 
in ordinary language that has no counterpart in D. However, said intuitions concerning 
instances of correct, gapfree inference give us little clue on how to establish, or even argue 
for, adequacy. Do we have intuitions concerning the full extent or range of legitimate 
inference patterns? The thesis that a given deductive system is adequate is the same sort of 
thing as Church's thesis. It can perhaps be argued for on quasi-empirical grounds, noting 
that no exceptions are known so far. And different deductive systems, constructed 
independently, might converge on the same consequence relation. Also, adequacy is 
subject to analysis. I give an argument for adequacy below, restricted to first-order 
languages which, I claim, is (and ought to be) convincing.
To place the model-theoretic consequence relation in the present framework, let us focus 
briefly on satisfaction, the relation that holds between a set-theoretic interpretation and a 
formula of the formal language that is true on that interpretation. I suggest that the 



recursive clauses in the definition of satisfaction represent the relationship between 
sentences in natural language and the world. In other words, satisfaction conditions are a 
formal analogue of (part of) the truth conditions of sentences in natural language. As 
Hodes [1984] once put it, truth in a model is a model of truth. This recapitulates the slogan 
that validity is truth-preserving.
Model-theoretic consequence does not correspond very well to the semantic notion (S) of 
analytic consequence. Any "meaning" assigned to nonlogical terms is quite irrelevant, 
since these terms get different extensions from interpretation to interpretation. The 
definition of validity has a bound variable ranging over the entire class of interpretations, 
and this includes all possible extensions for each nonlogical term, independent of the 
meaning of any term from natural language corresponding to it.
Not so the logical terminology. In the context of model-theoretic semantics, the logical 
terminology of the formal language derives its meaning from the recursive clauses in the 
definition of satisfaction. For example, a formula in the form Vψ is satisfied in an 
interpretation (under an assignment) just in case either is satisfied in that interpretation or 
ψ is satisfied in that interpretation (under the same assignment). This fixes the meaning of 
the connective "V": it is the same truth function in every interpretation. In other words, 
model-theoretic consequence does turn on the meaning of the logical terminology (as it is 
manifest in the recursive definition of satisfaction). Nevertheless, the model theory does 
not recapitulate the formal notion (FS), since the meaning of the logical terminology is not 
all that matters. A modal element remains.
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From this perspective, an interpretation in the model theory represents a way the world 
might be—a possible world—and the relation of satisfaction tells us which formulas would 
be true, had the world been that way. In particular, the different domains of discourse 
represent various possible contents to the universe. But this is a rather attenuated use of 
modality, due to the range of extensions of the nonlogical terminology.
Two interpretations M 1 , M 2 are isomorphic if there is a one-to-one function f from the 
domain of M 1 onto the domain of M 2 that preserves the relations. For example, if R is a 
binary relation in the language, then the pair a,b  is in the extension of R in M 1 if and only 
fa,fb  is in the extension of R in M 2 . Interpretations are isomorphic if they have the same 

structure.
Any model-theoretic semantics worthy of the name has the isomorphism property: if M 1 

and M 2 are isomorphic; then for any sentence in the formal language, M 1 satisfies if and 
only if M 2 satisfies . In other words, isomorphic interpretations are equivalent. The 
formal language does not distinguish between them. The isomorphism property is 
established by induction on the complexity of each formula.



It follows from the isomorphism property that the individual objects in a domain of 
discourse do not matter. Suppose that M = d,I  is an interpretation, and let d′ be any set 
that is the same size as d. Then we can define a function I′ such that the interpretation 
M′ = d′,I′  is isomorphic to M. Indeed, let f be a one-to-one function from d′ onto d. Then, 
for example, if R is a binary relation symbol, let a pair a,b  of elements of d′ be in I′R if 
and only if the pair fa,fb  is in IR. As above, M′ is indistinguishable from M, even if the 
objects in the two domains are radically different from each other.
What does matter for model-theoretic consequence is the size of each interpretation. The 
class of interpretations represents the range (or a range) of sizes the universe might be. I 
submit that this is the only modality that is registered in model-theoretic consequence.
Model-theoretic consequence thus has elements of (M), (PW), and (FS). Let us say that a 
sentence Φ (in natural language) is a consequence of a set Γ of sentences in a blended 
sense if it is not possible for every member of Γ to be true and Φ false, and this 
impossibility holds in virtue of the meaning of the logical terms. In the terminology of 
possible worlds, Φ is a logical consequence of Γ in this blended sense if Φ is true in every 
possible world under every reinterpretation of the nonlogical terminology in which every 
member of Γ is true. Perhaps it is not too much of a stretch to see this blended notion of 
consequence as in line with Aristotle's notion: "a discourse in which, certain things having 
been supposed, something different from the things supposed results of necessity because 
these things are so (see §2.1 above)." The blended notion also recapitulates the slogans that 
logical consequence is truth-preserving, and that consequence is a matter of logical form.
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There is a direct analogue of the above treatment of deductive consequence. Define a 
model-theoretic semantics to be correct if—or to the extent that—for any model-
theoretically valid argument in the formal language, each argument in natural language 
with that form is a logical consequence in the blended sense. It might be clearer if we focus 
on the contrapositive. The model-theoretic semantics is correct if it has enough 
interpretations to refute any argument that is not valid in the blended sense. Suppose that a 
given sentence in natural language fails to be a logical consequence, in the blended sense, 
of a given set of such sentences. Then there is a possible world and an interpretation of the 
nonlogical terminology that makes the premises true and the conclusion false. If the model-
theoretic semantics is correct, then there is an interpretation in the model-theoretic 
semantics that satisfies the formal counterparts of the premises but does not satisfy the 
formal counterpart of the conclusion.
Notice that the correctness of a model-theoretic semantics does not entail that its realm of 
interpretations has a counterpart to every possible world. Consider, for example, ordinary 
set-theoretic model theory. It may be that in some possible world (like this one), the range 
of the variables is not a set, in which case there is no interpretation in the model theory that 



corresponds to it. All that correctness requires is that if an argument is not valid in the 
blended sense, then at least one item in the realm of interpretations in the model theory 
refutes (a formal counterpart to) it.
Turning to the converse, define a model-theoretic semantics to be adequate if each 
argument in natural language that is valid in the blended sense—or each argument whose 
validity in the blended sense turns on certain features of the language—corresponds to a 
model-theoretic consequence. Again, consider the contrapositive. Suppose that a given 
formula is not a model-theoretic consequence of a given set of formulas. Then there is an 
interpretation in the model theory that satisfies every premise but does not satisfy the 
conclusion. If the semantics is adequate, then there is also a possible world in which one 
can interpret the nonlogical terms to make the premises true and the conclusion false. In 
other words, the model-theoretic semantics is adequate if each interpretation in the 
semantics corresponds to a genuinely possible world. In light of the isomorphism property, 
all that adequacy requires is that each interpretation represent a possible size of the 
universe.
For model theory, adequacy is the easier property to establish, or at least support. We seem 
to have intuitions concerning what is a correct interpretation, or at least what is a possible 
size of the universe, and we have intuitions concerning what is a legitimate interpretation 
of the nonlogical terminology. I take it for granted that the interpretations of standard 
model theory are indeed legitimate possibilities for first- and higher-order languages, and 
so for these languages, at least, model-theoretic consequence is adequate. Correctness is 
another matter, supported indirectly or in a quasi-empirical manner.
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Correctness and adequacy concern how the formal notions of deductive and model-
theoretic consequence relate to their informal counterparts: (Ded) and the blended notion, 
respectively. We can also ask how the informal notions relate to each other. If there is a 
deduction of a sentence Φ in natural language from a set Γ of premises by a chain of 
legitimate, gapfree (self-evident) inferences, then is Φ a consequence of Γ in the blended 
sense? In other words, does (Ded) imply that the argument is a logical consequence in the 
blended sense? This is the counterpart to soundness. Conversely, if Φ is a consequence of 
Γ in the blended sense, then is there a deduction of Φ from Γ by a chain of legitimate, 
gapfree (self-evident) rules of inference? Does validity in the blended sense imply (Ded)? 
This is the counterpart to completeness.
The pretheoretic or intuitive version of soundness is a sine qua non of rationality. If there 
were a chain of legitimate, gapfree inferences that were not valid in the blended sense, then 
it would be possible to reason correctly from truth to falsehood. In other words, there 
would be a possible world and an interpretation of the nonlogical terminology in which the 
premises are true, and the chain of supposedly correct, gapfree reasoning would deliver a 



falsehood (in that world). We had better not have that—at least for deductive reasoning. 
Fortunately, the pretheoretic version of soundness is easily checked. We would not call an 
inference legitimate (let alone gapfree) unless it is evident that it will not lead from truth to 
falsehood.
The counterpart of completeness is less crucial. It might well be the case that there are 
arguments that are valid in the blended sense whose conclusions cannot be deduced from 
their premises via a chain of gapfree inferences.
Let us assume, for now, that the deductive and semantic behavior of the logical terms of 
first-order formal languages (V, &, , etc.) corresponds to the deductive and semantic 
behavior of their natural language counterparts. An instance of Kreisel's [1967] "informal 
rigor" can be adapted to show, or at least make it plausible, that the intuitive counterpart of 
completeness holds for arguments whose validity turns on the first-order logical 
terminology. Suppose that a given natural language sentence Φ is a consequence of a set Γ 
of sentences in the blended sense, and that this turns on the (counterparts to) the logical 
terminology of first-order languages. Let be a formula in the form of Φ, and let γ be the 
set of formulas that correspond to the sentences in Γ. By the adequacy of first-order model-
theoretic consequence, is a model-theoretic consequence of γ. As noted above, this is 
checked by noting that each model-theoretic interpretation does indeed correspond to a 
possibility (in the sense of being a possible size of the universe). By the completeness 
theorem, can be deduced from γ in a standard deductive system for first-order logic. From 
the correctness of first-order deductive systems (checked by noting that each rule of 
inference in the deductive system corresponds to a correct inference in natural language) it 
follows that there is a chain of legitimate, gapfree inferences from members of the original 
Γ to the 
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original conclusion Φ. In other words, (Ded) holds. So we have the pretheoretic 
counterpart of completeness.
Essentially the same result also indicates that for first-order languages, the standard 
deductive systems are adequate, in the sense that for each correct chain of reasoning (that 
turns on first-order structure) there is a deduction in a standard deductive system that 
captures its form. Suppose that a natural language sentence Φ is deducible from a set Γ of 
premises by a chain of legitimate, gapfree inferences. Again, let be the formal counterpart 
of Φ and let γ be the set of formal counterparts of the premises. If were not deducible 
from γ in a standard deductive system, then, by completeness, there would be an 
interpretation M = d,I  in which the members of γ are true and is false. By the adequacy 
of the model-theoretic semantics, M corresponds to a possibility (i.e., a possible size), and 
thus the original Φ does not follow from Γ in the blended sense. This undermines the 
pretheoretic notion of soundness.



Similarly, we have good reason to hold that for first-order languages, the model-theoretic 
semantics is correct, in the sense that for any model-theoretically valid argument in the 
formal language, each argument in natural language with that form is a logical 
consequence in the blended sense. Again, let Φ be a sentence in natural language, and a 
formal counterpart, and let Γ be a set of premises, with γ a set of formal counterparts. 
Suppose that γ  . Then, by completeness, can be deduced from γ in a standard, first-
order deductive system. So, by the pretheoretic version of soundness, the original sentence 
Φ is a consequence of the original Γ in the blended sense.
In short, for first-order languages, we can safely assume that the deductive systems are 
correct, the model-theoretic consequence is adequate, and the pretheoretic version of 
soundness holds. In the case of first-order formal languages and their natural language 
counterparts, it follows from this, and the completeness theorem, that the pretheoretic 
version of completeness holds, that the deductive system is adequate, and that the model-
theoretic consequence is correct. Not bad for a series of supposedly informal notions.
However, these Kreisel-style arguments turn on Gödel's completeness theorem, and so are 
limited to first-order languages. Since second-order languages are inherently incomplete, 
one would think that the pretheoretic version of completeness fails as well, but this 
depends on the extent of legitimate, gapfree inference patterns. As far as I know, we have 
no way to ascertain that. We do know that the collection of second-order logical truths is 
not recursively enumerable (see Shapiro [1991, ch. 4]). So if the pretheoretic version of 
completeness holds, then the totality of legitimate, gapfree inference patterns available to 
us humans is not recursively enumerable. We thus broach issues of mechanism, and I won't 
speculate further on this.
Nevertheless, we can maintain the correctness of standard deductive systems (every 
inference in the formal system corresponds to a correct inference) and we can maintain the 
adequacy of model-theoretic consequence (each argument in 
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natural language that is valid in the blended sense corresponds to a model-theoretic 
consequence). These are verified by an intuitive check of the rules of inference (to make 
sure they do not lead from truth to falsehood) and of the model-theoretic semantics (to 
make sure that each set-theoretic interpretation corresponds to a possible size of the 
universe). In contrast, the adequacy of the deductive system and the correctness of the 
model-theoretic consequence are left open. In Shapiro [1987] (and Shapiro [1991, ch. 6]), I 
argue that the correctness of the model theory is independent of ordinary set theory, in that 
it implies the existence of so-called small large cardinals.
To summarize so far, I submit that model-theoretic consequence ( ) and deductive 
consequence (  D ) each correspond to a different intuitive notion of logical consequence: 
the blended notion and (Ded), respectively. Both of the latter are legitimate notions, and 



they are conceptually independent of each other. So there is no dispute between advocates 
of model theory and advocates of deductive systems. However, I know of no arguments to 
support this eclectic attitude. How does one show that a given, intuitive notion of 
consequence is legitimate? And how does one show that one notion of consequence is 
conceptually independent of or dependent on another?
The formal notion of deductive consequence (  D ) depends on the particular deductive 
system D. It is clear that not just any collection of axioms and rules has a claim to be a (let 
alone the) notion of logical consequence. A. N. Prior's "The Runabout Inference Ticket" 
[1960] introduces an extension of an ordinary deductive system with a strange connective 
"tonk." It has an elimination rule like "&" and an introduction rule like "V." In the 
runabout deductive system the following are legitimate inference forms: 

from infer (  tonk ψ) 

from (  tonk ψ) infer ψ. 

The deductive system that results is not very interesting. Every formula is a runabout 
consequence of each set of formulas. The inference system, if one can call it that, does not 
represent any notion of logical consequence.
The existence of "systems" like Prior's raises the question of what makes a deductive 
system legitimate. What conditions are necessary (and perhaps sufficient) for a proposed 
deductive system to be a candidate formalization of a notion of consequence like (Ded)?
With the exception of intuitionists, relevance logicians, opponents of higher-order logic 
(see chapters 9, 10, 23, and 26 of this volume) and some others, everyone agrees that the 
common deductive systems for first- and second-order languages are legitimate. But what 
makes those deductive systems legitimate (if they are)? How are we to distinguish between 
deductive systems that represent logical consequence and those, like Prior's runabout 
system, that do not?
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The most common response to questions like this is to cite the soundness theorems, and 
perhaps the completeness theorem for first-order logic, as above. The argument is that the 
deductive systems are acceptable and legitimate just because they are sound for the model 
theory. This way of thinking presupposes that model-theoretic consequence, and its 
pretheoretic counterpart, are the prior or more important notions. We use model theory to 
determine which deductive systems are legitimate. Soundness to an adequate model theory 
is a necessary condition for a deductive system to be correct.
Advocates of the deductive notion of consequence reject this claim of priority. They argue 
that a notion in the neighborhood of (Ded) is the primary notion of consequence. 



Accordingly, each logical term is characterized by its inference rules. We need not, and 
should not, refer to a separate model theory.
The most common claim by advocates of the deductive notion is that the introduction and 
elimination rules in natural deduction systems provide each logical term with its meaning. 
But the connective "tonk" has introduction and elimination rules, and the resulting 
deductive system is clearly illegitimate. Apparently, the connective simply has no 
meaning. In these terms, our question becomes: Which rules of inference confer legitimate 
meaning on a logical connective, in order for the deductive system to represent a legitimate 
notion of logical consequence?
The response from the advocates of deductive consequence is that a pair of rules 
successfully characterizes a logical term only if they are in harmony (see, for example, 
chapters 22 and 23 of this volume). We are to think of the logical terms as introduced into 
the vocabulary one at a time. The result of adding a proposed new term, like "V" or "tonk," 
must be a conservative extension of the old system. In other words, if an inference that 
does not involve the new term is deducible in the new system, then it should be deducible 
in the old one, before the new connective was added. The rules for "V" meet this 
requirement, but those for "tonk" fail it miserably (unless the system was already useless).
The thesis is thus that (harmonious) rules of inference give the meaning of the logical 
terms of formal languages. Model theory—if there is to be one—must respect this 
meaning. The logic must be complete. Soundness is a bonus.
To repeat, the other school, in which model theory is primary (or at least autonomous), 
holds that the meanings of the logical terms are given by their satisfaction conditions. That 
is, the truth conditions of a compound are given in terms of the truth conditions of the 
parts. A deductive system—if there is to be one—must respect this. The logic must be 
sound. Completeness is a bonus.
Frankly, I am not sure just what the dispute is, let alone how to adjudicate it. When it 
comes to formal languages, there should be no dispute at all. It is just a matter of 
terminology. I think we can agree that when we are doing model theory, the meaning of a 
formal connective like "V" is given by its satisfaction conditions. After all, that is how the 
connective is presented and studied in model-theoretic 
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semantics. There is no "V" in natural language. When the connective is introduced into 
logical theory, it has the meaning that the theorist confers on it. Similarly, we should agree 
that when we are doing proof theory, the meaning of "V" is given by its inference rules. 
The "V" of model theory thus has a very different (sort of) meaning of the "V" of 
deductive systems. Can we go on to wonder about the real meaning of the formal 
connective "V," independent of whether we are doing model theory or proof theory, or if 
we are doing both at once (e.g., proving soundness and completeness)? I don't think we 



can. The meaning of a formal connective depends on what one is doing with it, and this is 
different in model theory and in deductive systems.
Perhaps the serious issue turns on the meaning of the English word "or" (or the German 
word "oder", etc.) when that particle is used to connect sentences. If so, then our dispute is 
an empirical one, to be decided by a controlled, blind study of the correct use of the word 
in ordinary conversation and writing by ordinary, competent speakers of the language. This 
would be conducted by the standards of professional linguistics. Or should the issue be 
decided with a study, conducted by child psychologists, of how the word is learned as 
children acquire facility with language? As far as I know, studies like this are not cited in 
the literature on model-theoretic and deductive consequence. The issue seems to be one 
that can be argued from an armchair. If it is an issue concerning the meaning of words in 
natural language, the participants in the debate consider themselves sufficiently expert, and 
do not feel a need to consult empirical linguistics or developmental psychology.
Perhaps the issue is to be decided on some sort of holistic grounds, looking for the overall 
theory that gives the best account of logical consequence. Perhaps it is meant as a quasi-
empirical claim concerning the English word "consequence" or "entails." Or perhaps it is a 
normative claim that this is what the phrase ought to mean.
Against this, I would urge the thesis of this chapter, that there are different, but closely 
related, notions of logical consequence. Model-theoretic consequence and deductive 
consequence provide formal accounts of two such notions, one in the neighborhood of the 
blended semantic notion above and the other in the neighborhood of (Ded). Both notions 
are legitimate, and epistemological insight is provided by studying them and their 
interrelations. So neither proof-theoretic consequence nor model-theoretic consequence is 
primary. Instead, they illuminate the various informal, pretheoretic notions of logical 
consequence, and they illuminate each other. However, I do not know how to further 
defend this package of views against the theses proposed by advocates of deductive 
consequence or by advocates of model-theoretic consequence. The rules of the holistic 
enterprise are rarely articulated, and it is notoriously difficult to agree on what counts as 
reflective equilibrium, independent of logical theory. So I close by referring the issue to the 
reader's intuitions.
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22. Logical Consequence: A Constructivist View
Dag Prawitz 

In spite of the great advancement of logic in our time and the technical sophistication of 
disciplines such as model theory and proof theory, the concept of logical consequence—
the most basic notion of logic—is still poorly understood. Basic intuitions are often in 
conflict with each other, and rather few attempts have been made to sort this out in a 
systematic fashion. Here I shall critically review some of the attempts that have been made 



to articulate intuitions about logical consequence,1 but the review makes no claim to be 
comprehensive or to settle the issues. Most attention will be given to how the notion of 
logical consequence may be developed from a constructivist point of view.
The idea of logical consequence has been with us since the time of Plato and Aristotle, and 
since then has been central for our understanding of philosophy and science. Presumably it 
arose at least partly in reflections upon Greek mathematics. It must have been a challenge 
to Greek intellectuals to explain the noteworthy form 
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that mathematics took in their time. How could it be that the Greeks could not only 
calculate such things as the length of one side of a right-angled triangle given the lengths 
of the other two—something that the Babylonians already knew perfectly well how to do
—but also could prove general laws such as Pythagoras' theorem? Somehow the idea 
occurred that the new practice was to be seen as involving the drawing of logically valid 
inferences. The idea of such inferences is present in Plato's writing and is clearly 
formulated by Aristotle.
From this beginning there have been at least three basic intuitions about what it is for an 
inference to be logically valid—or, as we also say, for its conclusion to follow logically 
from its premisses, or to be a logical consequence of its premisses.2 The most basic one, 
which goes almost without saying, is that a valid inference is truth-preserving: if the 
premisses are true, so is the conclusion. If the conditional here is understood as material 
implication, this means only that it is not the case that the premisses are true and the 
conclusion is false. Of course, the satisfaction of this condition is not enough to make the 
inference valid. Two further conditions, which occur more or less explicitly in Aristotle's 
writings, must also be satisfied: 

(1) 
 
 It is because of the logical form of the sentences involved, and not because of their 
specific content, that the inference is truth-preserving. 

(2) 
 
 It is impossible that the premisses are all true but the conclusion is false—or, in 
positive terms, it is necessary that if the premisses are true, then so is the conclusion. 

It remains to be discussed to what extent these two conditions are independent of each 
other, but there has been a general consensus that both conditions are necessary. While the 
modal notion that occurs in (2) is notoriously difficult to explicate, the main idea of (1) is 
comparatively easy to develop into a more precise form. Let us therefore first turn to that.

Variations of Specific Contents



Condition (1) comes into play in a well-known manner, already employed by Aristotle, 
when giving counterexamples to the logical validity of an inference. 
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When a conclusion B is inferred from premisses A 1 , A 2 , … , A n , one may object to the 
logical validity of the inference by presenting true sentences A 1 *, A 2 *, … , A n * and a 
false sentence B*, of the same logical form as A 1 , A 2 , … , A n and B, respectively. To 
make this more precise, one must specify the logical forms and the different categories of 
nonlogical terms. This is indeed something that has been done in modern logic for various 
languages, the first-order languages being one kind of example.
Given a language where these things have been specified, we may quantify over all 
variations of the content of nonlogical terms. Let A be the conclusion and Γ the set of 
premisses of an inference considered in this language, and let a substitution S be a pairing 
of the nonlogical terms in these sentences with other nonlogical terms, each pair consisting 
of terms of the same category. Let AS be the result obtained from A by replacing the 
nonlogical terms in A with the ones they are paired to by S, and let ΓS be the result of 
carrying out such a substitution in each sentence of Γ. A counterexample to the inference 
then consists of a set ΓS of true sentences and a false sentence AS. Since S replaces only 
nonlogical terms with other nonlogical terms, the counterexample has the same logical 
form as the original inference.
The idea of (1) may be expressed by saying that there is no counterexample to a logically 
valid inference or, in positive terms, an inference is logically valid only if all inferences of 
the same logical form as the given one are truth-preserving. Letting S vary over all 
substitutions of the kind described above, condition (1), or at least part of its content, may 
now be expressed by saying simply: 
(1′) For all substitutions S, if all the sentences of ΓS are true, then so is AS. 
This way of expressing condition (1) occurs already in medieval times and is taken up 
again by Bolzano, except that he considered propositions instead of sentences and concepts 
instead of terms. Disregarding some minor further conditions, which we need not consider 
here, Bolzano took (1′) also as a sufficient condition for A being a logical consequence of 
Γ. This last idea we shall discuss in the next section.
An obvious objection to (1′) (when one comes to think about it) is that (1′) may be satisfied 
simply because of a poverty of the language that limits the number of substitutions S. One 
should therefore consider extensions of the given language by introducing names of all 
existing things in the categories involved, and demand that (1′) hold for all such extensions 
of S. Or, alternatively (and better, not having to consider languages with uncountably many 
terms), one speaks of interpretations instead of substitutions. An interpretation of a given 
language is an assignment I to the nonlogical terms of the language which assigns 



denotations appropriate for the various categories of nonlogical terms. Speaking of truth 
under such assignments, as this is nowadays defined in elementary textbooks of logic, we 
can replace (1′) with 
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(1″) For all interpretations I, if all sentences of Γ are true under I, then A is true under I. 
This is how Tarski [1936] developed condition (1). If we take quantifiers to be always 
relativized by explicit specification of the domains, the interpretations also take care of the 
variations of these domains. Sentences such as "everyone is mortal" and "some numbers 
are prime" may then rendered "( x humans)(x is mortal)" and "( x numbers)(x is prime)"; 
and an interpretation of these sentences then also assigns some extensions to the domain 
names "humans" and "numbers."
Like Bolzano, Tarski takes his variant of (1) not only as a necessary but also as a sufficient 
condition for logical consequence. This is what is done also in model theory, where (1″) is 
slightly modified by making the domains explicit. Restricting ourselves to first-order 
languages and letting all the quantifiers range over the same individual domains D, we say 
that a structure or a possible model for a first-order language is a pair M = D, I  where D is 
a set and I is an interpretation in D of the nonlogical terms of the language. This means that 
I assigns set-theoretical objects that can be obtained from D (i.e., individual constants are 
assigned elements of D, first-order functional symbols are assigned functions from D to D, 
one-place first-order predicates are assigned subsets of D, and so on). Saying that a 
possible model D, I  is a model for a sentence A when A is true in D under I (i.e., A is true 
when the domain of the quantifiers is taken to be D and the values of the nonlogical terms 
are taken to the ones assigned by I), and that it is a model for the set Γ of sentences when it 
is a model for all the sentences of Γ, we may replace (1″) by the simple and well-known 
condition 
(1 ) All models of Γ are models of A. 
I consider condition (1″) to be a reasonable explication of the idea expressed in (1), and 
condition (1 ) to be a way of expressing a slight variation of (1″) in set-theoretical terms. 
However, the idea of making a condition of this kind a defining one for the concept of 
logical consequence must be discussed.
In discussing this question it is sometimes convenient to consider the closely related notion 
of logical truth instead of logical consequence. Logical truth may be considered the special 
case of logical consequence arising when the set Γ is empty. All the variants of (1) thus 
give a necessary condition for a sentence to be a logical truth, and this condition is turned 
into a definition of logical truth by Tarski and the model theory inspired by him. Hence, 
according to these analyses, a sentence A is logically true if and only if A is true under all 
interpretations of A, or in all possible models of A, respectively.
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Criticism of the Tarskian Analysis of Logical Consequence

Tarski agrees that there is a modal ingredient in our intuitive idea of logical consequence 
and that it can be formulated in the way of (2). He must thus claim that condition (1″), 
which he equates with A being a logical consequence of Γ, contains a modal element that 
takes care of the intuition expressed in (2). Notwithstanding that our modal intuitions may 
be obscure, there is reason to be suspicious of that claim.
The validity of inferences is not a small theme of philosophy. It is said that with the help of 
valid inferences, we justify our beliefs and acquire knowledge. The modal character of a 
valid inference is essential here, and is commonly articulated by saying that a valid 
inference guarantees the truth of the conclusion, given the truth of the premisses. It is 
because of this guarantee that a belief in the truth of the conclusion becomes justified when 
it has been inferred by the use of a valid inference from premisses known to be true. But if 
the validity of an inference is equated with (1) (or its variants), then in order to know that 
the inference is valid, we must already know, it seems, that the conclusion is true in case 
the premisses are true. After all, according to this analysis, the validity of the inference just 
means that the conclusion is true in case the premisses are, and that the same relation holds 
for all inferences of the same logical form as the given one. Hence, on this view, we cannot 
really say that we infer the truth of the conclusion by the use of a valid inference. It is, 
rather, the other way around: we can conclude that the inference is valid after having 
established for all inferences of the same form that the conclusion is true in all cases where 
the premisses are.3 
To say that a valid inference guarantees the truth of the conclusion, given the truth of the 
premisses, is to give the modal character of an inference an epistemic ring, and it seems 
obvious that condition (1″) has no connection with such a modality. What, then, about a 
modality of a more ontic kind that is pruned from epistemic matters? Does the claim that 
(1″) contains a modal ingredient (and in that way explicates condition (2)) fare better for a 
modality of that kind?
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A verdict on that question may most easily be arrived at by considering the Tarskian 
definition of logical truth. One may then note that the definition equates the logical truth of 
a sentence A with the actual truth of a closely related sentence, namely, the universal 
closure of the open sentence A* obtained from A by replacing all its nonlogical terms with 
variables of the same category. This observation enforces the suspicion that there is no 
modal ingredient at all in (1″). Clearly, the actual truth of the universal closure of A* in no 



way implies the necessary truth of its instance A.4 It is therefore difficult to see how the 
Tarskian analysis of logical consequence, which proceeds entirely in terms of actual truth 
(although under different interpretations of the descriptive terms), touches any modality.
But perhaps there is another way to look at the Tarskian analysis, or at least at the closely 
related model theory which grew out of Tarski's semantics. The basic intuitions behind our 
conditions (1) and (2) may be summarized by saying that two kinds of invariance are 
required of a logically valid inference: it must be truth-preserving regardless of the 
meaning of the descriptive terms of the sentences involved, and also regardless of the facts 
of the world. Etchemendy [1990] coined the term interpretational semantics for a theory 
that describes how the truth-value of a sentence varies with what the nonlogical terms of 
the sentence mean, and the term representational semantics for a theory that describes how 
it varies with how the world is. If it now has to be admitted that the Tarskian semantics 
occurring in (1″) is formulated as an interpretational semantics, it may be thought that at 
least the model theory occurring in (1 ) can be viewed both as an interpretational and as a 
representational semantics. If so, there would be a modal ingredient in condition (1 ) after 
all.
This stand seems to be the one taken by Shapiro (in his contribution concerning logical 
consequence in this volume). He argues that in a possible model D, I , the domain D gives 
the size of a possible world, and by assigning values (extensions) to the descriptive terms, 
I gives the facts of a possible world. The possible model may therefore be seen as 
representing a way the world might be. The idea is thus that a possible model can be 
viewed in two ways, either as depicting the meaning of descriptive terms or as representing 
a possible world. Viewed in the first way, (1 ) says that the inference is truth-preserving 
regardless of meaning, and viewed in the second way, it says that it is truth-preserving 
regardless of the world.
This standpoint is exactly one of the main targets of Etchemendy's criticism. Etchemendy 
argues that the standpoint is reasonable only if it can be made 
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plausible that the semantic theory simultaneously represents both all possible meanings of 
the descriptive terms and all the ways the world might be. There are simple instances 
where this is the case, but for several reasons ordinary model theory is not such a case 
according to Etchemendy. One objection is that some models cannot coherently be looked 
upon as representing a possible world for example, ones in which analytically true 
sentences such as 2 + 2 = 4 come out false. A second, equally serious objection is that there 
are possible worlds that are not represented by any model.
The question of whether the model-theoretical notion of consequence contains a modal 
ingredient is thus controversial. The view that it does, is, in my opinion, not very well 
developed, and has to meet a number of challenges raised by Etchemendy. In any case, 



there is certainly general agreement that if the Tarskian or model theoretic notion of logical 
consequence contains a trace of modality, then it is not of an epistemic kind. Let us 
therefore now turn to condition (2) stated in the introduction and ask how it can be 
explicated.

Necessity of Thought

Two ways to articulate condition (2) have already figured in the discussion of the previous 
section, one ontic and one more epistemic. The ontic alternative is to speak, with Leibniz, 
of possible worlds and to say simply: 
(2a) A is true in all possible worlds in which all the sentences of Γ are true. 
In a more epistemic formulation I spoke of the truth of the premisses guaranteeing the 
truth of the conclusion. Another way of bringing out an epistemic force of necessity more 
clearly is to say 
(2b) The truth of A follows by necessity of thought from the truth of all the sentences of Γ. 
In the same direction there are formulations such as one is committed to holding A true, 
having accepted the truth of the sentences of Γ; one is compelled to hold A true, given that 
one holds all the sentences of Γ true; on pain of irrationality, one must accept the truth of 
A, having accepted the truth of the sentences of Γ.
To develop the idea of a necessity of thought more clearly we must bring in reasoning or 
proofs in some way. It must be because of an awareness of a piece of reasoning or a proof 
that one gets compelled to hold A true given that one holds all the sentences of Γ true.
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Let us call a verbalized piece of reasoning an argument, and let us speak of an argument 
for A from Γ, if Γ is the set of hypotheses on which the reasoning depends and A is the 
conclusion of the reasoning. By a proof of A from Γ we may understand either a valid 
argument for A from Γ or, more abstractly, what such an argument represents; I shall here 
reserve it for the latter use.
A direction in which we may try to explicate (2b) may then be put in one of the following 
two ways: 
(2b′) There is a valid argument for A from Γ; there is a proof of A from Γ. 
It may be said that condition (2b′) does not in itself involve any idea of necessity of 
thought, since the mere existence of a valid argument or of a proof does not compel us to 
anything. Condition (2b′) may nevertheless be said to bring in the idea of a necessity of 
thought by requiring the existence of something such that when we know of it, we are 
compelled to hold A true, given that we hold the sentences of Γ true.



On the face of it, (2a) and (2b) (or (2b′)) may seem very different. Both formulations have 
of course to be developed further in order to be something more than mere phrases or 
metaphors, and before this is done, one cannot say how the two ideas are related. If the 
notion of a possible world is thought of as something determined by set of sentences Γ that 
are consistent in the sense of there being no valid argument or proof from Γ ending in a 
contradiction, then the two kinds of modalities may go together in the end. Here I shall 
leave the question how (2a) should be further analyzed and shall concentrate on (2b′).
We have thus to account for what it is that makes something a proof or, alternatively, to 
account for the validity of arguments. It should be noted at this point that not infrequently 
the validity of an argument is defined in terms of logical consequence. The idea here is to 
reverse the order of explanation in an attempt to catch a modal element in logical 
consequence. In other words, the validity of an argument for A from Γ is to be taken as a 
more basic notion, and is to be analyzed so that it constitutes evidence for A when given Γ, 
i.e., something that by necessity of thought makes us conclude A, given Γ.
What is it that makes an argument valid and thus compels us, by necessity of thought, to 
hold the conclusion true, given the truth of the premisses? It is difficult to think of any 
answer that does not bring in the meaning of the sentences in question. In the end it must 
be because of the meaning of the expressions involved that we get committed to holding 
one sentence true, given the truth of some other sentences.
To get further, we should thus turn to the notion of meaning. Since we are here interested 
in logical consequence, we shall focus on how one is to understand 
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that an argument is valid in virtue of the meaning of the logical constants occurring in the 
sentences of the argument.

The Meaning of the Logical Constants

One idea about meaning in general going back to Frege is that the meaning of a sentence is 
given by its truth condition. Its rationale is the notion that the question of whether a 
sentence is true or not depends both on the meaning of the sentence and how the world is, 
the meaning of the sentence being exactly that feature of the sentence which determines 
how the world has to be in order for the sentence to be true. Although far from being 
unanimously accepted, the idea that the meaning of a sentence is the same as its truth 
condition has been influential both in philosophy of language and in logic. Wittgenstein in 
the Tractatus took it up after Frege, and it is a cornerstone in, for instance, Davidson's 
philosophy of meaning.



As regards logic, the idea is expounded in Church's [1956] classical textbook and is 
nowadays often presented in teaching of elementary logic, where sentential operators are 
said to get their meaning by their truth tables. More generally, the meaning of a logical 
constant c is said to be determined by the uniform truth condition of the sentences with c as 
the main sign, given in the form of an equivalence such as: 

¬A is true if and only if A is not true. 
A B is true if and only if both A and B are true. 
A V B is true if and only if at least one of A and B is true. 
and so on. 

For a quantified sentence ( x D)A(x) the truth condition may be stated: 

( x D)A(x) is true if and only if A(t) is true for all terms t that denote elements in D. 

(This formulation requires that names for all elements of D are available in the language. 
Alternatively, if we do not want to rely on such an assumption, we speak of assignments of 
values to the variables and define the notion of truth (or satisfaction) under such 
assignments in a similar way.)
Questions about the meaning of the logical consequence thus seem to have a 
straightforward answer in terms of such truth conditions. However, the substance 
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of this answer depends on what we take truth to be. One must here beware of a possible 
confusion, which Dummett (see, e.g., Dummett [1978], pp xx-xxi), especially, has drawn 
attention to. The truth conditions for compound sentences of different logical form 
coincide formally with recursive clauses that occur in the definition of truth as given by 
Tarski [1935/1936] or in the definition of truth relative to a possible model (as is standard 
in model theory), and one may therefore be led to think that truth is what is defined in this 
way. But obviously the truth conditions cannot simultaneously do service both in a 
definition of truth and in an explanation of the meaning of the sentences in question. In 
other words, the equivalences of the kind exemplified above cannot be taken as clauses in a 
recursive definition of truth, and at the same time can be taken as explaining the meaning 
of the logical constants exhibited—this would be like solving two unknowns, given only 
one equation. If we have defined a set S of sentences by saying that it is the least set of 
sentences containing certain atomic formulas and satisfying certain equivalences, such as 

A B belongs to S if and only if both A and B belong to S, 



then obviously we get no information about the meaning of the logical constants by being 
told again that these equivalences hold. Similarly, a person who does not know what truth 
is, but is informed that it is a notion satisfying certain equivalences of the kind given 
above, does not get to know the meaning of the logical constants by then being told again 
that these equivalences hold.
We must conclude that truth conditions can serve as meaning explanations only if we 
already have a grasp of truth. Accordingly, we find that Frege and those who follow him in 
thinking that meaning is given by truth conditions are careful to note that truth is taken as 
an already known notion. In contrast, Tarski, who wants to define truth but is anxious that 
his definition be adequate, is careful to note that he is taking the meaning of the sentences 
for which truth is defined as already known. Tarski takes instances of the equivalences 
given above, so-called T-sentences, which of course follow from his definition of truth, as 
showing the material adequacy of his definition of truth. In order that they will serve in this 
way, showing us the correctness of the truth definition, we must of course know that the T-
sentences themselves are correct, and this we can know only if we already know the 
meaning of the sentences that are mentioned in the T-sentences.5 
An informative answer to the question of what the logical constants mean thus requires that 
we further ask what truth is.
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Truth

The notion of truth comes up not only when we ask about the meaning of the logical 
constants and want to use the idea that it is given by truth conditions, but occurs 
prominently also at the outset of an analysis of logical consequence. It can therefore not be 
passed over in an analysis of logical consequence. The question of what a true sentence is 
true in virtue of, is particularly significant. There are at least two different ways of thinking 
about this that are relevant here because of how they connect with the notion of evidence.
What may be called a realist conception takes sentences to be true in virtue of facts of the 
world given independently of what it is for us to know them. According to an epistemic 
conception, truth is instead determined in terms of what it is for us to acquire knowledge, 
and sentences are true in virtue of the potential existence of evidence for them. If the facts 
of the world are what are described by true sentences, then on this conception the world is 
seen as constructed in terms of potential evidence, and in the end, in terms of what it is for 
us to acquire evidence. One may therefore also call it a constructive conception of truth.
To analyze the modal ingredient of logical consequence in terms of evidence seems a 
hopeful project only if truth is understood in this constructive way. From this point of 
view, evidence or what it is to acquire knowledge must be taken as a more fundamental 



concept than truth—truth may then be defined as the potential existence of evidence. This 
is the path that I shall follow in the sequel.
With this understanding of truth we may go back to the idea that meaning is determined by 
truth conditions. A more profound way of accounting for the meaning of a sentence is now 
opened up, namely, in terms of what counts as evidence for the sentence. Knowing what 
counts as evidence for the sentence, one also knows the truth condition of the sentence. 
Hence, there is no conflict between the present suggestion to account for meaning in terms 
of evidence and the idea that meaning is determined by truth conditions, provided that truth 
is understood constructively.
A vital theory of meaning should be able to connect linguistic meaning with how language 
is used and functions. The presence of evidence is the ground on which we assert 
sentences. Thus, the use of sentences in assertions and the meaning of them now become 
clearly linked to each other.6 It remains, however, to discuss the notion of evidence.
For observation sentences, evidence typically takes the form of a relevant observation. In 
general, we may speak of conclusive evidence for the truth of 
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a sentence as verification. A verification may take the form of a combination of 
observations and arguments. In mathematics the former fall away, and evidence occurs in 
the form of valid arguments or proofs. We shall here restrict ourselves to mathematics, and 
therefore to the notions of valid argument and proof.
Proofs
We turned to the meanings of the logical constants, thinking that these meanings are what 
may make an argument valid or something toward a proof. But now the question at issue 
has been turned around, and it is suggested that meaning be accounted for in terms of 
proofs. There seem to be two clashing intuitions at work here, which also occur in more 
general discussions concerning the relation between the meaning and the use of a term; as 
was noted above, what counts as a proof of a sentence is one feature of the use of the 
sentence.
Sometimes it seems reasonable to equate meaning and use in line with the slogan "meaning 
is use," inspired by the later Wittgenstein. If someone asks why 3 + 1 = 4, a natural answer 
is that this is what "4" means, or that this how "4" is defined and used. Similarly, what can 
we answer someone who questions the drawing of the conclusion A → B, given a proof of 
B from A, except that this is how A → B is used, it is a part of what A → B means? But a 
similar answer to the question why 2 + 2 = 4 or why we infer A → B from ¬B → ¬A seems 
inadequate. That 2 + 2 = 4 or that we infer A → B from ¬B → ¬A is not reasonably looked 
upon as a usage that can be equated with the meaning of the expressions involved, but 
rather is something that is to be justified in terms of what the expressions mean. To answer 
all doubts about a certain usage of language by saying that this is how the terms are used, 



or that this is a part of their meaning, would be a ludicrously conservative way of meeting 
demands for justification. But for some such doubts the reference to common usage is very 
reasonable and may be the only thing to resort to.
Leaving the question of how use and meaning are related to each other aside for a while, 
one may ask what kind of proofs one has in mind when it is suggested that it is in terms of 
them that the notion of logical consequence and the meanings of sentences are to be 
accounted for. Are we to think of proofs as formal proofs given by formal deductive 
systems?
A formal system such as the one for Peano Arithmetic is of course to be seen as an attempt 
to codify valid reasoning within a part of intuitive mathematics. But the notion of logical 
consequence cannot be analyzed in terms of formal systems. An arithmetical sentence is 
not a logical consequence of other arithmetic sentences because of the existence of a proof 
in Peano Arithmetic. Nor can the meaning of 
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an arithmetic sentence A be accounted for in terms of what counts as a proof of A within 
Peano Arithmetic. In the case of arithmetic we know by Gödel's Incompleteness Theorem 
that such an analysis would be outright wrong. We even know that no formal system can 
be used to exhaustively describe the intuitive meaning of the arithmetic sentences or the 
relation of logical consequences for arithmetic sentences: indeed, because of the meaning 
of these sentences, for every consistent system there will be true sentences that cannot be 
proved in the system.
However, we really do not need to refer to Gödel's Incompleteness Theorem to see that 
ordinary proof theory has nothing to offer an analysis of logical consequence. A deductive 
system is, as already said, an attempt to codify proofs within a given language, but when 
setting up such a system, one does not ordinarily try to analyze what makes something a 
proof. Nor does proof theory ordinarily try to justify a deductive system except for trying 
to prove its consistency.
An ironic illustration of the need for justification, and of the fact that not every use of a 
language affords the involved sentences meaning, is given by Prior's example of a 
sentential connective "tonk" (also referred to by Shapiro in his Chap. 21, this volume). 
"Tonk" is governed by two inference rules, one allowing the inference of "A tonk B" from 
a premiss consisting of either A or B, and one allowing the inference from "A tonk B" 
either of A or of B. We cannot find a meaning for "tonk" that accords with such inference 
rules; as is easily seen, they allow the deduction of any sentence we like. One cannot, 
therefore, say that sentences mean whatever the rules that govern them make them mean—
the rules that govern them may very well reduce the sentences to sheer nonsense.
The notion of proof in a formal deductive system is thus not relevant for our purpose of 
analyzing logical consequence. Instead, we need a notion of proof such that a proof of a 



sentence can reasonably be said to constitute evidence in view of the meaning of the 
sentence. Within intuitionism one has often tried to explain the meaning of the logical 
constants by resorting to a notion of proof. This may proceed by recursive clauses, not in 
principle unlike the ones occurring in Tarksi's definition of truth, as follows: 

A proof of a conjunction A B is a pair consisting of one proof of A and one of B. 
A proof of A V B is a proof of either A or B together with an indication of which of the two 
it is a proof of. 
A proof of A → B consists of a function which is recognized to yield a proof of B when 
applied to a proof of A. 
A proof of x A(x) consists of a function which is recognized to yield a proof of A(t) when 
applied to a term t denoting an element in the domain of the quantifier. 
A proof of xA(x) consists of a pair whose first member is a term t denoting an element in 
the domain of the quantifier and whose second member is a proof of A(t). 
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A problem with this explanation is that the notion of proof used here cannot stand for 
whatever establishes the truth of sentences in a normal intuitive sense. For instance, a proof 
of a disjunction A(t) V B(t) may very well proceed even intuitionistically by first proving 
x(A(x) V B(x)) and then applying universal instantiation to infer A(t) V B(t). Given such a 
proof, we do not know which of the two disjuncts holds. Hence, it is not correct to say that 
a proof of a disjunct needs to consist of a proof of one of the disjuncts together with 
indication of which disjunct is proved. In intuitionistic meaning explanations of the kind 
exemplified above, proof must thus be meant in a quite restrictive way.
It was clear at the beginning of this section, when discussing the relation between meaning 
and use, that the project of accounting for the meaning of a sentence in terms of what 
counts as a proof of it needs a more restrictive notion of proof than the usual one. Some 
particular use of a linguistic expression may very well be seen as constitutive of its 
meaning, and other uses must then be accounted for or justified in terms of this meaning. 
More specifically, it may be constitutive of the meaning of sentence A that certain ways of 
arguing for its truth are recognized as a proof of A. But it would be counterintuitive to 
identify the meaning of a sentence with all the ways in which it can be proved. This is so 
for the simple reason that we may very well understand a sentence without having any 
clear idea about all the ways in which it may be proved. Furthermore, the finding of new 
ways to prove a sentence does not automatically amount to a change of its meaning.
In a satisfactory approach to meaning via proofs, therefore, we cannot use proofs in general 
to account for meaning, but must instead single out something we may call direct or 
canonical proofs that are constitutive of meaning.7 This possibility has now to be explored.



Canonical Proofs

The first to suggest that certain ways of proving a sentence could be seen as determining its 
meaning seems to have been Gentzen [1934]. After having presented his system of natural 
deduction, in which logical inferences are broken down into two kinds of basic steps, 
called introductions and eliminations, one of each kind for every logical constant, Gentzen 
remarks: 
The introductions constitute, as it were, the "definitions" of the symbols concerned, and the 
eliminations are, in the final analysis, only consequences of this. 
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Since it is clear that the introductions are not literal definitions, a better way to express the 
idea is to say that the rules for introduction inferences determine the meanings of the 
logical constant concerned, while the rules for elimination inferences are justified by these 
meanings.
An introduction for a logical constant is a form of inference whose conclusion has the 
constant as its main sign. For each logical constant of the language of first-order predicate 
logic, Gentzen gives a rule for how to form its introductions, which may be represented by 
the following figures: 

The sentence A shown within the square brackets in the introduction rule for implication 
(→I) indicates that in such an inference, it is allowed to discharge occurrences of A 
standing as hypotheses.
Negation, which does not occur in the list of introductions, is here supposed to be defined 
with the help of → and the constant for absurdity (i.e., ¬A is short for A → ), which 
makes negation introduction (better known as the constructive form of reductio ad 
absurdum) a special case of implication introduction. The introduction rule for is empty 
(i.e., it is the rule that says there is no introduction whose conclusion is ).
The question is now in what way these introductions determine the meanings of the logical 
constants. A way to answer this question is in terms of the notion of a direct or a canonical 
proof, mentioned at the end of the preceding section. The general idea is that the meaning 



of a sentence A is given by what counts as direct evidence for it. Using the term "canonical 
proof" for what in mathematics constitutes direct evidence, we have to state for various 
sentences what forms canonical proofs of them are supposed to have. This will now be 
indicated for first-order sentences understood constructively. In the next section, I shall 
carry out the same thing on a more concrete linguistic level by specifying forms of verbal 
arguments that are to count as canonical.8 
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The general form of a canonical proof of a compound sentence C with the logical constant 
c as main sign can be written O c (Π), where O c is an operation that stands for the 
recognition that we have obtained direct evidence for C because of Π (e.g., in the first case 
below, O is the recognition of the fact that because of having evidence both for A and for 
B, one is in possession of evidence for A B). We have to specify what Π is in the different 
cases.

If C is a conjunction A B, then Π is to consist of canonical proofs of A and of B conjoined.

If C is a disjunction A V B, then Π is to consist of either a canonical proof of A and an 
indication of the fact that it is the first disjunct that one has obtained evidence for, or a 
canonical proof of B and an indication of the fact that it is the second disjunct that one has 
obtained evidence for.

If C is an existentially generalized sentence x A(x), then Π is to consist of a individual 
term t (in the domain of quantification) together with a canonical proof of A(t).
When C is an implication or a universally generalized sentence, we need to rely on the 
notions of hypothetical proofs and general proofs in order to specify the forms of canonical 
proofs. To do this, we need first of all to say what a proof is—we may say categorical 
proof to distinguish it from other kinds of proof.

The explication of these notions was of course a main goal for the whole present approach 
to the modal ingredient of logical consequence. That they are needed already in the 
specification of the canonical proofs may seem circular, but means only that we must 
proceed by recursion. The specification of the canonical proofs of implications and 
universally generalized sentences requires the notions of categorical, hypothetical, and 
general proof of sentences of less complexity, which in turn require that we know what the 
canonical proofs of these less complex sentences are.
To elucidate the notion of categorical proof, we may note that one may rightly assert a 
sentence A without having a canonical proof of A. But the idea that one can single out 
some proofs as canonical involves the idea that a proof can in principle be given in 



canonical form. The assertion of a sentence is thus constructively to be understood as 
claiming the existence of a canonical proof of it. This existence is not to be understood in 
the sense that a canonical proof has already been constructed and is at hand, but only that 
there is such a proof and that it therefore could in principle be constructed. Consequently, 
we may rightly assert a sentence A as long as we know that there is a categorical proof of 
A, which, understood constructively, means that we have an effective method for finding 
one. Such a method is thus to count as a proof. By a categorical proof of A, we shall just 
mean such an effective method for finding a canonical proof of A.
The notion of a hypothetical proof, that is a proof of a sentence A from sentences A 1 , A 2 

, … , A n , is in the same vein proposed to be analyzed as being an n-ary effective function 
which, applied to categorical proofs of A 1 , A 2 , … , A n , yields a categorical proof of A. 
Finally, we propose that a general proof of an open 
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sentence A(x 1 ,x 2 , … ,x n ), relative to a set of individual terms T, is an effective function 
which, applied to any elements t 1 , t 2 , … , t n of T, yields a proof of A(t 1 ,t 2 , … ,t n ).
We can now specify that a canonical proof of a sentence A → B is to be of the form O → 

(Π) where Π is a hypothetical proof of B from A, while a canonical proof of a sentence 
xA(x) is to be of the form O (Π) where Π is a general proof of A(x) (relative to the 
domain T of quantification).9 To this has to be added that nothing is a canonical proof of .

Canonical Arguments

It may be instructive to see how a corresponding specification proceeds if we stay on the 
more concrete level of verbal arguments; Gentzen was obviously thinking of deductions 
composed of sentences or formulas. One need then lay down some conventions for how 
the sentences of the arguments are to be arranged. It is convenient to assume that they are 
arranged in tree form. A sentence in a tree that stands immediately below some other 
sentences is claimed to follow from these sentences, and such a part of the tree thus 
represents an inference. The occurrences of sentences at the top of the tree are either 
axioms, assumptions of the argument, or hypotheses that are made temporarily (for the 
sake of the argument, as one says). In the latter case the hypothesis is discharged or, as I 
shall say, bound by some inference in the course of the argument. Above we have seen one 
kind of inference, →I, that may bind assumptions. An occurrence of a sentence is said to 
depend on the assumptions and hypotheses that stand above it in the tree and are not bound 
by some inference occurring above it.



An inference may also bind a variable in the argument, in which case it must occur free 
neither in any assumption or hypothesis that a premiss of the inference depends on, nor in 
the conclusion of the inference. Above we have seen one inference, namely, I, that binds 
the variable indicated in the premiss.
An argument whose last sentence (the sentence at the bottom of the tree) is A and whose 
assumptions (sentences at the top of the tree that are neither axioms nor hypotheses bound 
in the course of the argument) are A 1 , A 2 , … , A n is said to be a argument for A  
depending on A 1 , A 2 , … , A n . Something is an argument for A from Γ if it is an 
argument for A depending on no other sentences than those 
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belonging to Γ. An argument is said to be closed provided it has no assumptions and all the 
variables that occur free in some open sentence of the tree are bound in the course of the 
argument. An argument that is not closed is said to be open.
An open argument is to be understood as a schema that becomes an argument when we 
make appropriate substitutions for the variables and assumptions that are not bound. This is 
to say that an open argument 

Δ(x 1 , x 2 , … , x m ; A 1 , A 2 , … , A n ) 

containing exactly variables x 1 , x 2 , … , x m and assumptions A 1 , A 2 , … , A n that are not 
bound in Δ is valid if and only if certain results of carrying out substitutions in Δ are valid, 
namely, all results 

Δ (t 1 , t 2 , … , t m ; Δ 1 , Δ 2 , … , Δ n ) 

obtained from Δ by first substituting any terms t 1 , t 2 , … , t m denoting individuals in the 
domain of quantification for x 1 , x 2 , … , x m and then any valid closed arguments Δ 1 , Δ 2 

, … , Δ n for the assumptions A 1 *, A 2 *, … , A n *, where A i * is the result of carrying out 
the first substitution of terms for variables in A i .
The canonical arguments for the various first-order sentences may now be specified by 
simply saying that something is a canonical argument for A if and only if it is an argument 
for A whose last inference is an introduction and whose immediate part(s) is (are) valid 
argument(s) for the premiss(es) of that introduction.
It is to be noted that in case the last inference is an →I or an I, the immediate part of the 
argument is an open argument for which we have already defined what it is to be valid. 
This definition depends, however, on the notion of valid argument for sentences of lower 
complexity than A, actually subsentences of A. There is thus a recursion involved in these 



definitions of the same kind as the one noted above in connection with the notion of 
canonical proof.
It remains to say when a closed argument in general, one that is not necessarily canonical, 
is valid. In the same way that we have to require of a categorical proof that it is either 
canonical or is a method for finding a canonical proof, a closed argument should be 
defined as valid if it either is canonical or provides a method for finding a canonical proof. 
However, it is not immediately obvious how an argument may provide such a method. At 
this point we should consider some examples.
An open argument of the form
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which coincides with what Gentzen calls an -elimination, is valid according to the 
definition given above, if the result of replacing the assumption A 1 A 2 (which for 
simplicity we assume to be a closed sentence) with a valid closed argument Δ for A 1 A 2 

is valid. The question is now what it is that makes the result 

valid. According to what was just said above, the validity of the closed argument Δ should 
provide a method for finding a canonical argument Δ* for A 1 A 2 . Recalling how the 
notion of canonical argument was defined, we see that by replacing Δ with this canonical 
argument Δ*, we get 

where the two immediate sub-arguments of Π* 

are valid. Extracting the left immediate subargument of Δ* if i is 1 and the right immediate 
subargument of Δ* if i is 2, we thus get a valid argument for A i . The extraction of (2) from 
(1) is known as -reduction and is an operation used in the normalizion of deductions.10 It 
is in view of this operation that we see that an argument consisting of a - elimination is 



valid, and this is also how Gentzen meant that - elimination is justified (or is a 
"consequence" of the - introduction, as he expressed it in the quote given in the beginning 
of the previous section).
In an argument each inference that is not an introduction should be supplied with such a 
justifying operation in view of which it can be seen that a valid argument for the 
conclusion can be obtained, given valid arguments for the premisses. We say that an 
argument Δ reduces to the argument Δ* relative to such operations if Δ* is obtained from 
Δ by replacing subarguments with what is 
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obtained by applying the operations to them in the way that has just been exemplified. It is 
in this way, when the arguments have been supplied with justifying operations, that they 
may provide methods for finding canonical arguments, as must be required for validity in 
accordance with what was said above. A closed argument supplied with justifying 
operations is thus to be defined as valid if it reduces, relative to suitable operations, to a 
canonical argument. I shall not here give the formal details of how this is to be defined, but 
shall show how it works by considering two more examples.11 
We illustrate the idea by two slightly more complicated reductions. The validity of 
implication elimination, that is, an argument of the form 

is first of all due to the fact that given a closed valid argument Δ 1 for A and a closed valid 
argument Δ 2 for A → B, we get a closed argument for B 

which because of the validity of Δ 2 reduces to 

where Δ is a valid open argument for B from A. We now see that there is an operation, so-
called →-reduction, which, applied to this argument, yields 
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(i.e., the result of substituting the valid closed argument Δ 1 for the open assumption A in 
Δ). According to the definition of validity for the open argument Δ, this result is valid, and 
we thus get a closed valid argument for B, as is required of a justifying operation for →-
elimination.

To see the validity of -elimination 

where the variable y is bound by the inference (which means that it must not occur in B nor 
in any hypothesis that the conclusion depends on), we have to show that it preserves 
validity, which means that we must show that a closed argument Δ of the form 

is valid, assuming that its immediate subarguments Δ 1 and Δ 2 (y) are valid. By the validity 
of the closed argument Δ 1 we know that it reduces (relative to the operations assigned to 
the inferences of Δ 1 ) to canonical form, and hence that Δ reduces to the form 

To see that this argument is valid, we make use of the operation -reduction, which 
transforms the argument into 



We want to see that when -reduction is applied to an argument whose immediate 
subarguments are valid, it yields a valid argument. This now follows from the 
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validity of the open argument Δ 2 (y), which just means that the result of first substituting t 
for y in Δ 2 (y), and then the valid argument Δ 1 * for the assumption A(t) is valid.

Summing Up

To sum up our analysis of the modal ingredient in logical consequence, we recall that a 
main goal was to bring out the sense in which it can be said that a sentence follows by 
necessity of thought from other sentences. It was suggested that to this end we need to 
bring in something about which it can be said that it commits us or compels us to hold one 
sentence true, given that we hold some other sentences true. It was proposed that proofs or 
arguments may be given this role. The idea is thus first that the necessity of logical 
consequence is expressed by the condition that for A to be a logical consequence of Γ, 
there must exist a proof or valid argument for A from Γ, and second, that the awareness of 
such a proof or valid argument compels or commits us to hold A true, given that we hold 
the sentences of Γ true.
Another main starting point was the idea that the meaning of a sentence is given by what 
counts as direct evidence for it. In mathematics, evidence takes the form of proof or valid 
argument, and the meaning of a mathematical sentence, according to this idea, is thus to be 
given by what counts as a direct or, as we have called it, canonical proof or argument.
In the same vein, the assertion of a sentence is understood constructively as the claim that 
there is direct evidence for it, and is to be taken as true if such evidence exists. In 
mathematics the truth of a sentence thus becomes equated with the existence of a canonical 
proof or argument for it. (In general, the existence of evidence for a sentence also depends, 
of course, on empirical matters.)
Presupposing an understanding of the general notion of evidence, which is taken as a more 
basic notion than truth, the forms of the canonical proofs or arguments for sentences within 
first-order languages understood constructively have been specified. This has been done by 
recursive clauses making use of Gentzen's rules for introductions. (They have to be 
supplemented with specifications of the forms of canonical proofs and arguments for 



atomic sentences.) At the same time (actually by a simultaneous recursion) the notions of 
categorical, hypothetical, and general proof—or, alternatively, of closed and open valid 
argument, have been defined.
As a result of how all these concepts have been developed, we can say of certain things 
that they constitute proofs of a sentence or valid arguments for a sentence in virtue of the 
meaning of the sentence. A certain Π is a canonical proof of a sentence A or a certain Δ is a 
canonical argument for A just because of the way in 
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which the meaning of A is given. Furthermore, some inferences—namely, the inferences 
by introduction—become valid by the very meaning of the conclusion of the inference. 
Because of this meaning, we are compelled to hold the conclusion true when holding the 
premisses true. For instance, an inference by -introduction of x A(x) from A(t) is 
compelling, because by applying O to a categorical proof of A(t) or applying -
introduction to a closed argument for A(t), we get by the very meaning of x A(x) a 
canoncial proof of x A(x). Therefore, if we hold that A(t) is true, and consequently that 
there is a canonical proof or argument for A(t), we are also committed to holding x A(x) 
true, since from the canonical proof or argument for A(t) we can form a canonical one for 
x A(x), which guarantees the truth of x A(x).
An inference in general is compelling when we know a hypothetical proof of its conclusion 
A from its set of premisses Γ or, alternatively, an open valid argument for A from Γ. This is 
because knowing such a proof is to be in possession of an effective method which, applied 
to categorical proofs of the sentences of Γ, yields a categorical proof of A. Similarly, 
knowing a valid open argument Δ for A from Γ, we get a valid argument for A by replacing 
the open assumptions in Δ with closed valid arguments for them. For the same general 
reasons as before, we are in both cases committed to holding the conclusion true if we hold 
the premisses true.
We have thus shown how knowledge of a (hypothetical) proof of A from Γ or, 
alternatively, a valid argument for A from Γ—as we have developed these notions—
commits us to holding A true if we hold the sentences of Γ true. It seems reasonable, 
therefore, to say that the way the notions of proof and valid argument have been 
developed, make condition (2b′) account for the sense of necessity of thought involved in 
logical consequence.
One might say that any satisfactory analysis of the notions of proof and arguments should 
have the result that by knowing a proof or valid argument, one gets committed in the way 
discussed above. The question is how to achieve this result.
The notions of proof and valid argument are often defined as composed of valid inferences. 
This puts the burden on the notion of valid inference. How is it to be analyzed? If we do 
not simply say that an inference is valid when its conclusion is a logical consequence of the 



premisses, which would bring us back to the beginning of this investigation, we have to try 
to develop some concept of gapfree inference. The "gapfree" inferences must then be 
shown to have a compelling force. It is far from clear how this could be done.
To show an inference to be valid by breaking it down into simpler inferences that are 
known to be valid is certainly a good strategy in itself. Although a valid argument has not 
been defined here as a composition of valid inferences, it is still true that an argument built 
up of valid inferences is valid. But to define validity in that way would of course have 
made the whole analysis circular, as already noted when condition (2′) was first 
introduced. Instead, our basic notion is that of 
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canonical proof or argument (linked to the meaning of the sentences). As shown above, 
this amounts to making inferences by introduction valid—valid by definition, so to say. It 
should be noted, however, that not every valid inference can be broken down into a 
sequence of introductions. In other words, there are inferences other than introductions that 
are gapfree in the sense that they cannot reasonably be broken down into simpler 
inferences. An essential ingredient in the analysis proposed here is a way of demonstrating 
the validity of such inferences. We have illustrated how this can be done by some 
examples where -, →-, and -eliminations were shown to be valid by applying reductions 
that are seen to transform arguments into ones that are known to be valid.
Finaly, it should be noted that we have been talking only about the meaning of the logical 
constants, and how proofs and arguments can have a compelling force in virtue of this 
meaning. But the same compelling force can arise in virtue of the meaning of nonlogical 
terms. Condition (2b) or (2b′) should therefore not be taken as a defining condition of 
logical consequence—it explicates a broader notion of consequence. To narrow it down to 
logical consequence, we have to combine it with a way of formulating condition (1) so that 
it fits the framework in which (2b′) has been explicated. This can easily be done in the 
manner of condition (1′) by requiring that for all substitutions S of the kind explained in 
that context, there is a proof of AS from ΓS. When this requirement is understood 
constructively, it amounts to demanding the existence of a uniform procedure that for each 
S takes proofs of the sentences of ΓS into a proof of AS. When speaking about arguments, 
this uniformity comes out directly by requiring that there be an argument Δ such that for 
each substitution S, ΔS is an argument for AS from ΓS. To meet the objection that the force 
of this condition depends on the richness of the language, we have either to extend the 
language or to introduce a way of speaking of something being an argument under an 
assignment of values to the nonlogical terms, and then vary over all such assignments, as 
done in condition (2″).
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23. Relevance in Reasoning
Neil Tennant 

1.  Introduction

We advance here an unabashedly partisan view of how best to "relevantize" a logic. The 
view is laid out as informally as possible, given the technical nature of the subject matter.
Here, we understand "relevantizing" as the project of formulating a decent system of logic 
that does not endorse Lewis's First Paradox: 

A, ¬A:B. 

Such a system will be paraconsistent, in that it will allow for distinct inconsistent theories 
(within a given language). But it will not be dialetheist. That is, it will not allow for true 
contradictions. Dialetheism does not follow from (though, in order to avoid trivialization, it 
requires) a refusal to infer whatever one pleases from a contradiction.
We can pose our question as follows: 
How best might one restrict the deducibility relation of a familiar system of logic (such as 
intuitionistic or classical logic) so as to avoid the First Lewis Paradox, but still provide all 
the proofs needed for mathematics and for the hypothetico-deductive method in natural 
science? 
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We are not taking sides in the debate between the classicist and the intuitionist. We seek to 
enable the intuitionistic [resp. classical] mathematician to do intuitionistic [resp. classical] 
mathematics with just the relevant fragment of intuitionistic [resp. classical] logic. The 
relevantized restriction of each system is to be judged by reference to the original system 
that has been restricted. Once we have found the right restrictions, the resulting relevant 
systems ought to be as smooth and as elegant and as powerful as possible. These are of 
course evaluative notions. But we believe they can be made to apply, even in the eye of the 
logical beholder.



2.  Some Historical Background

The method of relevantizing that is to be explained in this chapter derives from work by 
the author beginning with [15] and [16], and further developed in [17], [18], [19], [20], 
[21], [22], [23], [24], and [25]. It stands outside the so-called Anderson-Belnap tradition 
(for which, see [1]).
It does not fall within the scope of this discussion to examine the details of the Anderson-
Belnap tradition. (A few more details will be provided in a later section.) I do need, 
however, to explain why this chapter is devoted to an alternative approach. I take the very 
title assigned to me—Relevance in Reasoning"—to be an invitation to discuss (what I 
judge, on balance, to be) a viable account of how mathematical and scientific reasoning 
can be "relevantized" when it is logically regimented.
I believe that Burgess—building on the earlier critical contributions of Copeland [6], [7]—
prevailed in his critique, in the early 1980s, of Anderson-Belnap relevance logic. This 
critique was laid out in his well-known Notre Dame exchange with Mortensen and Read. 
(See Burgess [3], [4] and [5]; Mortensen [11], and Read [14].)
One must nevertheless hasten to point out that, however diverse and protean the Anderson-
Belnap tradition might be (as remarked by Burgess [5], p. 217), Burgess's critique was 
directed only against this tradition. In [3], p. 104, he wrote: 
… I have been concerned here solely with the original Anderson-Belnap account of 
"relevant" logic, and with their claim that their systems E, R, etc., are in better agreement 
with common-sense than is classical logic. 
Again, in [4], p. 41, he wrote, "All relevantists agree in rejecting disjunctive syllogism …" 
(emphasis in original).
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While that might have been true of all relevantists known to Burgess at the time of writing, 
it is so no longer. As we shall see presently, one can be a relevantist yet preserve 
disjunctive syllogism as an essential derived rule of one's logic. Although many 
relevantists (such as Anderson and Belnap) object to Disjunctive Syllogism, I do not. It 
strikes me, intuitively, as being in perfect order. In this I side with Burgess.
Mathematics would be crippled without Disjunctive Syllogism. There is no metatheorem 
showing that classical (or intuitionistic) mathematics survives any Anderson-Belnap style 
of relevantizing proofs of mathematical theorems from mathematical axioms, especially if 
one imposes the reasonable requirement that the formal relevantized proofs bear a natural 
structural resemblance to their informal counterparts in ordinary mathematical practice. 



Burgess's critique of Anderson-Belnap relevant logic in the Notre Dame exchange focused 
clearly on this, its main shortcoming. In [5], pp. 222-223, Burgess observed that (then 
unpublished) work of R. K. Meyer 
… demonstrates beyond doubt that standard mathematical arguments cannot be formalized 
relevantistically. … For half of the most famous theorems of elementary number theory 
(including the theorem that every integer is a sum of four squares) it seems that no 
relevantistically acceptable proof is known, for all Meyer's work. For the other half of the 
most famous theorems of elementary number theory (including the theorem that no cube is 
the sum of two cubes) relevantistic proofs are available, but they cannot be regarded as 
formalizations of standard proofs. They involved carrying along caveats of the form 
"unless 0 = 1," which one would never have heard from the lips of Fermat or Euler or 
Lagrange or Gauss or Louisville, and eliminating these caveats at the end of the proof by 
various manipulations. Meyer's manipulations are undeniably clever, but the very need for 
such cleverness demonstrates that relevantism conflicts with standard mathematical 
practice. 
It seems that a relevantist [in the Anderson-Belnap sense—NT] must be a revisionist, at 
least as far as mathematics is concerned. … 
Exactly how the work of Meyer in question (presumably [10]) "demonstrate[d] beyond 
doubt that standard mathematical arguments cannot be formalized relevantistically" is not 
altogether clear from what Burgess says. Since the time of Burgess's critique, however, 
there has been a highly significant, dispositive result in this regard. Friedman has 
definitively proved (see Friedman and Meyer [9]) that there are indeed limitations to 
relevant arithmetic: there is a strictly positive theorem of Peano Arithmatic that cannot be 
proved in the relevant Peano Arithmetic R#. (R# is the closure of the Peano axioms under 
the first-order version of the Anderson-Belnap relevance logic R.)
We shall return in a later section to a comparison between the Anderson-Belnap approach 
and the one to be commended here. At this point we must prepare the ground for the latter.
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3.  What Do We Require of a Logic?

We begin by asking a question that is seldom raised explicitly, even when departures from 
classical logic are being proposed. What, exactly, do we require of a logic? Logic is an 
instrument of reasoning, and is central to our intellectual investigations. But what are the 
exact uses that we need to be able to make of it?

These uses will concern three main logical properties or relations: 



(i)   "Genuine" logical consequences (where a claim that is falsifiable follows from a set 
of assumptions that is satisfiable) 

(ii)   Logical falsehoods 
(iii) 

 
 Logical truths. 

We take our task to be that of restricting what can be proved, in either intuitionistic or 
classical logic. In each case, the relevant fragment will be contained in the nonrelevant 
logic concerned. Moreover, because the systems of intuitionistic and classical logic have 
their respective notions of validity, and their own completeness theorems, we shall be able 
to speak interchangeably of deducibility or logical consequence; of logical truth or 
theoremhood; and of unsatisfiability or inconsistency.
We shall be eschewing the nonrelevant parts of the deducibility (or consequence) relation 
in each of these logics. Fallacies of relevance will not be regarded as genuine logical 
consequences, even when they appear to count as logical consequences according to the 
standard, Boolean definition that involves preservation of truth under all interpretations. 
Because we use a sentential definition of object-linguistic logical consequence in the 
metalanguage— 
X logically implies φ if and only if every model that makes all of X true makes φ true also; 
i.e., 

X φ ↔ df M{( ψ(ψ  X → M ψ) → M ψ}— 

it is no surprise that the First Lewis Paradox comes out as a logical consequence in the 
object-language. The metalinguistic claim 
Every interpretation that makes A and makes ¬A true makes B true also; i.e., 

M[(M A M ¬A) → M B], 

is indeed a metatheorem even in a relevantized metalanguage. The question of genuine 
logical consequence should, rather, be posed as follows: Is it possible, in the metalanguage, 
to deduce from the premises that A is true under interpretation M and that ¬A is true under 
interpretation M, the conclusion that B is true under interpretation M? When the question is 
posed this way, the respective answers from the standard metalogician and the relevant 
metalogician will differ. The standard metalogician will say "yes"; the relevant 
metalogician will say "no."
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We now devote a subsection of clarification to each of our requirements (i), (ii), and (iii) 
above.

3.1.  Ad (i): Genuine Consequence

Our logic should enable us to draw those conclusions that follow from whatever satisfiable 
assumptions (or axioms) we might adopt. Two areas of inquiry immediately come to mind. 
In mathematics, we should be able to derive all consequences of our axiom systems 
(assuming that these have models); and in the natural sciences, we should be able to derive 
all the empirical predictions that would follow from our scientific hypotheses taken in 
(consistent) conjunction with statements of boundary conditions, initial conditions, and so 
on. In both these cases, we are considering (what we believe to be) satisfiable sets of 
assumptions, and are concerned to be able to deduce from them all logically falsifiable 
conclusions that follow from them. Let us devote the next two paragraphs to underscoring 
this last claim.
In the case of mathematics, we take our axioms to be consistent (hence, satisfiable); and 
we seek proofs of nontrivial mathematical (i.e., nonlogical) theorems from them. It is in 
this sense that a nontrivial mathematical theorem is "logically falsifiable": for any such 
theorem p, there will be some logically possible interpretation of the extralogical primitives 
(the specifically "mathematical" vocabulary) that will make p false. Of course, such an 
interpretation will not be one in which the mathematical axioms themselves are true.
In the case of natural science, we take our scientific hypotheses to be consistent with the 
statements of such boundary conditions and initial conditions as might be involved in an 
experiment to test the predictions derivable from those combined assumptions. Call the set 
of such statements Δ. Note that Δ is consistent. It is only when observations and 
measurements are made, yielding further statements (say, Γ) treated as extra assumptions, 
that a contradiction might follow: Δ, Γ . Then, but only then, will the evidence Γ 
potentially falsify the hypotheses in Δ. (The famous so-called Duhem-Quine problem, of 
course, is to decide which statements in (Δ Γ) to reject.) Note again that the predictions 
derived from Δ will be logically falsifiable statements. No natural scientist would ever 
wittingly produce a logical truth as a supposedly empirically "testable" prediction of a 
scientific theory!

3.2.  Ad (ii): Logical Falsehoods



If in either case (mathematical or natural-scientific) the assumptions in question are not 
satisfiable, then we require only that our logic be able to reveal the 
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fact: that is, that it furnish a proof of their inconsistency. Our logic should be able to tell us 
when a mathematical investigation would be fruitless to pursue, and when a scientific 
theory has run foul of the data.

3.3.  Ad (iii): Logical Truths

Thus far we have focused on assumptions. But what about conclusions? We are interested 
in conclusions that follow from our assumptions (assumed to be satisfiable). But certain 
conclusions, called logical truths, have a nasty way of "following" (in standard systems) 
from any set of assumptions. So there is nothing special about deducing them "from" any 
particular satisfiable set of assumptions (let alone any particular unsatisfiable one!). What 
is special about logical truths is that one needs no assumptions at all in order to establish 
them. So let us require of our logic no more than that. Let us insist, with regard to logical 
truths as potential conclusions, only that our logic should furnish proofs of them from no  
assumptions at all.

3.4.  Some Definitions

The set X of assumptions is unsatisfiable just in case the sequent X : is valid. And the 
sentence φ is logically true just in case the sequent : φ is valid. (We write φ for the 
succedent when the latter is the singleton {φ}.) We shall also define the useful notion of 
perfect validity: a sequent is perfectly valid just in case it is valid and has no valid proper 
subsequents. That is, every sentence on the left and every sentence on the right is needed 
for the validity of the sequent concerned.

3.5.  Summary of Methodological Requirements

We can summarize our three methodological requirements thus far as follows: 



1. 
 
 If X : is valid, then there should be a proof of X : . 

2. 
 
 If : φ is valid, then there should be a proof of : φ. 

3. 
 
 If X : is invalid and : φ is invalid, but X : φ is valid, then there should be a proof of 
X : φ. 

Note that requirements (1) and (2) take care of the two extremes, logical falsity and logical 
truth, respectively. And requirement (3) takes care of what we are here calling "genuine" 
logical consequence.
Moreover, (1) is all that is needed for the hypothetico-deductive method of testing 
empirical theories. Insofar as deductive logic features in scientific reasoning, 
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it does so in the context of inferring predictions, or refuting theories modulo observational 
evidence (once certain predictions have been inferred). For the refutations, (1) suffices 
(with the observational evidence reckoned to X, along with the theory being refuted). For 
the derivation of predictions, (3) suffices, as noted above (since in such a case X does not 
contain any observational evidence that might refute it).
Finally, in the case of mathematical reasoning, one is interested only in two things: (a) 
being able to reveal that one's axioms are unsatisfiable, if indeed they are (a very rare 
occurrence); and (b) being able to deduce all interesting consequences of one's axioms, if 
indeed those axioms are satisfiable. Note that (1) takes care of (a). And in connection with 
(b), as already noted, no mathematician is going to find a logical truth to be an "interesting 
consequence" of her axioms. She will be interested only in such consequences of her 
axioms as are not, themselves, logically true. Hence (3) takes care of (b). So, for the 
purposes to be served by a system of logic within mathematics, (1) and (3) suffice.

4.  Cumulative Deductive Progress

There is another aspect of the deductive enterprise, however, which is of special 
importance. We need to be able to make cumulative deductive progress. In mathematics, 
for example, we have the practice of proving interesting lemmas as "halfway houses" on 
the way to those deeper results that we dignify with the label "theorem." (From a logical 
point of view, of course, these psychological classifications are irrelevant.) We need, 
therefore, to be able to do the following: 



1.   Prove a lemma ψ, say, from axioms X 
2.   Then prove a theorem φ, say, from the lemma ψ along with further axioms 

Y 
2.   Finally, conclude to φ on the basis only of X Y. 

In a natural-deduction setting, where proof-trees have their assumptions at leaf-nodes, and 
have their conclusions at their root-nodes, this two-step process can be pictured as follows: 

•
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The lemma ψ stands as the conclusion of the proof Π and as a premise of the proof Σ. It is 
an "accumulation point" of the overall proof-tree. Proofs are defined in such a way that 
accumulations of proof-trees are themselves proof-trees. This is because, in the standard 
nonrelevant systems, proofs are allowed not to be in normal form. Here, for example, the 
sentence ψ is likely to stand as the conclusion (within the natural deduction Π) of an 
introduction rule, and as the major premise (within the natural deduction Σ) of the 
corresponding elimination rule. So the "grafting points" ψ could in general be maximal 
sentence-occurrences, and the overall proof of φ from X Y accordingly not in normal form.
In a sequent setting, where the nodes of proof-trees are labeled with the whole sequent that 
has been established thus far, the same cumulative effect is achieved by applying the rule 
of Cut: 

•

In general, dividing one's deductive work in this way into two stages—the first stage, Π, 
toward the lemma ψ, the second stage, Σ, away from it—enables one to reduce quite 
dramatically the overall length of proof. The combined length of the two proofs Π and Σ is 
in general much less than the length of whatever proof might codify an argument 
proceeding directly from X Y to φ without "going through" the lemma ψ. Abnormality of 
the overall proof is the price one pays for the reduction in length of proof that results from 
interpolating the lemma ψ between one's axioms X Y and the sought theorem φ.1 



That is all very well, but considerations of feasibility or tractability can serve at best to 
explain unjustifiable deductive procedures rather than to justify them. Here is the 
explanation why the procedure of "proceeding via lemma ψ" works, according to the 
pattern just given, in mathematics: 
Mathematics is (presumed to be) satisfiable. So any collection of our mathematical axioms 
is satisfiable. Moreover, φ is a logical consequence of X Y (and, presumably, an 
interesting one, i.e., one that is not a logical truth in its own right). Hence one should be 
able to deduce φ from axioms drawn from X Y. 
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Indeed, given that one has already deduced ψ from X, and deduced φ from Y and ψ, further 
deductive work would be superfluous: we already know, by virtue of these two proofs, and 
on the presumption that the overall set of premises X Y is satisfiable, that X,Y:φ is valid. 
We cannot, however, conclude that X,Y:φ is perfectly valid, even if both X:ψ and Y,ψ: φ are 
perfectly valid. Courtesy of Cut, therefore, we push back the frontiers of deductively 
generated mathematical knowledge. But we are using a rather blunt instrument in doing so. 
For consider: if (admittedly, a big "if") our axioms X Y are inconsistent, might we not, in 
applying Cut, miss this fact altogether in charging ahead and inferring φ? Moreover, we do 
not need to consider possible inconsistencies in our axioms in order to see that we might 
still miss out on opportunities to be more economical with them. We might not realize, for 
example, that the grain of truth in ψ that is needed, along with our choice Y of axioms, to 
yield φ, might be considerably less weighty than the bushel that is ψ itself, inferred from 
the axioms X. In taking ourselves (courtesy of Cut) to have inferred φ "from" X Y, we 
might be missing the fact that φ follows from some proper subset of X Y (even if neither 
from X itself nor from Y itself).
Furthermore, it is not enough for the natural-deduction theorist2 to respond by suggesting 
that one should simply normalize the overall proof of φ from X Y in order to prune away 
such assumptions as might not be needed for the resulting proof in normal form. If the 
system within which such normalization is carried out tolerates irrelevancies such as the 
First Lewis Paradox, then potential "reductions in premises" can still escape detection!

5.  Avoiding the First Lewis Paradox: Banning Dilution

If we wish to avoid the First Lewis Paradox, we have to disable its simplest proofs. Here is 
one, in the sequent calculus: 

•
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There cannot be anything wrong with the rule of initial sequents A : A. Nor can there be 
anything wrong with the rule 

•

for introducing a negation sign on the left of the colon.
There remains only one diagnostic possibility: the culprit here must be the final step of 
Dilution (on the right).3 So, in the interests of relevance, Dilution (on the right) must be 
banned.
So, too, must Dilution on the left. Otherwise, we shall be able to prove the Lewis-type 
sequent A, ¬ A : ¬ B, which is just as objectionable, on relevantist grounds, as the sequent 
A, ¬ A : B. If the arbitrary proposition B bears no connection to the premises involving A, 
then neither does its negation ¬ B. With Dilution on the left, however, we can form the 
following otherwise unobjectionable proof: 

•

In the context of the little example involving the First Lewis Paradox, the ban on Dilution 
means that the first proof above would get only as far as 

•

And isn't that just as it should be? It is, after all, a more informative result than A, ¬ A : B. 
(This is an intuition to be explicated presently.) In general, given any sequent of the form 
X : B, it might be quite difficult to tell that B "follows" from X by dint of X's inconsistency 
rather than by dint of any genuine deductive connection between X and B. We can lose 
sight of this general point when looking at the Lewis sequent A, ¬ A : B, because its 
antecedent is so obviously contradictory. But with generality we lose obviousness. And, I 
contend, it is better to know that X is inconsistent than to know only that X logically 
implies B. The sequent X : represents epistemic gain over the sequent X : B.
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6.  Epistemic Gain in Logic



What, exactly, is epistemic gain? It is a matter of learning that a tighter logical result holds 
than one had previously thought. Examples of epistemic gains made on the deducibility 
statement A, B C might be 

• 
 
 One finds a proof of the sequent A : C, thereby learning that B is unnecessary as a 
premise. 

• 
 
 One finds a proof of the sequent A,B : , thereby learning that one's premises are 
inconsistent. 

• 
 
 One finds a proof of the sequent : C, thereby learning that the conclusion one was 
trying to prove "from" the premises A and B is a logical truth. 

A proof of any of these proper subsequents of the original sequent A, B : C would 
represent epistemic gain. Knowing that A C is better than knowing that A, B C; and 
likewise for knowing that A, B or knowing that C. The more one "subsets down," on 
the left and/or on the right, while still achieving the turnstile, the stronger the logical result 
one has learned. Of course, one cannot subset down all the way, since there is no proof of 
the empty sequent : . So one will always achieve a local optimum in any course of 
"subsetting down." In an obvious sense, it will be a "(locally) strongest possible result." It 
will be a valid sequent that has no valid proper subsequent. Remember that we are calling 
such sequents perfectly valid.
An easy corollary of a theorem to be stated below, in conjunction with the usual 
completeness theorems, is that every perfectly valid sequent in classical (resp. 
intuitionistic) logic has a classical (resp. intuitionistic) relevant proof.

7.  Avoiding the First Lewis Paradox: Banning Cut

We have seen that Dilution is a source of irrelevance. But what about Cut? Cut is a 
structural rule in a sequent system that registers the (assumed) unrestricted transitivity of  
deduction. The orthodox statement of the unrestricted transitivity of deduction (in single-
conclusion systems) has the form 
If X B and Y, B C then X, Y C. 
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Correspondingly, the structural rule of Cut allows one to infer from two premise-sequents 
to a conclusion-sequent as follows: 

•



If we can get rid of Cuts (as Gentzen's Hauptsatz says we can), why should we be worried 
about having the rule of Cut in our deductive system? The simple answer is that Cut, too, 
can be a source of potentially undetected irrelevance. For, consider the following two 
perfectly good proofs, of V-Introduction and of Disjunctive Syllogism respectively: 

•

Now, if we apply Cut to the sentence A V B, we obtain the unwanted Lewis sequent A, ¬ A 
: B.
So, if we wish to avoid the First Lewis Paradox, we must either ban Disjunctive Syllogism 
or ban Cut. We wish to avoid the First Lewis Paradox. Therefore, we must either ban 
Disjunctive Syllogism or ban Cut. But we cannot ban Disjunctive Syllogism without 
unacceptable consequences for the codification of mathematical practice. My own 
methodological conclusion, therefore, is that Cut must be banned as a rule within the  
system. And I note the virtuous irony in the fact that I am arguing for this methodological 
conclusion by means of (a deontic version of) Disjunctive Syllogism: 
We must either ban Disjunctive Syllogism or ban Cut. 
We should not ban Disjunctive Syllogism. 
Ergo, We should ban Cut. 

7.1.  On How Best to "Ban" Cut

To say that Cut must be banned is not to say that we shall thereby forfeit transitivity of 
deduction altogether. Our conclusion "We should ban Cut" should really be written: We 
should ban Cut in those situations where its use can allow irrelevancies to creep into our  
reasoning. But we expect the vast preponderance of Cuts in actual mathematical and  
scientific reasoning to be innocuous in this regard. Making good on this informally 
expressed expectation is the main task before us.
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Recall our earlier contrast between the statement of transitivity (which involved turnstile-
claims) and the rule of Cut as a means of inferring one sequent from two others. As far as 
the transitivity of deduction is concerned, our relevant systems will still enjoy it—where it  
counts. For the following metatheorem holds for the relevant systems: 

If X B and Y, B C then [X, Y] [C]. 



(Remember that [X,Y] ranges over subsets of X Y, and [C] over subsets of {C}. We shall 
also use "X " as a synonym for "X ," and talk of being able to deduce absurdity ( ) 
from X.) Another way of stating this metatheorem would be to say that Cut, though no 
longer applicable unrestrictedly (as it was in the nonrelevant systems C and I), will 
nevertheless be "gainfully admissible" in our respective relevant systems CR and IR.
This statement of restricted transitivity of deduction is all that one needs for the serious 
scientific purposes broached above. Those purposes, as we have already seen, are (1) to 
prove the inconsistency of any unsatisfiable set of assumptions, (2) to prove all logical 
truths from no assumptions, and (3) to derive all falsifiable consequences of any satisfiable 
sets of assumptions. There is nothing for a canon of deductive reasoning to accomplish 
over and above these three aims. By seeking to provide more, the classical Tarskian notion 
of consequence or deducibility is guilty of a misleading overprovision, which can blind one 
to epistemic gains that stand to be made by the logically more wary. Without a rule of Cut, 
one can still be assured of transitivity of deduction wherever it matters. Why, then, spoil 
that austere provision by adopting Cut as a rule? The only answer is: in order to achieve 
speedup in the search for "proofs." But that is a merely pragmatic matter of tactics, of 
strategy, and of expenditure of time and energy. It has nothing to do with normative issues 
of justification.
There is no rule of Cut, then, within our relevant systems. And Cut in its orthodox 
unrestricted form is not even an admissible rule for either of the systems IR and CR. For in 
each of these systems we have 

P P V Q and ¬ P, P V Q Q but P, ¬ P Q. 

The orthodox Deduction Theorem for logical calculi states that 

(i) X B only if X \ {A} A → B. 
(ii) X A → B only if X, A B. 

In IR and CR, the implication (i) holds. But the converse implication (ii) fails, for in these 
relevant systems we have ¬ A A → B, but not ¬A, A B.
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Notice that the two little proofs that were put together above for a final step of Cut are so 
degenerate that the inconsistency of the antecedent of the final sequent is obvious. But it is 
worth stressing once again that in general this will not be the case. One might have proved 
X : B (with X consistent) and Y, B : C (with Y, B consistent), while yet the final sequent X, 
Y : C obtained by Cut has an inconsistent antecedent X, Y. The latter inconsistency, 
however, might go undetected; the Cut-applier might be unaware of it. Accumulating 



proofs for deductive progress by means of Cut brings with it the risk that the overall result 
is relevantly unsound. It might be that the conclusion C "follows from" the set of premises 
X Y "only because" X Y is inconsistent.
Our method of relevantizing can be thought of as a measure for logical quality control. It is 
always in search of epistemic gain. It seeks to ensure that the results we can prove 
"relevantly" are those whose conclusions do not follow from their premises only because 
of the joint inconsistency of those premises. Viewed another way, it seeks to ensure that 
the deductive progress afforded by the transitivity of deduction is genuine deductive 
progress. Pooling of assumptions must not get us consequences on the cheap. For such 
consequences are worth no more than the assumptions that they depend upon. Better to 
know that the pooled assumptions are inconsistent than to continue in ignorance of this 
fact, and rely on any conclusion that has been "deduced" from them.
The fact that Cut is not a rule in our relevant systems does not mean that someone 
possessed of relevant proofs 

•

would be at a loss to find a relevant proof of some subsequent of X, Y: φ. In complaining 
that the Rule of Cut is too crude an instrument of cumulative deductive progress, I do not 
intend to leave the reasoner unable to achieve the benefits of accumulation. In situations 
such as these, the sought relevant proof can be obtained as follows. (For perspicuousness 
of display, we switch here to natural-deduction mode.)

 Graft Π on top of Σ as one would normally do. Call the resulting proof-tree Θ: 

•
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 Normalize Θ: 

•

The resulting normal proof Ξ has conclusion φ, and its set Z of undischarged 
assumptions is a subset of X Y. 
 Extract from this normal form Ξ a relevant proof, of either Ξ or φ, from some subset W 
of Z. 

That is to say, our metatheorem stated earlier— 

If X B and Y, B C, then [X, Y] [C]. 

has a constructive proof. (W will be the subset of X Y that makes the consequent hold.)
To be sure, step (2) can result in exponential blowup. That is to say, the length of the 
normal proof produced as output in step (2) is bounded below by an exponential function 
in the length n of the nonnormal, input proof—in the sense that, for any n, some input 
proof of length k > n produces an output of length >2k.4 Step (3), however, can be 
completed in polynomial time. That is to say, there is some polynomial function p(n) such 
that for all m, for all input proofs (in normal form) of length <m, the relevantized proof (of 
course, still in normal form) is produced in fewer than p(m) units of time. Normalizing 
carries a heavy computational price, whether or not one is a relevantist. But at least going 
one step further and relevantizing adds negligibly to the computational costs involved. The 
potential epistemic gains come cheap at this price.

8.  The Metalogical Upshot

Our motivation can be summarized, but now in the sequent calculus setting, as the 
requirement that we should be able to prove a Dilution Elimination Theorem 
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in addition to the well-known Cut Elimination Theorem. That means that we must not rely 
on having Dilution in the system in order to show that the system admits of Cut-
elimination.



Gentzen's famous Hauptsatz, or Cut-elimination theorem, is that applications of Cut can be 
eliminated from any proof. Gentzen happened to formulate his logical rules in such a way 
that in eliminating cuts from proofs, one would need to be able to take steps of Dilution in 
order to ensure that newly required applications of the logical rules would be formally 
correct. Perhaps that is why Gentzen himself never raised the question of whether one 
could eliminate Dilutions from proofs, along with Cuts. Given his chosen way of stating 
the logical rules, the answer would have appeared to be an obvious negative. Since, 
however, we are avoiding Dilutions as well as Cuts—because these are sources of 
irrelvance—we shall need to formulate the logical rules in a subtly different way from 
Gentzen.
The motivating considerations behind our approach to capturing relevance determine not 
only the form of the rules for the logical operators, but also some very general restrictions 
on their applications in proofs. These restrictions are imposed in order to avoid Dilutions. 
Of course, if we can get rid of all Dilutions in a proof, what we end up proving is some 
subsequent of the original sequent proved. But that is precisely what I call epistemic gain.
The relevantizing of both intuitionistic logic I and classical logic C is accomplished 
uniformly, by means of the same techniques. Thus considerations of relevance are 
orthogonal to the considerations of constructivity that lead one from classical logic C to its 
intuitionistic subsystem I.
We relevantize both C and I, then, by modifying the usual Tarskian assumptions about 
what is desired of a deducibility (or consequence) relation. If one needs a slogan to help 
with orientation, ours is a method of relevantizing "at the level of the turnstile." As a result, 
there will be some tweaking of the rules for the logical operators (in the natural deduction 
or sequent setting); but these tweakings are not such as to change their established 
meanings.
Before I state the rules of the system IR, it is worth mentioning two of its proven virtues. It 
suffices for intuitionistic mathematics5 and for the hypothetico-deductive method in 
science.6 So for all serious epistemic purposes (from an intuitionistic point of view), IR is a 
system that relevantizes without loss. Exactly analogous claims hold in the classical case. 
The relevant system CR suffices for classical mathematics and for the hypothetico-
deductive method in science. So for all serious epistemic purposes (from a classical point 
of view), CR is a system that relevantizes without loss.
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9.  The System IR

9.1.  Natural Deduction



We now set out the system of natural deduction for IR. We begin with three explanatory 
remarks, and an explanation of some new notational conventions.

(i)   In all applications of the elimination rules stated below, the major premise stands  
proud; that is, it is not the conclusion of any rule. 

(ii)   No applications of the absurdity rule are permitted. 
(iii) 

 
 All elimination rules are in "parallelized" or "general" form, including those for → 
and . 

We also need to explain the perhaps unusual notational conventions used below, involving 
boxes and diamonds appended to discharge strokes over assumptions used for the sake of 
argument. The permissive construal with a discharge-rule is that one is permitted to 
discharge any assumption of the indicated form, if one has used it. The permissive 
construal allows one to apply a "discharge-rule" even in cases where no assumption of the 
indicated form has been used. In such a case one could speak of "vacuous discharge." In 
our statement of the rules below, this permissive construal applies to the rules (¬I) and 
(→I). Here, permissiveness is indicated by a diamond appended to the discharge-stroke. 
For all the other discharge-rules, we adopt instead a construal according to which discharge 
is obligatory. Obligatoriness is indicated by a box appended to the discharge-stroke. Here, 
the affected rules may be applied only if at least one assumption of the indicated form(s) 
has indeed been used to obtain the sub-conclusion concerned. (For the parallelized version 
of the rule of ( E) given below, one must have used either A or B as an assumption, but not 
necessarily both.)
The graphic presentations of the following rules do not explicitly reveal an important 
structural fact. Construed as definitional clauses for the inductive formation of proofs, 
inference rules with more than one premise allow their immediate subproofs, in general, to 
have distinct sets of undischarged assumptions. For example, the rule of -Introduction, 
construed as a clause in the inductive definition of the notion "Π is a proof of A from the 
set Δ of undischarged assumptions," would read as follows: 
If Π is a proof of A from the set Δ of undischarged assumptions and if Σ is a proof of B 
from the set Γ of undischarged assumptions, then is a proof of A B from the set (Δ Γ) 
of undischarged assumptions. 
Such a clause allows the formation of the proof of A B even if Δ is distinct from Γ. We 
adopt here the convention that distinct sets of assumptions will be presumed 
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to be allowed, unless there is explicit mention to the contrary. And we shall see below that 
constraints to the contrary are what characterize the more intractable notion of proof in the 
Anderson-Belnap system R. 

•

Some further explanatory comments are now in order.
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9.1.1.  Preventing Dilutions from Creeping In

In the rule of V-Elimination (proof by cases), the restriction means that the first case-
assumption cannot be an undischarged assumption in the second case-proof, and the 
second case-assumption cannot be an undischarged assumption in the first case-proof. In 
the rule of →-Elimination, the restriction means that the consequent B of the major 
premise A→B cannot be an undischarged assumption in the "minor" proof of A.

9.1.2.  Liberalized Proof by Cases



The rule of proof by cases, or (VE), looks unusual. By stating it graphically as we have, we 
are providing for the possibility that one of the case assumptions might lead to absurdity (
). We are then permitted to bring down as the main conclusion whatever is concluded from 
the other case assumption. Thus the rule as stated is shorthand for the following 
possibilities regarding the sequence Conclusion of first case-proof, Conclusion of second  
case-proof, ergo Main conclusion: 

C, C, ergo C (including, as a special case, , , ergo ) 
C, , ergo C 
, C, ergo C. 

Liberalizing proof by cases in this way is entirely natural, given how we reason informally. 
Suppose one is told that AVB holds, along with certain other assumptions X, and one is 
required to prove that C follows from the combined assumptions X, AVB. If one assumes A 
and discovers that it is inconsistent with X, one simply stops one's investigation of that 
case, and turns to the case B. If C follows in the latter case, one concludes C as required. 
One does not go back to the conclusion of absurdity in the first case, and artificially dress it 
up with an application of the absurdity rule so as to make it also "yield" the conclusion C.

9.1.3.  Vacuous vs. Nonvacuous Discharge of Assumptions

Note that in the rules for IR above we make some unusual demands on the discharges of  
assumptions allowed by certain of these rules. By contrast with minimal logic, we retain 
the permissive construal only for (the first half of) the rule of (→I). Neither minimal nor 
intuitionistic logic insists on nonvacuous discharge when applying the rule (¬I). The 
intuitionist logician has a reason of sorts for this omission: any application of (¬I) to infer 
¬A without having used A to obtain the preceding absurdity could simply be regarded 
instead as an application of the absurdity rule. The latter rule, however, is conspicuously 
absent from our relevant system IR, and for good reason: it leads to the First Lewis 
Paradox A, ¬A : B. Just as disagreeable is the negated-conclusion version of the paradox: 
A, ¬A : ¬ B. Thus we have good reason to insist that ¬I be applied only with nonvacuous 
discharge.
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9.2.  Sequent Calculus



We follow the convention, when stating sequent rules for intuitionistic systems, whereby 
succedents are at most singletons. But we write the sequents as though their succedents, 
when nonempty, are single sentences. Thus X : {C} is rendered as X : C. Another useful 
notation is X : [C], which is ambiguous between X : C and X : . Likewise, [X] will range 
over subsets of X.
The only structural rule is the rule of initial sequents 
A : A. 
All other rules are logical rules, for introducing a dominant occurrence of the operator 
concerned on the right or on the left of the sequent. 

•
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10.  The system CR

10.1.  Natural Deduction

The natural deduction system for CR is obtained by adding to IR the rule of classical 
reductio ad absurdum, subject, of course, to the requirement that the assumption for 
reductio really be used: 



•

We still insist, as we did with IR, that major premises of eliminations stand proud. Thus no 
conclusion of classical reductio ad absurdum can be the major premise of an elimination.
The decision problem for theoremhood in IR (equivalently, deducibility from finite sets of 
premises in IR) is PSPACE-complete, just as it is for the parent system I of intuitionistic 
logic. The decision problem for theoremhood in CR is co-NP-complete, just as it is for the 
parent system of C classical logic.

10.2.  Sequent Calculus

The sequent calculus for the classical system of relevant logic is obtained in the usual way, 
by allowing succedents with more than one member.
the sequent rules for CR 

•
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Unrestricted Cut fails to be admissible for CR, as it failed for IR. But the same 
compensating metatheorem holds for CR as for IR: 

If X B, Z and Y, B W, then [X,Y] [Z,W] 

where we now allow for more than one sentence in succedents.

11.  Contrast with the Anderson-Belnap Approach to Relevantizing



IR and CR are to be contrasted with competing systems in the Anderson-Belnap tradition. 
These other systems (such as the relevant logic R) differ from standard logic by having 
unusual, "intensional" connectives, subject to more restrictive axioms (in a Hilbert-style 
proof system) and rules of inference (in a natural deduction or sequent setting) than the 
standard connectives. But on the Anderson-Belnap approach, the deductive structure of the 
relevantized logical system is in one important regard the same as in the nonrelevant case. 
The Anderson-Belnap relation of deducibility admits of unrestricted Cut.
The Anderson-Belnap system R, like the systems of classical and intuitionistic logic, was 
originally presented as a Hilbert-style proof-system based on many axioms and one or two 
rules of inference. Since we have been using natural deduction in this chapter, we present 
the system R here in that format, in order to facilitate comparison. 

•
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We stress again that major premises for eliminations must stand proud, which ensures that 
no conclusion of classical reductio ad absurdum can be a major premise for an elimination.



We have indicated, in -Introduction and V-Elimination, that these rules can be applied 
only when the same set Δ of undischarged assumptions is employed in 
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the two places indicated. Hence the need for the independent postulation of Distributivity
—for the usual proof of Distributivity would involve distinct sets of undischarged 
assumptions when applying the usual versions of -Introduction and V-Elimination.
We are also requiring that the discharge operations indicated with boxes are to discharge at 
least one occurrence, and indeed all occurrences, of the assumption of the indicated form. 
For -Elimination, we require use either of the assumption A or of the assumption B, and 
permit use of both. All such assumption-occurrences, however, must be discharged by the 
application of the rule. Thus the system above can be described as having the universal  
discharge requirement. It does not allow "partial discharge," that is, discharge of only 
some, but not necessarily of all, of the available occurrences of an assumption. In this 
regard our system differs from that of Prawitz [13].
Major premises of eliminations have to stand proud, with no proof-work above them. This 
ensures that every proof is in normal form.

Definition.

 (i) If there is a proof of φ whose undischarged assumptions form the set Δ, then Δ → φ. 
 (ii) If Δ → φ Γ and Γ → ψ, then Δ {Γ \ {φ}} → ψ 
 (iii) Δ → φ only if this can be shown by means of (i) and (ii). 

Our system of proof requires proofs to be in normal form. So we can speak of "normal-
form deducibility" in this system. Intuitively, → is just the 'deductive closure' of the 
(possibly more limited) relation of normal-form deducibility. (We could achieve → 
directly as the deducibility relation if we allowed partial discharge with the rules of ¬-Intro 
and →-Intro. This is essentially what Prawitz does.) We can talk of → as representing 
'extended deducibility' in our ND-system.
Anderson and Belnap ([1], pp. 340-341) provide two slightly different sets of axioms for 
R, for the generation of Hilbert proofs using only the rules 
( I) From A, B infer A B (→E) From A, A→B infer B 
Every line in such a proof is a theorem; whence the rules ( I) and (→E) apply only to 
theorems. Clearly, ( I) is derivable in our ND-system for R, since we can take Δ = . 
Likewise, we can derive (→E); whence its applications in Hilbert proofs can be mimicked 
by extended deducibility in our ND-system. Finally, one can show that every one of the 
Anderson-Belnap axioms ([1], pp. 340-341) has a normal proof in our ND-system (with 



universal discharge!). Hence, every theorem of R is extendedly deducible in our ND-
system.
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Conversely, one can show that every extended deducibility in our ND-system for R can be 
captured as a theorem of the Hilbert-system for R in the following sense: 

 (i) if φ 1 , … ,φ n →ψ, then there is a Hilbert-proof of φ 1  →   (φ 2 → … (φ n →ψ) …) 
 (ii) if φ 1 , … ,φ n → , then there is a Hilbert-proof of φ 1 →(φ 2 → … (φ n+1 →¬φ n ) …). 

Because of its restrictions on applications of rules, theoremhood in propositional R is 
undecidable (Urquhart [26]). The fragment obtained by dropping Distributivity is 
decidable, but the decision problem is at least ESPACE-hard.

11.1.  Discussion

The practitioner of a system such as R might acquire the impression that it will be 
"business as usual" on the deductive front. One will be able to prove lemmas from one's 
axioms, and then prove theorems from one's lemmas (plus perhaps other axioms), and put 
one's proofs together so as to get the theorems directly from the axioms used. The usual 
strategies of "breaking down" a logical problem into a sequence of more manageable steps 
will therefore apply. One just has to find the right lemmas—the right interpolants—and the 
reasoning within one's favorite mathematical theory will surely be relevantizable.
Alas, this is mistaken. The effects of relevantizing by "going intensional" on the 
connectives (and quantifiers) are rather disastrous. They leave the relevantized theory in a 
relatively much less complete state than the unrelevantized one. One loses not just proofs 
embodying fallacies of relevance but also, in many cases, the very results established by 
such proofs—even when, from our point of view, those results do admit of proofs free of 
any fallacies of relevance. In the systems that place these intensionalist demands on 
relevance, it will often happen that familiar proofs in standard logic cannot be 
reconstructed so as to obey the relevantist strictures. Just as the intuitionist loses certain 
lovely classical proofs, and with them even the theorems that they establish,7 so too the 
relevantist in the Anderson-Belnap tradition loses proofs and, with them, theorems. Yet no 
mathematician proving such "lost" theorems in the original system would brook the 
accusation that she has committed some fallacy of relevance that, once recognized, 
deprives her of her entitlement to assert the theorem. Such a suggestion from the reforming 
relevantist logician would strike her 
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as quite outrageous. Moreover, the relevantist (on the approach to relevantization which is 
being recommended here) can agree. The relevantist's aim should be so to regiment the 
mathematician's reasoning that its result is shown to be valid even by relevantist lights. 
Relevantizing is a matter of regimenting reasoning without epistemic loss—indeed, at 
times with epistemic gain.
Note that this is unlike the situation that is involved when disagreement arises between a 
classical mathematician and an intuitionist over the validity of a piece of classical 
mathematical reasoning. The classicist will be convinced by a particular proof that 
employs strictly classical forms of reasoning (such as excluded middle), while the 
intuitionist (in the absence of any intuitionistic proof of the same result) will refuse to 
assert the "result" that the proof (according to the classicist) establishes. Here a genuine 
doctrinal or epistemic difference arises over the issue of constructivity, which cannot be 
resolved. It is doubtful, however, that an analogous disagreement on the issue of relevance
—between a mathematician using standard logic (embodying fallacies of relevance) and a 
mathematician committed to using only a relevant logic—will ever result in the former 
being prepared to make an assertion based on proof, and the latter being unprepared to 
endorse the same. This is because (or so I contend) the following explanatory conjecture is 
true: 
All intuitively convincing mathematical reasoning can be regimented without loss in the 
kind of relevance logic advocated here. 
Thus what may look like a use of a fallacy of relevance in the course of a piece of 
mathematical reasoning is, upon closer analysis, no such thing. Intuitively, relevance is 
already "built into" our deductive sensibilities, in a way that a predilection for 
constructivity, for example, is not. If our conjecture is true, it follows that the standard 
systems of logic, which embody fallacies of relevance, are guilty of "overprovision." 
Fallacies of relevance are never of any help in mathematical reasoning, and ought to be 
expunged from the systems of logic that are designed to regiment such reasoning. It is an 
interesting question why (from Frege onward) our systematizations of deductive reasoning 
have allowed fallacies of relevance to count as formally correct and/or as semantically 
valid. I believe that it was because a certain kind of reflective equilibrium was struck, in 
which an overly succinct set of constraints was imposed on the relations of deducibility 
and consequence, at just that juncture when the object-language conditional was being 
teased apart from the metalinguistic turnstile. Within this reflective equilibrium, the price 
paid for unrestricted transitivity and time-saving accumulation of proofs was the admission 
of the fallacies of relevance. The moral of my story here is that this reflective equilibrium 
can be refashioned, and relevance regained. By being a little more attentive to what is 
really going on (and what we want to have going on) when we link proofs together, we can 



find a better way to characterize the structure of the turnstile relation uncolored by 
considerations of efficiency. We can fashion a system 
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of proof that allows even more faithful regimentations of actual patterns of mathematical 
reasoning, even though mathematicians make profligate use of Cuts.
The deep reason why the Anderson-Belnap relevantist loses proofs and, with them, 
theorems, is that their systems do not contain Disjunctive Syllogism: 

AVB, ¬A : B. 

This impedes their logical investigation of the various cases yielded by such disjunctive 
principles as the axiom of trichotomy: 

x<yVy<xVx = y. 

Such principles are indispensable in our axiomatizations of various branches of 
mathematics. The mathematician needs, like Chrysippus's dog, to be able to chase the truth 
down a different fork in the road as soon as it is discovered that a chosen fork is a dead 
end. Without Disjunctive Syllogism, one cannot in general do that.
By contrast with the Anderson-Belnap "intensional-connective" systems, the systems IR 
and CR, which I advocate as the respective properly relevant versions of intuitionistic and 
classical logic, preserve the whole stock of mathematical theorems—and indeed, in each 
case, from the very same axioms—in the respective kinds of "nonrelevant" mathematics. 
Nonrelevant classical mathematics is the mathematics that can be derived from one's 
axioms by means of the full resources of nonrelevant classical logic. That means that one 
can use the rule that allows one to infer any statement at all from a contradiction; one can 
use Disjunctive Syllogism; one can use the "paradoxes of implication"; and so on. If a 
classical mathematician produces a "nonrelevant" proof of, say, Fermat's last theorem in 
some interesting arithmetical theory such as exponential function arithmetic (EFA), then 
my relevantizing classical mathematician will be able to prove Fermat's last theorem 
relevantly, using only axioms of EFA that had been used in the nonrelevant proof. (Mutatis 
mutandis with "intuitionistic" in place of "classical.")

12.  The Maxim of Narrow Analysis



Relevantizing brings benefits for automated deduction. In automated deduction, the system 
is given a queried sequent X?-Y, and seeks to construct a normal or Cut-free proof of that 
sequent, without human intervention. The deductive problem is broken down into more 
manageable subproblems by foreshadowed applications of logical rules; one does not seek, 
in automated deduction, to program the system to find interpolants. That is something that 
only human reasoners do.
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We noted earlier that every perfectly valid sequent in classical (resp. intuitionistic) logic 
has a classical (resp. intuitionistic) relevant proof. This observation prompts the following 
maxim: 
maxim of narrow analysis 
When given a deductive problem X?-Y that admits of proof, always seek a proof of a 
minimal subsequent of X : Y that admits of proof.8 
Suppose one has a proof Π of the sequent X : Y. Suppose that one then discovers a new 
proof Π* of some proper subsequent X*:Y*. Then one should be able to substitute Π* for 
the old proof Π of the original sequent X : Y, without ever forfeiting (the results of) any 
proofs involving Π as a subproof. Making a subproof prove a tighter logical result should 
never result in having to forfeit larger proofs containing that subproof. This sounds 
obvious, and one feels it ought to be true.
In some systems of logic, however, one can be thwarted when trying to follow the maxim 
of narrow analysis as vigorously as one would like. In these systems of logic, if one 
substitutes in all one's proofs Σ, the better subproof Π* (of the stronger result), for the 
worse subproof Π (of the weaker result), then one does not in general preserve proofhood. 
Nor is one in general able to recover or restore the situation by producing new proofs in the 
light of that substitution.
Some relevant systems (such as R) can be unreasonably finicky about the use one may 
make of assumptions for the sake of argument, especially with a rule like the rule of 
conditional proof. In a new would-be subordinate proof Π* of a stronger result, some of 
those assumptions may be eschewed, or the subordinate conclusion may be of the wrong 
form (  instead of the "sought" conclusion B). When such Π* is substituted to replace the 
subproof Π (of the weaker result) within some larger proof Σ, the result Σ(Π/Π*) may fail 
to be a proof, because the "lost assumptions" or the changed form of the subordinate 
conclusion makes some rule-application in the wider proof-context Σ illicit. And there 
might not be any way, in general, of capitalizing on the epistemic gain represented by the 
new subproof Π*, and distributing its potential returns within the wider proof Σ.

13.  Nonforfeiture of Epistemic Gain



This complaint cannot be leveled, however, against IR and CR. These systems, unlike other 
systems of relevance logic, are devoted to the nonforfeiture and potentially 
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wider distribution of epistemic gains. IR, for example, satisfies the following principle: 
principle of nonforfeiture of epistemic gain 
Let Π be a proof of the sequent X : A, occurring as a subproof of the proof Σ of the sequent 
Y : B. Let Π* be a proof of some proper subsequent of X : A. Then Σ(Π/Π*)—the result of 
substituting Π* for Π in Σ—can be effectively transformed into a proof of some 
subsequent of Y : B. Indeed, the transformation can be effected in polynomial time. 
Note that I am not saying that a strict gain via Π* with respect to some subproof Π will 
always turn into a strict gain with respect to the overall proof Σ. In many cases it will; but 
in some cases the result established by (the transform of) Σ(Π/Π*) will be the original 
result Y : B.
Still, nonforfeiture of epistemic gain would be very good news. For we would never lose 
any of our erstwhile deductive knowledge by forgetting Π and remembering Π* instead. 
And this cannot be said for many a rival system of relevance logic.

14.  Summary

We have tried to show how to relevantize the two main logics—intuitionist and classical—
without methodological loss. In the sequent setting, we ban Dilutions and Cuts. And we 
state the logical rules in a slightly more relaxed form, so that we can get by without the 
structural rules of Dilution or Cut. In the natural-deduction setting, we ban the absurdity 
rule and abnormalities, and keep exigent but well-motivated checks on how we have used 
assumptions for discharge. We also liberalize slightly certain logical rules, so that the loss 
of the absurdity rule is not crippling.
Elsewhere, I have shown how this process of relevantizing (in the intuitionistic case) 
brings the system of natural deduction and the corresponding system of sequent calculus 
into "deep isomorphism."9 The relevant systems are also ideally suited for computational 
logic, since they allow one never to forfeit any epistemic gains that one might achieve in 
the course of solving deductive subproblems. This approach to relevantizing salvages those 
"local" forms of reasoning, such as disjunctive syllogism, that seem, intuitively, so 
indispensable for ordinary mathematical reasoning. It locates the issue of relevance at the 
level of the turnstile, and 
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challenges certain orthodoxies as to what structural features of the deducibility relation it is 
methodologically necessary to preserve. The upshot is that the student of logic who is 
dismayed by the First Lewis Paradox can be assured that it is irrelevant to the deductive 
needs served by one's logic, whether one is an intuitionist or a classicist. We can make do 
without it, and stand only to gain by eschewing it. Logical rules suffice for our logical 
reasoning. We do not even need any "structural" rules—except, of course, the rule of initial 
sequents A : A. That, however, is the case only in a sequent system. In natural deduction, 
the counterpart to this is that one is allowed to write down an assumption A for the sake of 
argument. It might be left standing as an undischarged assumption by the end of the proof, 
or it might be discharged on the way to the conclusion. Without such allowance, no proof 
would ever get started. So I don't propose to revoke that licence. I have banned a great 
deal, but with no untoward effect at all. Our canon of deductive reasoning has been 
relevantized; but our powers of reasoning have been left intact.
Perhaps we should call the resulting position "compassionate relevantism."
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24. No Requirement of Relevance



John P. Burgess 

1. Relevantism: Rejecting the "Paradoxes" of Classical Logic

Classical geometry defines a conic section to be the intersection of a plane with a (double) 
cone. This definition obliges the geometer to recognize such degenerate conics as the 
hyperbola consisting of two crossed lines (the intersection of the cone with a vertical plane 
through its apex) or the circle consisting of a single point (the intersection of the cone with 
a horizontal plane through its apex).
Classic logic defines entailment to hold between a premise (or set of premises) and a 
conclusion if and only if their logical form guarantees that the either the premise (or at 
least one element of the set of premises) is false, or the conclusion is true. The definition 
obliges the logician to recognize certain degenerate entailments. A premise (or set of 
premises) that is contradictory in the sense that its logical form guarantees that it is false 
(or that at least one element of the set of is false) entails any conclusion: ex falso quodlibet. 
And a conclusion that is tautologous in the sense that its logical form guarantees that it is 
true is entailed by any premise (or set of premises): ex quolibet verum.
The commitment of classical logic to these principles has frequently been attacked by 
indignant critics who denounce the degenerate cases of entailment as "paradoxes." Among 
these critics there have been many with little use for any sort of formal logic; but the 
concern of the present survey will be with schools of 
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anticlassical logicians who have proposed rival formal logics to the classical, avoiding the 
so-called paradoxes.
Since the most common single complaint of such critics is that in the degenerate cases of 
entailment recognized by classical logic the premise is (or the premises are) "irrelevant" to 
the conclusion, the critics in question will be called "relevantists." Note, however, that as 
they are used in the literature, "relevance logic" and "relevant logic" are trademarks—both 
for the same school of logic,1 everything about which is highly contentious, beginning with 
whether "relevance" or "relevant" is the right label for it—and are not to be equated with 
"relevantism" as here defined. There have been other kinds of relevantists than "relevance" 
or "relevant" logicians; and there have been important contributions to "relevance" or 
"relevant" logic by logicians (Kit Fine, Harvey Friedman, Saul Kripke, Alasdair Urquhart) 
whose endorsement of relevantist criticism of classical logic has been qualified or 
nonexistent.



Now there would be no room for contention between classicism and relevantism if 
"entailment" were simply being introduced as a term previously without meaning (outside 
probate law), which was now simply being stipulated by the classicist to mean "the relation 
that obtains between premise and conclusion when logical form alone guarantees that 
either the former is false or the latter is true." There is room for disagreement only if both 
sides claim to be analyzing a notion of entailment that already exists, though perhaps not 
under that label.
And indeed classical logic's theory of entailment was largely developed in order to provide 
an analysis of what is meant by rigorous proof or rigorous provability in orthodox 
mathematics: classical logic can be viewed as an attempt to describe explicitly the implicit 
norms of orthodox mathematicians, and it is largely the practice of mathematicians that 
will be invoked in its defense. (Classical logicians do generally regard the applicability of 
classical logic as extending beyond mathematics as well, but are at least open to the 
possibility that it may require modification for extramathematical applications, since 
mathematics has so many features peculiar to itself: mathematicians insist that definitions 
should be fully precise, whereas ordinary language is full of vagueness; mathematicians 
insist that before a term is introduced, the existence and uniqueness of the item it is to 
denote must be proved, whereas in ordinary language such presuppositions often fail; and 
so on.)
At this point it is necessary to note a contrast between two different kinds of criticism of 
classical logic. It is agreed on all sides that in some sense logic is concerned with norms (of 
valid argument). But there is a great difference—all the difference between is and ought—
between describing what the norms operative in 
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a given community are, and prescribing what they ought to be. In linguistics this 
distinction (the distinction between descriptive and prescriptive grammar, between 
Chomsky and Fowler) is universally recognized. It needs to be recognized in logic also. 
There is a difference between prescriptive criticism, alleging that classical logic correctly 
describes unacceptable practices in the community of orthodox mathematicians, and 
descriptive criticism, alleging that classical logic endorses incorrect principles that are not 
operative in the practice of that community.
The paradigm of prescriptive criticism is the intuitionist attack on classical logic. Neither 
Brouwer nor any of his disciples ever suggested classical logicians were wrong in 
describing what pass for proofs in the orthodox mathematical community as often 
involving the inference from the double negation of a proposition to the proposition itself. 
The intutionists' quarrel was not with the small body of classical logicians, but with the 
much larger body of orthodox mathematicians, whose practices, they insisted, were in need 
of revision. (Classical logicians were liable to censure only if they went beyond describing 



orthodox mathematicians as appealing double negation elimination to endorsing the 
practice of doing so.)
The prescriptive character of the intuitionist critique is evident from the mathematical 
practice of intuitionist logicians themselves, in proving metatheorems about intuitionistic 
logic. A genuine intuitionist proving a metatheorem will take care never to appeal to 
double negation elimination or, more generally, to make any argumentative move that 
cannot be represented in intuitionistic logic. Or if the intuitionist logician does sometimes 
reason like the orthodox, it is only because there has previously been established some 
metatheorem to the effect that in the particular kind of case in question, a classical proof 
can always be replaced by an intuitionistic one. And (it ought to be needless to say) 
"established" here can only mean established by intuitionistically acceptable proofs.
By contrast with all this, relevantists have historically virtually never troubled themselves 
to check through their proofs of metatheorems to make sure that no principle they reject 
has been appealed to. The most natural explanation for this insouciance is that their 
criticism has implicitly been meant as descriptive rather than prescriptive, and that the fault 
of the classical logicians, according to them, has been that of endorsing unacceptable 
principles that are not in practice used by orthodox mathematicians. Also, the rhetoric 
attending the historically most important statements of the relevantist position—their pose 
as indignantly championing common sense against the monstrous "paradoxes" propounded 
by classical logicians—is a more explicit indication that the criticism has been intended as 
descriptive.
If the descriptive criticism fails—and in particular, if it turns out that relevantists 
themselves constantly argue in what purport to be proofs of metatheorems about their own 
formal systems by appeal to principles rejected in those 
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systems—the historically earliest form of the dispute between relevantism and classicism 
will have been decided in the classicist's favor. The options remaining to the relevantist 
will then be two.
On the one hand, a relevantist might adopt a compatibilist position, presenting relevantist 
logic not as an alternative intended to supplant classical logic but, at most, as an adjunct 
intended to supplement it somehow. This would be to give up criticism of classical logic 
altogether.
On the other hand, a relevantist might become a presciptive critic, adopting a revisionist 
position, demanding, like the intuitionist, a reform of orthodox mathematical practice 
(though not the same reform the intuitionist demands). This would require in the first place 
a reform of their own mathematical practice, appealing henceforth only to laws of 
relevantist logic when proving mathematical metatheorems about their own formal 
systems.



2. The Relevantist's Options

So much, for the moment, about the general character of the dispute between classicists 
and relevantists. As for the particulars on which relevantists differ from classicists, and 
among themselves, the most crucial issues can be illustrated at the level of sentential logic, 
and in connection with entailments where the only logical operators involved in premise(s) 
and conclusion are conjunction, disjunction, and negation. Thus the forms of premise(s) 
and conclusion alike can be represented by formulas built up from atoms or atomic 
formulas p, q, r, … by means of the symbols caret and wedge and tilde (  and V and ) for 
the three logical operations just mentioned. We call these elementary formulas.
Most relevantists (in contrast to intuitionists, who reject the law of the excluded middle, for 
example) have been willing to agree, at least for the sake of argument, with the classical 
position as to which elementary formulas represent contradictions and which tautologies. 
The disagreement that will be examined below is over which elementary formulas entail 
which.
We write for entailment. As already indicated, the primary target of criticism is the 
following principle: 

(A) If α 1 ,  …  , α m are contradictory, then α 1 ,  …  , α m   β. 
And the secondary target is this further principle: 
(B) If β is tautologous, then α 1 ,  …  , α m   β. 
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The cases most often discussed are 

(A1) p  p  q 
(A2) p, p  q 
and to a lesser extent 
(B1) p  q V q. 

But while in practice it is these cases that are primarily discussed, in principle the critics 
reject (A) and (B) quite generally.
Now how does the rejection of (A) and (B) square with orthodox mathematical practice? 
That is the issue to be considered in evaluating relevantism as a descriptive criticism of 
classical logic. On this issue, relevantists have been quick to remark that generally neither 
mathematicians nor other people set about trying to deduce conclusions from premises they 



recognize to be contradictory; nor do people generally spend much time looking for 
premises from which they might deduce a conclusion they recognize to be tautologous. 
This observation is clearly correct; what is not so clear is why it should be thought to 
motivate a nonclassical logic in which there is some interesting distinction between those 
conclusions that are and those that are not entailed by a given contradiction, and between 
those premises that do and those that don't entail a given tautology.
More important, despite the foregoing observation, it does often happen that a 
mathematician engaged in lengthy deductions may through some slip (say, leaving out a 
minus sign, or writing an inequality symbol backward) arrive at a contradiction or other 
absurdity without noticing the fact. And when this happens, it does often happen that the 
mathematician may then go on to deduce, by what appears to be quite ordinary 
mathematical reasoning, whatever conclusions the mathematician in question may have 
been seeking. This type of occurrence may be called the Poincaré phenomenon, after Henri 
Poincaré, who observed: 
The candidate often takes an immense amount of trouble to find the first false equation; but 
as soon as he has obtained it, it is no more than child's play for him to accumulate the most 
surprising results, some of which may actually be true.2 
There is also a dual type of occurrence, where carrying out a long deduction, by quite 
ordinary mathematical reasoning (such as simple calculations involving rearranging terms 
in equations, or performing similar operations on both sides), results in obtaining what 
turns out at the last moment to be a tautology or other triviality. This may be called the 
Quine phenomenon, after W. V. Quine, who observed: 
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 … the beginner in algebra works in danger of finding that his solution-in-progress reduces 
to "0 = 0."3 
What the Poincaré and Quine phenomena suggest is that if one rejects (A) or (B), one is 
going to have to reject some quite ordinary pattern of deduction, such as is used by 
mathematicians and others who go in for long trains of arguments. And indeed, if one 
wishes to reject (A), the options are quite limited, as can be seen from the following 
derivation, establishing (A2). 

(1) p premise 
(2) p premise 
(3) p V q from (1) 
(4) q from (2), (3) 

The principle that gives (3) from (1) is the that a disjunction is entailed by either disjunct. 



(C1) p  p V q 
(C2) q  p V q 

A slightly more elaborate variant of the first of these is the following: 

(C3) p  r  ( p V q)  r. 

Since those who reject any one of the principles just listed tend to reject the others as well, 
all of them, as well as other minor variants, will be referred to below collectively as 

(C) or disjunctive weakening.

The prinicple that gives (4) from (2) and (3) is 

(D1) p V q, p  q. 

This two-premise version has a one-premise variant. 

(D2) (p V q)  p  q. 

Both of these, and other minor variants, will be referred to collectively below as (D) or 
disjunctive syllogism.
The derivation (1)-(4) is usually called the Lewis argument after C. I. Lewis, who first 
brought it to the general attention of logicians in modern times, after medieval antecedents 
had been largely forgotten.4 The Lewis argument seems to show that one 
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who rejects (A) must reject either disjunctive weakening (C) or disjunctive syllogism (D). 
But actually there is a third alternative—namely, to reject the transitivity of entailment, the 
principle that if certain initial premises entail each of certain intermediate steps as 
conclusions, and these in turn, taken as premises, entail a certain ultimate conclusion, then 
the initial premises entail the ultimate conclusion.
The issue here is most clearly seen in connection with the following variant of the Lewis 
argument. 

(C4) p  p  (p V q)  p 
(D2) (p V q)  p  q 
(A1) p  p  q. 



Here the particular version (C4) of (C) used is an instance of the version (C3) cited earlier. 
The (meta-)principle needed to get from (C4) and (D2) to (A) is the simplest case of 
transitivity. 

(E) If α  β and β  γ, then α  γ. 

All three options have been taken up by critics in the literature: the least popular option has 
been to reject disjunctive weakening; the most popular has been to reject disjunctive 
syllogism; rejection of transitivity has been somewhere in between. The three options will 
be considered separately below, in order of increasing popularity.
One sometimes also meets in the literature with what at first glance appears to be a fourth 
option, namely, to claim there is a fallacy of equivocation in the Lewis argument. The 
equivocation is supposed to be between two senses of disjunction, a weaker extensional 
and a stronger intensional sense. It is claimed that disjunctive weakening holds for the 
former but not the latter, while disjunctive syllogism holds for the latter but not the former.
Usually extensional disjunction is written V, and classical logic is held to give a correct 
account of which formulas involving it represent contradictons and which tautologies, 
while intensional disjunction is written +, and the enunciation of its laws is taken to be one 
of the tasks for a new, nonclassical logic. But so understood, the apparent fourth option is 
really just a suboption under the second option: it amounts to rejecting (D) but softening 
the rejection by adding a further claim to the effect that there is an acceptable principle 
resembling (D), namely, the principle that results from it on replacing V with +.
The option of rejecting disjunctive weakening has been favored by so few relevantists that 
it will be given only very brief attention.5 The only principle that 
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has been advanced in support of such a rejection is the principle that in an entailment, the 
subject matter of the conclusion must be contained in the subject matter of the premise. 
Since formulas involving distinct atoms p and q will presumably have instances in which 
the subject matter of what is substituted for one letter p has nothing to do with that of what 
is substituted for q, the formal representation of the "inclusion of subject matter" 
requirement is that no atom should appear in the conclusion that does not appear in the 
premise, which of course immediately leads to the rejection of (C).
This has seemed unacceptable even to the great majority of relevantists. Yet one may 
wonder why anyone would wish to infer a disjunction p V q from a disjunct p, since the 
former in an obvious sense contains less information than the latter. One reason is a desire 
to subsume a particular case under a generalization. Thus in mathematics one may want to 
prove ( n)(P(n) V Q(n)), and one way to do this may be by induction, proving P(0) V Q(0) 
and P(1) V Q(1) and then proving that if the theorem holds for n and n + 1, it holds for 



n + 2. And one way to prove P(0) V Q(0) and P(1) V Q(1) may be to deduce the former 
from P(0) and the latter from Q(1), by disjunctive weakening. Reasoning of this kind is in 
fact common in mathematical proofs, and insofar as the question before us is whether 
classical logic gives a correct description of orthodox mathematical standards of proof, this 
fact allows the relevantist position rejecting disjunctive weakening to be dismissed.

3. The Option of Rejecting Transitivity: Perfectionism

The great majority of relevantists do not wish to insist that the subject matter of the 
conclusion must be contained in that of the premise, though they do wish to insist that the 
two should overlap. This overlap is a bare minimum to require in the way of "relevance" 
between premise and conclusion. Now this bare minimum of relevance in fact obtains in 
all classical entailments where the premise is not contradictory and the conclusion not 
tautologous, as a consequence of the Craig Interpolation Theorem. That theorem says that, 
except in the degenerate cases just excluded, if α  γ, then there is a β, called an 
interpolant, such that α  β and β  γ, and every atom appearing in β appears both in α and 
in γ.
Actually, something still stronger is true, which it will be useful for future purposes to note 
now. We may distinguish, among the appearances of an atom p in an elementary formula 
α, the positive from the negative. When α is just the 
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atomic formula p itself, the one and only appearance of p is positive. The positive 
appearances of p in α  β and in α V β are just the positive appearances in α together with 
the positive appearances in β; and similarly for negative appearances. Finally, the positive 
appearances in α are the negative appearances in α and vice versa. Thus in the premise 
(p V q)  p of disjunctive syllogism, the first appearance of p is positive and the second 
negative, while the only occurrence of q is positive. The Lyndon Interpolation Theorem 
tells us that in the Craig Interpolation Theorem the interpolant β may actually be so chosen 
that the only atoms occurring positively in β are ones appearing positively both in α and in 
γ, and similarly for negative appearances.
Thus classical entailment does guarantee a bare minimum and more than a bare minimum 
of "relevance," except in the two degenerate cases. Relevantists will not allow those 
exceptions, and wish to insist in all cases on premise and conclusion having one or more 
atoms in common. Atoms being also called "sentential" (or "propositional") "variables" (or 
"letters"), the requirment of atoms in common is often referred to as the variable-sharing 
requirement.



The classical criterion of validity—that by virtue of logical form alone, if the premise is (or 
the premises all are) true, then so is the conclusion—is often call truth-preservation. 
Relevantists have sometimes written in a way that might suggest to the reader that they 
hold a "two-factor" theory of entailment according to which what is required for a genuine 
entailment is just the presence of both these features, truth-preservation and variable-
sharing; but in fact relevantists generally hold no such a theory. Variable-sharing all by 
itself (as the sole addition to truth-preservation) is not enough to satisfy relevantists, who 
generally reject, for instance, the following version of (A): 
(A4) (p  p) V r  q V r. 
Here the addition of the disjunct r to both sides of (A1) results in the variable-sharing 
condition being fulfilled, but fundamentally we still have truth-preservation here only 
because the first disjunct in the premise is contradictory. What relevantists really want is 
not just that variable-sharing should be present alongside truth-preservation, but that it 
should be variable-sharing that underlies truth-preservation, so to speak.
One case where variable-sharing must be what underlies truth-preservation is of course 
where the premise is not a contradiction and the conclusion not a tautology. One cannot, 
however, accept as correct laws of logic only those classical entailments α  β where α is 
noncontradictory and β nontautologous. This is because formulas and entailments 
involving formulas are supposed to hold in all instances, no matter what is put in for p and 
q and r and so on. On the formal level, this understanding is represented by the rule of 
substitution, to the effect that if 
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α  β and α′ and β′ are obtained from α and β by substituting formulas π 1 , … , π k for 
atoms p 1 , … , p k , then α′  β′. Thus, from the entailment α  β  α, which even 
relevantists accept, it follows there follows the entailment α  α  α, despite the fact that 
the premise in this case is contradictory. Similary, β  β V β.
One school of relevantists, however, takes examples of the kind we have just been 
discussing to be the only exceptions to the rule that the premise must not be contradictory 
and the conclusion must not be tautologous. To state the position more precisely, call an 
entailment α  β perfect—or "as good as an argument can be on formal grounds"—if it 
holds classically and α is not contradictory and β is not tautologous; and call it perfectible 
if it is obtainable by substitution from a perfect entailment. The school of relevantists we 
have in mind take the acceptable entailments to be precisely the perfectible ones. This 
position involves rejection of transitivity of entailment, since in the second version of the 
Lewis argument above (C4) and (D2) are easily seen to be perfectible, while (A1) is not.
There is some question of how this perfectionist criterion should be extended to arguments 
with multiple premises, and in the literature arguments with multiple conclusions have also 
been considered. Classically, a sequent 



α 1 ,  …  , α m   β 1 ,  …  , β n 

is taken to hold if logical form guarantees that either at least one of the premises α i is false 
or at least one of the conclusions β i is true. Note that the multiple premises are being taken 
conjointly, and the conclusions alternatively. That is, classically the sequent holds if the 
simple one-premise, one-conclusion entailment 

α 1    …   α m   β 1  V  …  V β n 

holds.

These definitions are to be understood in such a way that, as a special case, if the set of 
conclusions β is empty, then 

α 1    …   α m   Ø 

holds if and only if the α i are contradictory taken conjointly, and in particular 

α   

holds if α is contradictory. Similarly, 

  β 
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holds if β is tautologous, and when 

  β 1  V  …  V β n , 

we may say that the β j are tautologous (taken alternatively).
Now one way to extend the one-premise, one-conclusion version of the perfectionist 
criterion would be to take 

α 1 ,  …  , α m   β 1 ,  …  , β n 

to be perfectible and acceptable if and only if 



α 1    …   α m   β 1  V  …  V β n 

is. But there is a different, and in some respects more natural, way to carry out the 
extension. If we look again at the above definitions, we see that 

α  β 

is perfect if and only if it holds classically while 

α  Ø 

and 

Ø  β 

do not. Generalizing, we may take 

α 1 ,  …  , α m   β 1 ,  …  , β n 

to be perfect if it holds classically, but no longer does so if the left-hand side is replaced by 
any proper subset of the α i or the right-hand side by any proper subset of the β j. We may 
then define the sequent to be perfectible if it is obtainable by substitution from a sequent 
that is perfect in the sense just indicated. This is Tennant's perfectionist logic, at the 
sentential level (see chapter 23 above).
Tennant's logic is decidable, at the sentential level. For note, first, that if a formula 
involves n sentence and connective and punctuation signs altogether, then any formula of 
which it is a substitution instance involves no more than n such signs. Note further that if a 
formula involves no more than m such signs and no more than k sentence letters, the 
formula is a substitution instance of a 
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formula involving no more than m such signs and involving no sentence letters beyond the 
first k. Note further that there are only finitely many formulas having no more than m signs 
and no sentence letters beyond the first k. Note finally that this observation generalizes to 
sets of formulas. So for given sets of α i and β j , in seeking to determine whether the 
sequent having the former as premises and the latter as conclusions holds only finitely 
many pairs of other sets of sentences need to be evaluated classically (which may be done 
by truth tables or otherwise).



The main advantage of working with sequents is that though transitivity fails for 
perfectionist logic in the sense that 

α 1 ,  …  , α m   β 1 ,  …  , β n 

and 

β 1 ,  …  , β n   γ 1 ,  …  , γ k 

may be perfectible while 

α 1 ,  …  , α m   γ 1 ,  …  , γ k 

is not, nonetheless one can develop (meta-)rules for passing from sequents taken as 
"premises" to a sequent taken as "conclusion," and the operation of these (meta-)rules is 
transitive. One has transitivity "one level up," so to speak. This makes it possible to 
represent perfectionist logic as a deductive system comparable to the deductive system for 
classical logic when the latter is developed in "sequent calculus" or Gentzen style.
Now in every branch of mathematics, axioms are assumed, various combinations of them 
are used to obtain lemmas, various combinations of axioms and lemmas are used to obtain 
theorems, various combinations of axioms and lemmas and theorems are used to obtain 
corollaries, and all the lemmas and theorems and corollaries are taken to follow from the 
axiom set initially assumed, as well as from any larger axiom set subsequently assumed. 
These are the facts that show that mathematicians treat entailment as transitive. And if we 
are concerned only with the question of whether classical logic correctly describes 
orthodox mathematical practice, any position rejecting transitivity would have to be 
rejected for this reason alone.
Nonetheless, a revisionist version of perfectionism, according to which, though 
mathematicians in practice do give "proofs" relying on transitivity, they in principle ought  
not to do so, might be thought to have certain attractions in view of some formal results of 
Tennant's. For Tennant seems to show that though orthodox mathematicians make moves 
in "proofs" not directly representable by sequent-calculus derivations in his system, if one 
is concerned only with provability 
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and not directly with proof, there is no great loss.6 It is not quite true that every classical 
"proof" can be replaced by a perfectionist "proof," leaving the class of conclusions 
provable from given premises unchanged; but something quite close to this, and quite 
attractive, does hold.



Let us try to describe Tennant's result more precisely. For a given set 

A = α 1 ,  …  , α m 

of premises and a given conclusion β, a mathematician's proof of a theorem whose logical 
form is represented by β from a set of premises whose logical form is represented by A can 
fairly routinely be represented by a derivation of A  β in a sequent-calculus version of 
classical logic with the Cut rule (a version of transitivity). By the Cut Elimination Theorem 
of Gentzen, the uses of Cut can in principle be eliminated. Then Tennant shows how to 
transform a Cut-free classical derivation of A  β into a derivation in his perfectionist 
system.
The result this two-step transformation is not always a derivation in the perfectionist 
system showing that A  β? holds perfectionistically. This could or can fail in two 
situations. If A were inconsistent, A  β might fail perfectionistically, and if it did, the result 
of the two-step transformation would be a derivation showing that A . If the original 
hypotheses are not all needed, A  β may fail perfectionistically, and if it does, the result of 
the two-step transformation will be a derivation showing that A′  β for some proper subset 
A′ of A. Since ultimately the mathematician is interested in proving results from consistent 
axioms and from the fewest of those possible, Tennant's result seems to say that nothing, or 
next to nothing, is lost by switching from classical logic to perfectionist logic: where a 
classical entailment is rejected, perfectionism supplies an improvement.
There is, however, a difficulty here. Transitivity, as noted above, is involved whenever a 
lemma is deduced from axioms and a theorem then deduced from the lemma, and claimed 
to follow from the axioms, and is thus ubiquitous in ordinary mathematical proofs. When 
these proofs are formalized in sequent calculus, instances of transitivity become instances 
of Cut. Obtaining perfectionist replacements for the proofs would require first eliminating 
Cut. But in general, Cut can be eliminated only at the cost of making proofs infeasibly 
long.7 So even though in principle almost anything classically provable will be 
perfectionistically provable or else something even better will be, in practice the proofs 
mathematicians actually give not only do fail to adhere to the restrictions of perfectionism, 
but must do so if they are to be kept to a humanly comprehensible length.
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The perfectionist might reply that in practice mathematicians could go on working as they 
do now, since Tennant's work shows that in principle everything, or almost everything, 
they are doing could be justified from a perfectionist standpoint. The trouble with this 
response is that it relies on a theorem—Tennant's result described above—for which only a 
classically and not a perfectionistically acceptable "proof" has been given. How far can a 
logician who professes to hold that perfectionism is the correct criterion of valid argument, 



but who freely accepts and offers standard mathematical proofs, in particular for theorems 
about perfectionist logic itself, be regarded as sincere or serious in objecting to classical 
logic? This question will be left to the reader to ponder, as we turn to consideration of the 
one remaining relevantist option, rejection of disjunctive syllogism.

4. The Option of Rejecting Disjunctive Syllogism: Stringency

The very simplest elementary entailments are perhaps those of the form 

( )p 1    …   ( )p m   ( )q 1  V  …  V ( )q n , 

where the premise is a conjunction, and the conclusion a disjunction, of plain or negated 
atomic formulas or sentence letters. These may be called proto-elementary. Classically, a 
proto-elementary entailment holds in three cases: 

(I)  Some atom occurs with the same sign in both premise and conclusion. 
(II)  Some atom occurs both plain and negated in the premise. 

(III)  Some atom occurs both plain and negated in the conclusion. 

Here (I) means that either some atom occurs positively or plain in both, or that some atom 
appears negatively or negated in both. Perfectionist logic does not recognize cases (II) and 
(III), and takes (I) to be a necessary and sufficient condition for the entailment to hold. The 
major school rejecting Disjunctive Syllogism, "relevance" or "relevant" logic, adheres to 
the same criterion for proto-elementary entailments, but arrives at different results about 
more general elementary entailments, including Disjunctive Syllogism.
Since the roots of "relevance" or "relevant" logic are traced back by the logicians of that 
school itself to Wilhelm Ackermann,8 we may sidestep the "relevance"/"relevant" 
terminological problem by adopting (a suitable English translation of) Ackermann's label 
for the kind of logic in question. Ackermann, writing in German, 
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called his system strenge Implikation. Now though this was intended as a translation of 
Lewis's label "strict implication," Ackermann's system is very different from any of those 
considered by Lewis. So in translating his German back into English, we may use a 
different word than "strict," namely, "stringent."



The first (historically earliest) formulation of the stringency criterion for general 
elementary entailments was based on an alternative to truth tables as a method for testing 
classical elementary entailment. The classical method has four steps: 

(i)
  
Repeatedly apply the double negation and De Morgan laws of classical sentential 
logic, which stringent logicians accept, to replace subformulas 

α by α 
(α  β) by α V β 
(α V β) by α  β 

so as to reduce premise and conclusion to formulas built up from plain and negated 
atoms by conjunction and disjunction. 

(ii) 
 
Similarly apply the distributive laws of classical sentential logic, which stringent 
logicians also accept, to replace subformulas 

α  (β V γ) by (α  β) V (α  γ) 
(α V β)  γ by (α  γ) V (β  γ) 

in the premise and subformulas 

α V (β  γ) by (α V β)   (α V γ) 
(α  β) V γ by (α V γ)  (β V γ) 

in the conclusion, so as to reduce the premise to the form 

α 1  V α 2  V  …  

and the conclusion to the form 

β 1   β 2    …  

where each α i is a conjunction of, and each β j is a disjunction of, plain and negated 
atomic formulas. 

(iii) 
 
Apply the laws of disjunction elimination and conjunction introduction of classical 
sentential logic, which stringent logicians also accept, to reduce the question of 
whether the premise entails the 
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 conclusion to the question of whether each α i entails each β j , a question of proto-
elementary entailment. 

(iv)  Apply the classical criteria (I), (II), (III) to answer these questions of proto-
elementary entailment. 
Stringent logic's departure from classicism occurs only at the last step here, where 
instead of (iv) one would have 

(iv*) 
 
Apply the criterion (I) to answer the questions of proto-elementary entailment. 

To illustrate the process, consider Disjunctive Syllogism 

(D2) (p V q)  p  q. 

At step (i) there is nothing to do. At step (ii) we get 

(p  p) V (q  p)  q 

At step (iii) we get two entailments to consider: 

p  p  q 
q  p  q. 

The latter is acceptable by (I), but the former, though acceptable classically by (II), is 
rejected by stringent logicians; so (D2) is rejected.

For another example, consider the dual to Disjunctive Syllogism
 
(D2*) (p  q)  p  q. 

At step (i) we get 

( p V q)  p  q. 

At step (ii) we get 



( p  p) V ( q  p)  q. 

At step (iii) we get 

p  p  q 
q  p  q. 
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And again the latter holds stringently, but the former holds only classically, not stringently; 
so (D2*) is rejected.
Now it seems that Disjunctive Syllogism (D2), and for that matter its dual (D2*), are used 
ubiquitously in mathematics—and not just in mathematics, either.9 If this is so, then 
stringency fails as a descriptive criticism of classical logic. However, at this point we must 
take note of an option alluded to earlier, that of claiming that the apparent instances of 
(D2) in mathematical proofs are really instances of something else: 
(D2†) (p + q)  p  q, 
where + is an intensional disjunction, stronger than mere V.
The claim that "or" often means something stronger than V has been advanced many times 
on many different grounds. And certainly, whenever a mathematician or whoever seriously 
wants to argue by Disjunctive Syllogism from "p or q" and "not p" to q, the reasoner will 
be in a position to say something stronger than just "p V q." Namely, something like, 
"p V q and my present grounds for this assertion are not just the knowledge or assumption 
that p or the knowledge or assumption that q." For on the one hand, if the reasoner already 
knows q, there is no need to infer q by Disjunctive Syllogism or in any other way; while on 
the other hand, if the reasoner is assuming p to get p V q, presumably the same reasoner 
will not also at the same time want to be assuming p, the other premise needed for an 
application of Disjunctive Syllogism.
But note that the "something extra" over and above p V q is purely subjective and may 
consist of nothing but a state of ignorance on the part of the mathematician or whomever. 
The reasoner may have established p V q yesterday by inferring it from q, and yet today 
recall only that p V q has been established, and not how. Such a reasoner can still say, "My 
present grounds for p V q are not simply knowledge that p or knowledge that q," for the 
reasoner's grounds are, rather, an imperfect memory of having somehow established p V q.
Indeed, the reasoner may even remember that it was either by inference from p or by 
inference from q, without recalling which. If the reasoner is now satisfied that "not p," then 
the inference by Disjunctive Syllogism may be a way of recovering the knowledge that has 
been forgotten, since then the inference must have been from q and not from p.



In mathematics, a later mathematician may start from the case P(0) V Q(0) of an earlier 
mathematician's theorem that n(P(n) V Q(n)) and establish P(0), and so establish Q(0). 
And the later mathematician may do so without remembering (and, indeed, without ever 
having known) what the earlier mathematician's 
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proof of n(P(n) V Q(n)) was. (Indeed, that proof may even have been an induction 
starting by inferring P(0) V Q(0) from Q(0). In that case, the later mathematician's 
inference that Q(0) is not new to mathematics, but only to him- or herself; but that does not 
make the inference invalid.)
This issue has been extensively discussed in the literature, and the "intensional disjunction" 
option for defending stringency as a descriptive criticism of classical logic has, it seems, 
been pretty well given up.10 The basic implausibility of this strategy ought to have been 
apparent from the fact that those who use it are committed not only to rejecting Disjunctive 
Syllogism (D2) but also to rejecting the dual version (D2*); and to defend the latter 
rejection along the same lines as the former, one would need to make the dual claim that 
there are both an extensional and an intensional · conjunction, with the latter weaker than 
the former. But whatever plausibility may attach to the suggestion that there is a sense of 
"or" stronger than V, in which p does not entail "p or q," none at all attaches to the dual 
suggestion that there is a sense of "and" weaker than , in which "p and q" does not entail 
p.

5. "By Faith Unfaithful Kept Falsely True"

There remain to be considered some historically more recent rationales for stringency, 
based on certain equivalent formulations of the stringency criterion that are technically 
more convenient to work with than the original version given in the preceding section. 
Suppose the formulas of concern involve atoms p 1 , p 2 , p 3 , . … Let us then introduce 
new atoms q 1 , q 2 , q 3 , … and r 1 , r 2 , r 3 , . … For elementary α involving only p atoms, 
let α* (respectively *α) be the result of replacing each positive occurrence of p i with the 
corresponding q i (respectively r i ) and each negative occurrence with the corresponding r i 

(respectively q i ). The second formulation of the stringency criterion is: To test if  
elementary α stringently entails elementary β, test if α* classically entails β* (or 
equivalently, if *α classically entails *β; or, equivalently and more symmetrically, if both).
The second formulation of the criterion can be obtained from the first by looking at matters 
from from a classical point of view. From that point of view, ignoring (II) and (III) when 
testing for proto-elementary entailment amounts to 
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forgetting that p and p are an atom and the negation of the same atom, and treating them 
as if they were just one atom q and the negation r of some other atom. More formally, 
performing step (iv*) in the first criterion amounts to first performing the *-substitution of 
the second formulation and then performing the step (iv) of evaluating the proto-
elementary entailment resulting by the classical criterion (because the *-substitution 
prevents cases (II) and (III), which distinguish (iv) from (iv*) from arising).
But now it is readily checked that each of the laws used at steps (i), (ii), and (iii) is such 
that the result of first applying the law and then making the *-substitution or first making 
the *-substitution and then applying the law is the same. For instance, for double negation 
one has ( α)* = (α*). So instead of performing (i), (ii), (iii), *, (iv), one could perform 
(i), (ii), *, (iii), (iv) or (i), *, (ii), (iii), (iv) or *, (i), (ii), (iii), (iv). Since any other test for 
classical entailment would yield the same result as the test consisting in performing steps 
(i), (ii), (iii), (iv), the whole amounts simply to performing the *-substitution and testing by  
one method or another for classical entailment, which is the second formulation of the 
criterion. (This remains so whether "the *-substitution" means substituting q-atoms for 
positive and r-atoms for negative occurrences, or the reverse. Hence the parenthetical 
clause at the end of the second formulation.)
The second formulation shows that if α stringently entails β, then α perfectibly entails β. 
For if α stringently entails β, then α* classically entails β*; and since a formula like α* or 
β*, in which no atom occurs both positively or negatively, cannot be unsatisfiable or 
tautologous, because it can always be valued true (respectively, false) by so valuing the 
atoms that occur positively (respectively, negatively) and valuing oppositely the other 
atoms, it follows that α* perfectly entails β*; and since α and β are obtainable by 
substitution, namely of each p i for both q i and r i , from α* and β*, it follows that α 
perfectibly entails β.
The second formulation shows that substitution holds for stringent entailment. For suppose 
α stringently entails β, so that α* classically entails β*, and consider the result of 
substituting a formula π for an atom p in α and β to obtain γ and δ, respectively. A little 
thought shows that the result of performing the *-substition to obtain γ* and δ* is the same 
as the result of substituting π* for q and *π for r in α* and β*, and hence γ* classically 
entails δ*, and γ stringently entails δ.
The second formulation also shows that transitivity of entailment or hypothetical syllogism 
holds stringently. For if α stringently entails β, which stringently entails γ, then α* 
classically entails β*, which classically entails γ*; thus α* classically entails γ* and α 
stringently entails γ.



At this point it is possible to make various "cosmetic" changes in the presentation of the 
second stringency criterion. A Routley-Routley valuation or Sylvan-Plumwood valuation or 
double valuation is a pair (V*,*V) of assignments 
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to atoms of truth-values, 1 for true and 0 for false, extended to compound formulas by the 
following recursion equations. 

(V*( α),*V( α)) = (1-*V(α), 1-V*(α)) 
(V*(α  β),*V(α  β)) = (min(V*(α), *V(β)), min(V*(α), *V(β))) 
(V*(α V β),*V(α V β)) = (max(V*(α), *V(β)), max(V*(α), *V(β))) 

Then β is a (right) double consequence of α if V*(α) ≠ V*(β) in all double valuations (and a 
left double consequence if *V(α) ≠ *V(β), and a symmetrical dialectical consequence if 
both). A third formulation of the stringency criterion is: To test if elementary α stringently  
entails elementary β, test if β is a (right) double consequence of α (or equivalently, a left  
double consequence, or equivalently a symmetrical double consequence).
The third formulation of the criterion can be obtained from the second by camouflaging the 
role of the q-atoms and r-atoms. The second formulation says to test whether for all 
valuations V of the q-atoms and r-atoms, extended classically to compound formulas, it is 
the case that V(α*) ≠ V(β*). Take a valuation V of q-atoms and r-atoms and a pair (V*,*V) 
of valuations of p-atoms to correspond if for all p i one has V*(p i ) = V(p i *) = V(q i ) and 
*V(p i ) = V(*p i ) = V(r i ). Observe, first, that every V corresponds to exactly one (V*,*V) 
and vice versa. Observe, second, that one will have V*(α) = V(α*) and *V(α) = V(*α) not 
just for atoms but for all elementary α if one extends the pair (V*,*V) to molecules by the 
above recursion equations for , , and V, which are nonclassical for because it reverses 
positive and negative occurrences, and classical for and V because they preserve positive 
and negative occurrences. These observations together establish the equivalence of the 
second and third formulations of the criterion (with the parenthetical clause at the end of 
the second corresponding to the parenthetical clause at the end of the third).
A fourth formulation can be obtained by sensationalizing the third. A dialectical valuation 
is an assignment V to atoms of a subset of the set {0,1} of classical truth-values, which 
may be {1} or true and unfalse, or may be {0} or false and untrue, or may be Ø or untrue  
and unfalse, or may be {0,1} or true and false, extended to molecules by the following 
recursion conditions:11 

0  V( α) iff 1  V(α) 
1  V( α) iff 0  V(α) 
0  V(α  β) iff 0  V(α) or 0  V(β) 



1  V(α  β) iff 1  V(α) and 1  V(β) 
0  V(α V β) iff 0  V(α) and 0  V(β) 
1  V(α V β) iff 1  V(α) or 1  V(β) 
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Then β is a (right) dialectical consequence of α if for any dialectical valuation, if 1 is 
among the values of α, then 1 is among the values of β (and a left dialectical consequence 
if whenever 0 is among the values of β, then 0 is among the values of α; and a symmetrical  
double consequence if both). A fourth formulation of the stringency criterion is: To test if  
elementary α stringently entails elementary β, test if β is a (right) dialectical consequence  
of α (or equivalently, a left dialectical consequence, or equivalently a symmetrical  
dialectical consequence).
The fourth formulation can be related to the third as follows. Take a dialectical valuation V 
and a double valuation (V*,*V) to correspond if and only if for all atomic α one has 1  
V(α) if and only if V*(α) = 1 and 0  V(α) if and only if *V(α) = 1, so that V* says whether 
something is true or untrue, and *V whether something is unfalse or false. Then it can be 
observed that every dialectical valuation corresponds to exactly one double valuation and 
vice versa. And, comparing the two sets of recursion equations, it can be observed that the 
condition on atomic α defining correspondence actually holds for all α. This suffices to 
establish the equivalence of the third and fourth formulations (with the parenthetical clause 
at the end of third corresponding to the parenthetical clause at the end of the fourth).
Further ringing of changes is possible, but with the dialectical valuations we have come as 
far as we need to for present purposes. Note that with the last formulation, the notion that 
there is some subject-matter overlap requirement additional to truth-preservation has 
wholly dropped out, and entailment has become just truth-preservation for the enlarged set 
of four rather than the classical set of two truth-values. (By contrast, it can be shown that 
perfectionist logic is not a finite-valued logic.) This is one reason why some feel it 
inappropriate to call stringent logic "relevance logic" or "the logical of relevance." On the 
other hand, attractive as it may be to relevantists to call their logic "relevant logic" and 
classical logic an "irrelevant logic," this terminology is objectionable in the same way as 
would be a proposal to call Brouwer's logic "intuitive logic" and classical logic 
"counterintuitive logic".
Various rationales for stringency based on the alternate formulations have been advanced 
by various logicians with varying degrees of commitment, all based on the notion that 
something can be both true and false. This notion is understood by moderates in a 
figurative or imaginary sense, as "epistemic" truth according to a database or information 
corpus or belief system or whatnot; it is understood by radicals in a literal or real sense as 
"metaphysical" truth-in-the-world. In a terminology introduced earlier, to rely on the 



moderate's notion as a rationale would in effect amount to adopting a compatibilist position 
(though in actual fact the primary exposition of the moderate position was not 
accompanied 
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by a retraction of the authors' previous criticisms of classical logic); while to rely on the 
radical's notion as a rationale would in effect amount to adopting a revisionist position 
(though in actual fact, enunciations of this view have not been followed by much work on 
revising "proofs" of metatheorems about "relevance" or "relevant" logics that rely on 
Disjunctive Syllogism).
The moderate idea is the basis for a suggestion about the potential utility of relevantism. 
The background is as follows. In ancient history, logic arose in a context of public debate 
in which argument was used at least as much for purposes of refutation as for purposes of 
demonstration: The recognition that a previously accepted premise entails some previously 
not accepted conclusion was taken to be grounds for ceasing to accept the premise at least 
as often as it was taken to be grounds for beginning to accept the conclusion. (This fact 
doubtless facilitated the recognition that logical validity of an argument is not simply a 
matter of truth or falsehood of premise or conclusion.) The critical faculty of being able to 
use the recognition of logical relationships thus in the reverse direction, like the more basic 
critical faculty of being able to reject some of what one is told, is an essential feature of 
natural intelligence. But it is a feature that "artificial intelligence" may not find it 
technically feasible to imitate in the foreseeable future.
In designing a computer to answer questions by inference from a database of things it has 
been told, allowance may have to be made for the fact that perhaps the computer cannot in 
the present state of the art be designed to reject any of its database (even when same item 
has been both said to be true and said to be false), or to use recognition of classical logical 
entailment relations between an accepted premise and an unaccepted conclusion as 
grounds for rejecting the premise (even when the conclusion has no overlap of subject 
matter with the premises, so that by the classical interpolation theorem, unless the 
conclusion is tautologous—in which case it is deducible even without the premise—the 
premise must be inconsistent). The computer, so to speak, may not be able to exhibit 
anything worthy of being called artificial intelligence, but only a kind of artificial 
bureaucratic stupidity. If so, it may well be appropriate not to allow such a computer to 
recognize all classical entailments, and it may even be appropriate to allow such a 
computer to recognize all and only stringent entailments.12 
The classical response to this suggestion has a positive aspect, the acknowledgment that 
thus nonliterally interpreted stringent logic may well be useful in the manner described: 
that is for specialists in computer science to say. It also has a negative aspect, the insistence 



that the entailment relations it would be appropriate to allow a computer with limitations  
of the kind described to recognize are not the 
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only entailment relations that hold, and that the possible usefulness of stringent logic for 
the kind of application in question in no way sustains any relevantist criticism of classical 
logic.
The radical idea is that classical logic fails for the simplest reason, namely, that it is not 
truth-preserving, because there are cases where a premise of form α  α is true, while not 
every conclusion β is true.13 Tradition is scoured for examples of truths of the form α  α: 
Epimenides ("What I am now saying is false"), Heraclitus ("The way up and the way down 
are the same"), Zeno ("The arrow is both in motion and at rest"), Athanasius ("God is both 
one and three"), Leibniz ("Infinitesimals are both distinct from zero and less than anything 
greater than zero"), Kant ("Space and time are infinite in extent and divisibility, and space 
and time are finite in extent and divisibility"), Hegel-Marx-Engels-Lenin-Stalin-Mao 
("There is contradiction in all things"), Meinong ("The round square is as surely round as it 
is square"), Russell ("The set of non-self-elements is a self-element and a non-self-
element"), Bohr ("Waves are particles, and vice versa"), and others are canvassed.
The classical response, when there has been one—for some principles are so fundamental 
that there can hardly be non-question-begging argument about them, and many would hold 
that the law of noncontradiction is one of these14 —has most often been that of Wellington 
("If you can believe that, you can believe anything").
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25.Higher-order Logic
Stewart Shapiro 

… our definition of the [standard second-order] consequences of a system of 
postulates … can be seen to be not essentially different from [that] required for 
the … treatment of classical mathematics. … It is true that the non-effective notion of 
consequence, as we have introduced it … presupposes a certain absolute notion of ALL 
propositional functions of individuals. But this is presupposed also in classical 
mathematics, especially classical analysis.  … 
Church [1956, 326n] 

Formal languages typically have variables that (purport to) range over some objects. These 
are called first-order variables, and the collection of objects they range over is called the 
"domain of discourse." Second-order variables range over properties, classes, relations, or 
functions of the items in the domain of discourse. Third-order variables range over 
properties, or relations, or functions on the items in the range of the second-order variables. 
And so on. A formal language is first-order if it contains first-order variables, and no 
others. A language is second-order if it contains first-order and second-order variables, and 
no others. And on it goes. A language is higher-order if it is at least second-order. Second-
order logic is the logic of second-order languages, and higher-order logic is the logic of 
higher-order languages. To make a bad joke, if we could agree on what logic is, we would 
then be about done with our topic of higher-order logic. Stay tuned.
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It is not an exaggeration to say that first-order logic is the paradigm of contemporary 
logical theory. The vast majority of the works in both philosophical and mathematical logic 
concern first-order languages exclusively. Most textbooks do not mention higher-order 
logic at all, and most of the rest give it scant treatment. In contrast, just about all of the 
central work that launched contemporary logic around the turn of the twentieth century 
concerns higher-order formal languages. Examples include Frege [1879], Peano [1889], 
and Whitehead and Russell [1910]. First-order logic appeared as a distinctive study only 
when some authors, beginning with Löwenheim [1915], separated out first-order languages 
as subsystems for special treatment. Early twentieth-century logicians often referred to the 
deductive system of first-order logic as the "restricted functional calculus." For more on 



the historical emergence of first-order logic, see Moore [1980], [1988], Shapiro [1991, ch. 
7], and Eklund [1996].
The philosophical literature contains numerous claims on behalf of and numerous claims 
against higher-order logic. Virtually all of the issues apply to second-order logic (vis-à-vis 
first-order logic), so we will focus on that here. In this chapter, I develop the syntax of 
second-order languages and present typical deductive systems and model-theoretic 
semantics for them. This will help to explain the role of higher-order logic in the 
philosophy of mathematics. I assume that the reader has at least a passing familiarity with 
the theory and metatheory of first-order logic.

1.  Formal Languages

Let K be a set of nonlogical terminology. We will consider formal languages built on such 
sets. In arithmetic, for example, the relevant set would be {0,s,+,·}, the symbols for zero, 
successor, addition, and multiplication.
To establish notation, let us begin with the first-order language L1K. First-order variables 
are lower-case letters near the end of the alphabet, with or without numerical subscripts. 
The connectives are negation ¬, conjunction &, disjunction V, material implication →, and 
material biconditional ≡. The language has a universal quantifier and an existential 
quantifier . A sentence is a formula without free variables, and a theory is a set of 
formulas.
The first-order language with identity L1K= is obtained from L1K by adding a binary 
relation symbol =. The identity symbol is regarded as logical and so is not in K. If t and u 
are terms, then we abbreviate ¬t = u as t ≠ u.
The language L2K is obtained from L1K (not L1K=) by adding a stock of (second-order) 
relation variables and function variables. Relation variables are uppercase Roman letters 
from the end of the alphabet, with or without numerical 
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subscripts. Function variables are letters like f, g, and h, with or without numerical 
subscripts. To be pedantic, we should use a superscript to indicate the degree, or number of 
places, of each second-order variable: X1 is a monadic predicate variable; f2 is a binary 
function variable, and so on. If the context determines the degree of a variable, we usually 
omit the superscript.

There are four new formation rules:1 
If fn is an n-place function variable and t 1 , … , t n are terms, then fnt 1  … t n is a term. 



If Rn is an n-place relation variable and t 1 , … , t n are terms, then Rnt 1  … t n is an atomic 
formula. 
If Φ is a formula and V a relation variable, then VΦ and VΦ are a formulas. 
If Φ is a formula and f a function variable, then fΦ and fΦ are formulas. 

Thus, for example, X x¬Xx asserts the existence of a property that applies to no objects.
The symbol for identity between (first-order) objects is introduced as an abbreviation, 

t = u: X(Xt ≡ Xu), 

in which t and u are terms. This is not meant as a deep philosophical thesis concerning the 
nature of Identity. If she wishes, the reader is free to add a primitive, logical identity 
symbol, as in L1K=.
Incidentally, it is not necessary to include separate variables for functions, since a given n-
place function can be represented by an n + 1-place relation. For example, instead of a 
monadic function f, we can use a binary relation variable R2, adding the clause x y
z(R2xz ≡ y = z). We include variables for functions only as a convenience.
I do not include a symbol for identity between second-order items like relations and 
functions, mostly because I do not wish to engage issues concerning the nature and 
individuation of these items—or at least I wish to postpone such issues. For the time being, 
one can think of the higher-order items as intensional entities like properties or 
propositional functions, or one can think of them as extensional entities like classes or sets. 
I will use words like "property," "class," and "set" interchangeably, although we will 
briefly return to this issue in section 5 below, when we get to more philosophical matters.
Whitehead and Russell [1910] argued that intensional entities must be defined or 
constructed in levels, so that properties defined at a given level become available 
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for use in definitions at later levels. Say that a relation is of level 0 if it can be defined 
without referring to relations. For each natural number n, a relation is of level n + 1 if it is 
not of level n, but can be defined with reference to level n relations only. To develop this 
ramified type theory, each second-order variable is marked somehow to indicate its level. 
We do not pursue this here, except by way of brief comparison (see Hazen [1983] for a 
readable development).2 
We can expand the set K to include so-called higher-order nonlogical constants, terms that 
stand for such items as properties (or sets) of properties, or functions on properties. An 
example would be a property TWO of properties such that TWO(P) holds just in case P 
applies to exactly two things. The logicist and neologicist programs (see chapters 5 and 6 



of this volume) invoke constants that denote functions from properties to objects. Each 
abstraction principle includes at least one such constant.
A third-order language L3K is constructed from L2K by adding third-order variables for 
relations on relations, functions of predicates, functions of functions, and so on. Then one 
could add nonlogical constants (to K) for relations on functions of predicates, and the like. 
Then one could add fourth-order variables ranging over such things, thus producing a 
fourth-order language, and so on. As noted above, no new conceptual issues arise, and we 
do not directly pursue such languages here.

2.  Deductive System

I assume that the reader is familiar with deductive systems for first-order languages, and 
will present an extension of one such system to our second-order languages I2K. It is 
straightforward to adapt the usual axioms or rules of inference for the quantifiers. In a 
natural deduction system (which allows formulas with free variables in deductions), the 
introduction and elimination rules for the higher-order quantifiers are: 

E From XnΦ(Xn) infer Φ(T), where T is either an n-place relation variable free for Xn in 
Φ, or an n-place relation letter in the set K of 
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nonlogical terminology. The conclusion Φ(T) depends on whatever premises XnΦ(Xn) 
depends on. 
From fnΦ(fn) infer Φ(g), where g is either an n-place function variable free for fn in Φ, or 
an n-place function letter in the set K of nonlogical terminology. The conclusion Φ(g) 
depends on whatever premises fnΦ(fn) depends on. 

I From Φ infer XΦ, provided that X does not occur in any premise on which Φ depends. 
The conclusion XΦ depends on whatever premises Φ depends on. 
From Φ infer fΦ, provided that f does not occur in any premise on which Φ depends. The 
conclusion fΦ depends on whatever premises Φ depends on. 
E If one can infer a conclusion Φ from an assumption Ψ, then one can infer Φ from XΨ, 
provided that X does not occur free in Φ or in any premise on which Φ depends. The final 
conclusion depends on whatever premises XΨ and Φ depend on, except Ψ. 
If one can infer a conclusion Φ from an assumption Ψ, then one can infer Φ from fΨ, 
provided that f does not occur free in Φ or in any premise on which Φ depends. The final 
conclusion depends on whatever premises XΨ and Φ depend on, except Ψ. 



I From Φ(T) infer XnΦ, where T is either an n-place relation variable free for Xn in Φ, or 
an n-place relation letter in the set K of nonlogical terminology. The conclusion XnΦ 
depends on whatever premises Φ(T) depends on. 
From Φ(g) infer fnΦ, where g is either an n-place function variable free for fn in Φ, or an n-
place function letter in the set K of nonlogical terminology. The conclusion fnΦ depends 
on whatever premises Φ(g) depends on. 
The next item is the comprehension scheme. For each formula Φ in L2K and each relation 
variable Xn, the following is an axiom: 

Xn x 1  … x n (Xnx 1  … x n  ≡ Φ), 

provided that Xn does not occur free in Φ. Taken together, the instances of the 
comprehension scheme register the thesis that every formula determines a relation or, more 
precisely, for every formula there is a relation with the same extension. In a deductive 
system for ramified type theory, the embedded formula Φ should not contain any bound 
variables whose level is the same as or greater than the level of the introduced variable Xn.

The final item is a form of the axiom of choice: 

Xn+1( x 1  … x n yXn+1x 1  … x n y → fn x 1  … x n Xn+1x 1  … x n fx 1  … x n ). 

The antecedent of the embedded conditional asserts that for each sequence x 1 , … , x n 

there is at least one y such that the sequence x 1 , … , x n , y satisfies Xn+1. The consequent 
asserts the existence of a function that "picks out" one such y for each x 1 , … , x n .
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The reader who has qualms about calling the axiom of choice a principle of logic can drop 
it from the system. As above, one alternative is to eliminate variables from the system 
altogether. If our gentle reader who demurs from the axiom of choice wishes to maintain 
functions, she will probably wish to add a comprehension principle that relates functions to 
appropriate relations: 

Xn+1(( x 1  … x n y z(Xn+1x 1  … x n z ≡ y = z)) → fn x 1  … x n Xn+1x 1  … x n fx 1  … x n 

). 

The antecedent of the embedded conditional asserts that for each sequence x 1 , … , x n 

there is exactly one y such that the sequence x 1 , … , x n , y satisfies Xn+1. The consequent 
asserts the existence of a corresponding function. This sentence follows from the above 
axiom of choice.



Call this deductive system D2. Recall that in the language L2K, a formula in the form x = y 
is an abbreviation of 

X(Xx ≡ Xy). 

As an exercise, we can check that the translations of the usual identity axioms are theorems 
of D2. The introduction rule is x(x = x), which translates as x X(Xx ≡ Xx). It is 
immediate that this is derivable. The elimination rule is 

from t = u and Φ(t), infer Φ(u), 

where t and u are terms, provided that any variables in u are free for t in Φ(t). This comes 
to 

from X(Xt ≡ Xu) and Φ(t) infer Φ(u), 

with the same proviso. The validity of this inference is a routine exercise in the natural 
deduction system D2. Take X(Xt ≡ Xu) and Φ(t) as premises. Assume x(Yx ≡ Φ(x)). So 
Yt ≡ Φ(t), and thus Yt. So Yu, and thus Φ(u). So, by E above, we infer Φ(u) from the 
instance of comprehension X x(Xx ≡Φ(x)). This justifies the definition of identity.
It is straightforward, but perhaps tedious, to establish an indiscernibility principle for 
relation variables. That is, for each formula Φ such that Q is free for P, the following 
formula 

x 1  … x n (Px 1  … x n  ≡ Qx 1  … x n ) → (Φ(P) → Φ(Q)) 

is derivable in D2. The proof of this proceeds by induction on the complexity of the 
formula Φ. This partly justifies an extensional orientation toward the higher-order 
terminology.
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Deductive systems for the further extensions of L2K to third- and higher-order languages 
are straightforward extensions of those considered here. I shall not present details.

3.  Model Theory



This section presents four (count 'em) model-theoretic semantics for the second-order 
languages L2K. Once again, I assume familiarity with the usual model-theoretic semantics 
for first-order languages L1K and L1K=. I pause only to establish the notation.
Each model or interpretation of the first-order L1K or L1K= is a structure M = d,I , in 
which d is a nonempty set, the domain of the model, and I is an interpretation function that 
assigns appropriate items constructed from d to the items in K, the nonlogical terminology. 
For example, if R is an n-place relation symbol, then I(R) is a set of n-tuples of members of 
d. A variable-assignment s is a function from the variables of L1K to d. We will have 
occasion to consider "interpretations" in which the domain is not a set. For example, in the 
intended interpretation of set theory, the variables range over the entire iterative hierarchy
—which of course is not a set.
For each model and assignment, there is a denotation function that assigns a member of d 
to each term. The relation of satisfaction between models, assignments, and formulas is 
then defined in the usual manner. We write M,s  Φ to indicate that the model M satisfies 
the formula Φ under the assignment s. If M,s  Ψ for every assignment s and every formula 
Ψ in a set Γ, then we say that M is a model of Γ. A formula Φ is a semantic consequence of 
Γ if for every model M and assignment s on M, if M,s  Ψ for every Ψ in Γ, then M,s  Φ. 
This is sometimes written Γ  Φ.
All four of our semantics for the second-order L2K build on the semantics for its first-order 
counterpart L1K, in the sense that each model has, as components, a domain d and an 
interpretation function I, as above. For three of the four semantics, what we add is a range 
for the relation and function variables, and, with that, an extension of the denotation 
function and the satisfaction relation to the new terms and the new atomic formulas, 
respectively. The rest is straightforward.

3.1.  Standard Semantics

Although the name "standard" here is more or less common among writers on this topic, 
the emotive or normative connotations also reflect my own preferences 
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(for what that is worth). Critics sometimes put the word "standard" in scare quotes, or use 
phrases like "so-called 'standard' semantics." In a sense to be made clear below, it is only 
standard semantics that makes the logic distinctively second-order.
A standard model of L2K is the same as a model of the first-order L1K and L1K=, namely, 
a structure d,I . The range of the n-place relation variables is the entire power set of dn, 
and the range of the n-place function variables is the set of all functions from dn to d. Thus 



a variable-assignment is a function that assigns a member of d to each first-order variable, 
a subset of dn to each n-place relation variable, and a function from dn to d to each n-place 
function variable.
To belabor the obvious, function variables are assigned to functions. Thus the denotation 
function for the terms of L2K is a straightforward extension of the denotation function 
from L1K. The new clause is 
Let M = d,I  be a model and s an assignment on M. If f is an n-place function variable and 
t 1 , … , t n are terms, the denotation of ft 1  … t n is the result of applying the function sf 
assigned to f to the denotations of the terms t 1 , … , t n . 
Similarly, relation variables are assigned to relations (or sets of n-tuples). The clause for 
the satisfaction of the new atomic formulas is 
Let M = d,I  be a model and s an assignment on M. If X is an n-place relation variable and 
t 1 , … , t n are terms, then M,s  Xt 1  … t n if and only if the sequence consisting of the 
denotations of the terms t 1 , … , t n is in sX. 
The quantifiers are then interpreted as in the first-order case: 

M,s  XΦ if M,s′  Φ, for every assignment s′ that agrees with s at every variable except 
possibly X. 
M,s  XΦ if M,s′  Φ, for some assignment s′ that agrees with s at every variable except 
possibly X. 
M,s  fΦ if M,s′  Φ, for every assignment s′ that agrees with s at every variable except 
possibly f. 
M,s  fΦ if M,s′  Φ, for some assignment s′ that agrees with s at every variable except 
possibly f. 

If Φ is a formula of L2K, then Φ is standardly valid or is a standard logical truth, if M,s  
Φ for every model M and assignment s; Ψ is standardly satisfiable if M,s  Ψ for some M,s. 
A set Γ of formulas of L2K is standardly satisfiable if there is an M,s such that M,s  Ψ for 
every Ψ in Γ. Finally, Φ is a standard consequence of Γ if for every model M and 
assignment s, if M,s  Ψ for every Ψ in Γ, then 
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M,s  Φ. To mark my preferences, the word "valid" is sometimes used for "standardly 
valid," "satisfiable" for "standardly satisfiable," and so on.
It is worth emphasizing that a standard model for L2K is the same as a model of its first-
order counterpart L1K, namely, a domain and an interpretation of the nonlogical 
terminology. That is, in standard semantics, by fixing a domain one thereby fixes the range 
of both the first-order variables and the second-order variables. There is no further 
"interpreting" to be done. This is not the case with the next two semantics. In each case, 



one separately determines a range for the first-order variables and a range for the second-
order variables.

3.2.  Henkin Semantics

The central feature of Henkin semantics is that in a given model, the relation variables 
range over a fixed collection of relations on the domain, which may not include all of the 
relations; and the function variables range over a fixed collection of functions on the 
domain, which may not contain all of the functions. A Henkin model of L2K is a structure 
MH = d,D,F,I , in which d is a domain and I an interpretation function for the terminology 
in K, as above. The new items are sequences. For each n, D(n) is a nonempty subset of the 
power set of dn and F(n) is a nonempty set of functions from dn to d. The idea is that D(n) 
is the range of the n-place relation variables and F(n) is the range of the n-place function 
variables in MH. A variable-assignment on MH is a function that assigns a member of d to 
each first-order variable, a member of D(n) to each n-place relation variable, and a member 
of F(n) to each n-place function variable.
The rest of the presentation of this semantics is the same as that of standard semantics, 
word for word: 

Let MH = d,D,F,I  be a Henkin model and s an assignment on MH. If f is an n-place 
function variable and t 1 , … , t n are terms, the denotation of ft 1  … t n is the result of 
applying the function sf to the denotations of the terms t 1 , … , t n . 
Let MH = d,D,F,I  be a Henkin model and s an assignment on MH. If X is an n-place 
relation variable and t 1 , … , t n are terms, then MH,s  Xt 1  … t n if and only if the 
sequence consisting of the denotations of the terms t 1 , … , t n is in sX. 
MH,s  XΦ if MH,s′  Φ, for every assignment s′ that agrees with s at every variable except 
possibly X. 
MH,s  XΦ if MH,s′  Φ, for some assignment s′ that agrees with s at every variable except 
possibly X. 
MH,s  fΦ if MH,s′  Φ, for every assignment s′ that agrees with s at every variable except 
possibly f. 
MH,s  fΦ if MH,s′  Φ, for some assignment s′ that agrees with s at every variable except 
possibly f. 
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What distinguishes standard from Henkin semantics is the range of the quantifiers "every 
assignment" and "some assignment" in these last four clauses. In a Henkin model, we 
consider only the functions that assign members of the various D(n) and F(n) to the higher-
order variables, while in standard semantics, we consider every such function.
The notions of Henkin-validity, Henkin-satisfaction, and Henkin-consequence are defined 
in the straightforward manner: Φ is Henkin-valid if MH,s  Φ for every Henkin model MH 

and assignment s; Ψ is Henkin-satisfiable if MH,s  Ψ for some Henkin model MH and 
assignment s; Γ is Henkin-satisfiable if there is a Henkin model MH and an assignment s 
such that MH,s  Ψ for each Ψ  Γ; and Φ is a Henkin-consequence of Γ if for every Henkin 
model MH and assignment s, if MH,s  Ψ for every Ψ in Γ, then MH,s  Φ.
It is immediate that a standard model of L2K is equivalent to the Henkin model in which 
for each n, D(n) is the entire power set of dn, and F(n) is the collection of all functions from 
dn to d. Such Henkin models are sometimes called full models. In particular, let M be a 
standard model and let MF be the corresponding full model. Then for each assignment s 
and each formula Φ, M,s  Φ if and only if MF,s  Φ. In effect, standard semantics just is 
the restriction of Henkin semantics to full models.
It follows that if a formula Φ is Henkin-valid, then Φ is standardly valid; and if Φ is a 
Henkin-consequence of a set Γ, then Φ is a standard consequence of Γ. And if Φ is 
standardly satisfiable, then Φ is Henkin-satisfiable. It will soon become clear that the 
converses of these conditionals fail.
On both of these semantical systems, the items in the range of higher-order variables are 
extensional entities—either sets or functions. Recall, however, that there is no symbol for 
"higher-order identity" in the language. As a result, one is free to maintain an intensional 
understanding of the higher-order entities, and think of them as attributes, properties, or 
propositional functions. For the purposes of model-theoretic semantics, sets can serve as 
surrogates for the relevant intensional items. If an advocate of intensional items believes 
that for every arbitrary collection S of n-tuples on the domain, there is an attribute whose 
extension is S (and similarly for functions-in-intension), then she will favor standard 
semantics. Otherwise, I presume that the attraction would be to Henkin semantics (see 
Cocchiarella [1988]).

3.3.  Multisorted, First-order Semantics

As noted, on both standard semantics and Henkin semantics the range of the relation 
variables is a set of relations (or sets) and the range of function variables is a set of 
functions. With first-order semantics, this assumption is dropped. In 
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effect, L2K is interpreted as a multisorted first-order language. The predication relation 
between the objects in the (first-order) domain and the items in the range of the predicate 
variables is non-logical, as is the application function from items in the range of the 
function variables and the objects in the domain.

A first-order model of L2K is a structure M1 = <d,d 1 ,d 2 , I,p,a> , in which d is a 
nonempty set and I an interpretation function assigning items constructed from d to the 
items in K, as usual. For each natural number n, d 1 (n) and d 2 (n) are nonempty sets. They 
are the ranges of the n-place relation variables and the n-place function variables, 
respectively. For each n, p(n) is a subset of dn × d 1 (n). This represents the interpretation of 
the "predication" relation in M1, between an n-place "relation" R in M1 and n-tuples from 
the domain. For example, suppose that d 1 (1) has an object D which is supposed to 
represent the property of being a dog (or the set of dogs). Then c,D  would be a member 
of p(1) if and only if c is a dog. In like manner, for each natural number n, a(n) is a 
function from dn × d 2 (n) to d. Here, a(n) is the interpretation of the n-place "application" 
function in M1, from the collection of sequences and the "functions" in M1 to the first 
domain.
The rest is fairly straightforward, if a bit tedious. A variable-assignment on M1 is a 
function that assigns a member of d to each first-order variable, a member of d 1 (n) to each 
n-place relation variable, and a member of d 2 (n) to each n-place function variable.
The denotation function is adapted from that of L1K. The new clause is: 
Let M1 be a first-order model and s an assignment on M1. If f is an n-place function variable 
and t 1 , … , t n are terms, then the denotation of ft 1  … t n is the result of applying a(n) to 
the denotations of t 1 , … , t n and sf. 
In other words, the denotation of ft 1  … t n is determined by the "application" function 
a(n), evaluated at the denotations of the items in t 1 , … , t n and the item in d 2 (n) assigned 
to f by s.
The clause for the satisfaction of atomic formulas is similar: 

Let M1 be a first-order model and s an assignment on M1. If X is an n-place relation 
variable and t 1 , … , t n are terms, then M1,s  Xt 1  … t n if the sequence consisting of the 
denotations of t 1 , … , t n and sX is a member of a(n). 
The clauses for the second-order quantifiers carry over: 
M1,s  XΦ if M1,s′  Φ, for every assignment s′ that agrees with s at every variable except 
possibly X. 
M1,s  XΦ if M1,s′  Φ, for some assignment s′ that agrees with s at every variable except 
possibly X. 



M1,s  fΦ if M1,s′  Φ, for every assignment s′ that agrees with s at every variable except 
possibly f. 
M1,s  fΦ if M1,s′  Φ, for some assignment s′ that agrees with s at every variable except 
possibly f. 
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As above, Φ is first-order-valid if M1,s  Φ for every first-order model M1 and assignment 
s; Ψ is first-order-satisfiable if M1,s  Ψ for some first-order model M1 and assignment s; Γ 
is first-order-satisfiable if there is a first-order model M1 and an assignment s such that 
M1,s  Ψ for each Ψ  Γ; and Φ is a first-order-consequence of Γ if for every first-order 
model M1 and assignment s, if M1,s  Ψ for every Ψ in Γ, then M1,s  Φ.
Notice that a given Henkin model d,D,F,I  is equivalent to the first-order model d,d 1 ,d 2 ,
I,p,a  such that d 1 is D, d 2 is F, p recapitulates the "real" predication (or membership) 

relation between d and the various D(n), and a recapitulates the "real" application function 
from dn and the various F(n) to d. That is, for each n, u,v  is in p(n) if and only if u  v; and 
a(n)(u,w) = w(u). Thus, for every Henkin model MH there is a first-order model M1 such 
that for every assignment s on MH there is an assignment s1 on M1, such that for every 
formula Φ of L2K, MH,s  Φ if and only if M1,s1  Φ.
The converse holds as well. Let M1 = d,d 1 ,d 2 , I,p,a  be a first-order model of L2K. 
Then there is a Henkin model MH = d,D,F,I  such that for every variable-assignment s on 
M1 there is an assignment sH on MH, such that for every formula Φ of L2K, M1,s  Φ if and 
only if MH,sH  Φ (see Shapiro [1991, ch. 3] for details). The idea is that we replace an item 
c of, say, d 1 (2) with the set of pairs of elements of d that c "holds of," according to p(2). 
To take a frivolous example, suppose that in M1, d is a set of apples and d 1 (2) is a set of 
oranges. Then in the corresponding MH, each orange is "replaced" by the set of pairs of 
apples that bear the M1-interpretation of the predication relation to it.3 
It follows that for each formula Φ of L2K, Φ is Henkin-valid if and only if Φ is first-order-
valid, and Φ is a Henkin-satisfiable if and only if Φ is first-order-satisfiable. For each set Γ 
of formulas, Γ is Henkin-satisfiable if and only if Γ is first-order-satisfiable; and Φ is a 
Henkin-consequence of Γ if and only if Φ is a first-order-consequence of Γ. In short, 
Henkin semantics and first-order semantics are pretty much the same.

3.4.  Plural quantification

All three of the above model-theoretic semantics follow the prevailing custom of assigning 
each variable to a distinctive range in each model. On standard and 
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Henkin semantics, the range of a given higher-order variable is a set of sets (of n-tuples) or 
a set of functions. As we just noted, even on first-order semantics, the range of a given 
higher-order variable is equivalent to a set of sets or a set of functions. This feature invites 
the charge that second-order logic is just a branch of set theory. Moreover, all three 
semantics seem to preclude an interpretation of a language like L2K in which the first-
order variables do not range over a set. Thus we cannot give an account of second-order set 
theory in which the intended first-order variables range over every member of the iterative 
hierarchy. In that case, what do the higher-order variables range over?
In response to issues like these, George Boolos ([1984], [1985]) proposed a different way 
to understand at least monadic, second-order relation variables. According to both standard 
and Henkin semantics, an existential quantifier X should be read "there is a set X" or "there 
is a property X"—in which case, of course, the locution invokes sets or properties. Against 
this, Boolos suggests that a monadic, second-order quantifier be considered a counterpart 
of a plural quantifier, "there are (objects)" in natural language like English.

The sentence 

Some critics admire only one another. 
has a (more or less) straightforward second-order rendering, taking the class of critics to be 
the domain of discourse: 

X( xXx & x y((Xx≠y) → (x≠y≠Xy))). 

According to standard or Henkin semantics, the formula would correspond to "there is a 
nonempty set (or property) C (of critics) such that for any x in C and any y, if x admires y, 
then x ≠ y and y is in C." However, this reading implies the existence of a set (or property), 
while the original sentence, "Some critics admire only one another," does not—or so it 
seems.
There is no doubt that native speakers of ordinary natural languages have no trouble with 
sentences that contain plural quantifiers. Boolos argues that we logicians can thus use this 
construction in the metalanguage in which we develop formal, model-theoretic semantics. 
The construction interprets the monadic, second-order quantifier.
So construed, a monadic second-order language has no ontological commitments beyond 
those of its first-order counterpart. Accordingly, second variables do not have a distinctive 



range. In a sense, the range of monadic, second-order variables is the same as the range of 
the first-order variables. It is just that the quantification is plural.
In set theory, the "Russell sentence," X x(Xx ≡ x  x), is a consequence of the 
comprehension scheme. According to standard or Henkin semantics, it entails 
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that there is a set that is not coextensive with any set in the domain. Admittedly, this does 
not sound right, even though we convince ourselves that it is correct—perhaps with talk of 
proper classes.4 On Boolos's interpretation, the Russell sentence reads, "There are some 
sets such that any set is one of them just in case it is not a member of itself," a harmless 
truism. We forgo details of Boolos's [1985] rigorous, model-theoretic semantics for 
second-order languages with monadic relation variables (see Rayo and Yablo [2001] for an 
extension of the plural construction to multiplace relations and beyond).
It seems that the Boolos interpretation for monadic, second-order languages is intended to 
be equivalent to standard semantics, at least for interpretations in which the domain 
constitutes a set (so that no questions are begged). I have some doubts as to whether our 
independent or pretheoretic grasp of plural quantifiers is sufficiently determinate for this.
Consider a statement of second-order real analysis of the form 

• X YΦ(X,Y). 

The opening second-order quantifiers can be given both a plural and an ordinary, standard 
reading. It had better be the case that if we read the quantifiers as plurals, we will get 
exactly the same truth-value, in general, as we would if we understand the quantifiers as 
ranging over sets of real numbers. In effect, there needs to be a "plurality" (so to speak) for 
each set of real numbers. Does the English plural construction have that determinate a 
meaning? To be sure, an advocate of the Boolos plural interpretation can stipulate that she 
intends the quantifier to have such a meaning in cases like that of real analysis. Notice, 
however, that one needs some set theory to do this stipulating. This consideration might 
sustain Michael Resnik's [1988] and my [1993] complaint that the sophisticated 
understanding of the plural construction used in justifying second-order logic is mediated 
by set theory.

4.  Metatheory: Expressive Resources

This section provides brief sketches of some of the main metatheoretic properties of 
second-order languages. For more detail, see Shapiro [1991, chs. 4, 5].
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4.1.  Henkin and First-order Semantics

Since, as noted in the previous section, Henkin semantics is equivalent to first-order 
semantics for the languages L2K, we need only present the relevant results for whichever 
of these is most convenient. Anything said about one of them applies directly to the other.
First, the deductive system D2 is not sound for Henkin and first-order semantics. It is 
straightforward to verify that some Henkin models do not satisfy the comprehension 
scheme and some do not satisfy the axiom of choice. Consider, for example, a structure 
MH = d,D,F,I  in which the first-order domain d has two distinct members a,b; D(2) has a 
single member, the relation { a,a , b,a }. Then MH does not satisfy the following instance 
of the comprehension scheme:
 
X x y(Xxy ≡ x = y). 

In effect, this axiom asserts the existence of the identity relation, but MH does contain such 
a relation.
Define a Henkin model to be faithful to D2, or simply faithful, if it satisfies every instance 
of the comprehension scheme (and the axiom of choice, if that is included in the deductive 
system). That is, a Henkin model is faithful if it contains every relation definable via the 
comprehension scheme (and the functions promised by the axiom of choice). All 
subsequent discussion is restricted to faithful models. Of course, we now have soundness-
by-fiat. We just restrict ourselves to Henkin and first-order models that satisfy the axioms 
and rules of D2.
As might be expected, languages like L2K under Henkin semantics and first-order 
semantics are pretty much like first-order languages. In a sense, they are first-order 
languages. First, the deductive system D2 is complete for Henkin semantics: if Γ is a set of 
sentences and Φ is a sentence of L2K, then Φ is true in every (faithful) Henkin model of Γ 
only if Φ can be deduced from Γ in D2. The downward Löwenheim-Skolem theorem 
holds: if a set Γ of formulas of L2K has a (faithful) Henkin model whose domain is 
infinite, then Γ has a (faithful) Henkin model whose domain is countable (or the cardinality 
of K, whichever is larger). Every Henkin model for L2K has an equivalent submodel 
whose domain is at most countable (or the cardinality of K, whichever is larger). And the 
upward Löwenheim-Skolem theorem holds: if for each natural number n, a set Γ has a 
model whose domain has at least n members, then for each infinite cardinal κ, Γ has a 
model whose domain has at least κ-many members. The proofs of these 
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theorems are straightforward adaptions of the usual constructions for first-order logic (see 
Shapiro [1991, 89-95]).5 
As usual for sound deductive systems, compactness is a corollary of completeness: let Γ be 
a set of formulas of L2K. If every finite subset of Γ is satisfiable in a (faithful) Henkin 
model, then Γ itself is satisfiable in a (faithful) Henkin model. So, as in the first-order case, 
no theory with an infinite Henkin-model is what may be called "Henkin-categorical." Thus, 
second-order languages with Henkin semantics are not adequate to characterize infinite 
structures up to isomorphism.

4.2.  Standard Semantics

Recall that standard semantics is equivalent to the restriction of Henkin semantics to full 
models, structures in which the n-place predicate variables range over the collection of all  
n-tuples of elements from the domain, and the n-place functions range over the collection 
of all n-place functions on the domain. Since full models contain every relation and 
function, they certainly contain the functions and relations promised by the instances of the 
comprehension scheme and the axiom of choice (assuming separation and choice in the 
metatheory). So full models are faithful, and the deductive system D2 is sound for standard 
semantics.
The crucial feature of standard semantics is the existence of categorical axiomatizations of 
the natural numbers and the real numbers. Corollaries of these features include the 
refutation of compactness and the Löwenheim-Skolem theorems—and, in light of Gödel's 
Incompleteness Theorem for arithmetic, the refutation of completeness.
The language of arithmetic has A = {0,s,+,·} as its set of nonlogical terminology. The 
theory has first-order axioms stating that the successor function is one-to-one, that zero is 
not the successor of anything, and the usual recursive definitions of addition and 
multiplication: 

x y(sx = sy → x = y) & x(sx ≠ 0) 
x(x + 0 = x) & x y(x + sy = s(x + y)) 

• x(x·0 = 0) & x y(x·sy = x·y + x). 
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Then there is the induction axiom, a proper second-order statement: 



X[(X0 & x(Xx → Xsx)) → xXx]. 

Let AR (for "arithmetic") be the conjunction of these four axioms.
The intended interpretation of AR is the model N of L2A, whose domain is the set of 
natural numbers and which assigns zero to 0, and assigns the successor function, the 
addition function, and the multiplication function to s, +, and ·, respectively. It is 
immediate that N satisfies AR. Moreover, any two models of AR are isomorphic (see 
Shapiro [1991, 82-83] or the original Dedekind [1888] for a proof). It follows that if M is 
any (standard) model of AR, then the domain of M is denumerably infinite. This entails 
that the upward Löwenheim-Skolem theorem fails for second-order logic with standard 
semantics.
If follows from the categoricity of arithmetic that a sentence Φ of L2A is true of the natural 
numbers (i.e., N  Φ) if and only if AR → Φ is a standard logical truth. That is, arithmetic 
truth is reducible to, or definable in terms of, standard second-order logical truth.
Let D be any effective deductive system that is sound for the language L2A (under 
standard semantics). Consider the set Γ = {Φ|   D (AR → Φ)} of sentences of L2A. Since 
D is effective, the set Γ is recursively enumerable, and as just noted, every member of Γ is 
true of the natural numbers. Gödel's [1931] incompleteness theorem entails that the 
collection of true first-order sentences of arithmetic is not recursively enumerable. So let Ψ 
be a true sentence of first-order arithmetic that is not in Γ. Then, the sentence (AR → Ψ) is 
a (standard) logical truth, but it is not derivable in D. Thus, there is no effective, sound 
deductive system that is complete for standard semantics. Second-order languages with 
standard semantics are inherently incomplete.
Compactness also fails. Let c be a constant symbol and consider the following set Γ of 
sentences: 

{AR, c ≠ 0, c ≠ s0, c ≠ ss0, c ≠ sss0, … }. 

Each finite subset of Γ is satisfiable in the natural numbers. But the entire set Γ is not 
satisfiable, since the denotation of c would have to be different from the denotata of 0, s0, 
and so on. But, by the induction axiom and the categoricity result, the denotata of 0, s0, 
and so on exhaust the domain of each model of AR.
The general notion of finitude cannot be captured in any language which satisfies the 
upward Löwenheim-Skolem theorem. If a theory in such a language has a model of each 
finite cardinality, then it has an infinite model. However, the notion can be expressed with 
a second-order language with no nonlogical terminology (assuming standard semantics). 
The following purely logical sentence, 

(FIN) f¬( x y(fx = fy → x = y) & x y(fy ≠ x)), 
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asserts that there is no one-to-one function from the domain to a proper subset of the 
domain. So (FIN) is satisfied by a model M if and only if the domain of M is Dedekind-
finite.
Finitude is one of a number of related notions that have adequate characterizations in 
second-order languages with standard semantics (usually involving no nonlogical 
terminology) but cannot be characterized in any compact language, including second-order 
languages with Henkin or first-order semantics. Examples include countability, well-
orderedness, well-foundedness, minimal closure, and the ancestral. Any consistent attempt 
to formulate a characterization any of these notions in a first-order or Henkin second-order 
theory will have unintended models that miss the mark (see Shapiro [1991, ch. 5, §5.1)]).
All that remains is to refute the downward Löwenheim-Skolem theorem. In real analysis, 
the nonlogical terminology is B = {0,1,+,·,≤}. The axioms are those of an ordered field, all 
of which are first-order,6 plus a second-order statement of completeness, asserting that 
every nonempty, bounded set (or property) has a least upper bound: 

X{( yXy & x y(Xy → y ≤ x)) → x[ y(Xy → y ≤ x) & z( y(Xy → y ≤ z) → x ≤ z)]}. 

Let AN (for "analysis") be the conjunction of the axioms of real analysis. The real number 
structure constitutes the intended model, and AN is categorical (see Shapiro [1991, 84]). 
Since AN has an uncountable model and no countable models, the downward Löwenheim-
Skolem theorem fails for second-order languages with standard semantics.
In first-order arithmetic, the (second-order) induction principle is replaced by a scheme. If 
Φ is a formula in the language L1A= of first-order arithmetic, then 

(Φ(0) & x(Φ(x) → Φ(sx))) → xΦ(x), 

is an axiom of first-order arithmetic. The theory thus has infinitely many axioms. 
Similarly, first-order real analysis is obtained by replacing the single completeness axiom 
with the completeness scheme, 

( xΦ(x) & x y(Φ(y) → y ≤ x)) → x[ y(Φ(y) → y ≤ x) & z( y(Φ(y) → y ≤ z) → x ≤ z)], 
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one instance for each formula Φ of the language L1B= of real analysis that contains neither 
x nor z free.



The difference between, say, second-order real analysis and its first-order counterpart is 
that in the latter, one cannot directly state that every non-empty bounded set (or property) 
has a least upper bound. The closest one can come is a separate statement for each such set 
which is definable by a formula in the language of first-order analysis.
The same, or almost the same, goes for arithmetic and real analysis as formulated in a 
second-order language with Henkin semantics. To be sure, in those languages, the 
induction principle and the completeness principle are single sentences, with a second-
order variable ranging over sets or properties. However, the only sets or properties that are 
guaranteed to exist in a given model are the definable ones—and we have those only 
thanks to the explicit restriction to faithful models, interpretations that satisfy each instance 
of the comprehension scheme. Without the restriction to faithful models, we are not 
guaranteed the existence of any particular sets or properties. One who works in first-order 
arithmetic or analysis, or one invokes Henkin semantics on the respective second-order 
language (restricted to faithful models), cannot apply the induction or completeness 
principle to a set or property until she shows that it is definable in the relevant language. 
The only difference between first-order arithmetic and second-order arithmetic with 
Henkin semantics is that a few more properties are definable in the second-order language 
than the first-order language.
The first-order theory and the Henkin theory have models which are not isomorphic to the 
real numbers. These are sometimes called non-standard models. Indeed, the Löwenheim-
Skolem theorems indicate that for every infinite cardinal κ, there are models of first-order 
arithmetic and models of first-order analysis whose domain has cardinality κ. The same 
goes for Henkin semantics. The study of nonstandard models has proven fruitful in 
illuminating the original informal theories.
Per Lindström [1969] showed that, in a sense, first-order logic is characterized by the 
metatheoretic properties that distinguish it from second-order languages with standard 
semantics. Let L be any logic that is compact and has the property of the downward 
Löwenheim-Skolem theorem: if a theory is satisfiable, then it has a model whose domain is 
at most countably infinite. Then the language L cannot make any distinction among models 
that cannot be made with the corresponding first-order language (see Shapiro [1991, ch. 6, 
§6.5]).
For better or worse, then, standard semantics is what makes second-order logic distinctive. 
The categoricity results and the concomitant failure of the limitative properties are the 
source of both the expressive strength and the main philosophical and technical 
shortcoming of second-order logic.
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5.  Logic Choice: What Are We to Make of All This?



W. V. O. Quine is a long-standing and persistent critic of second-order logic. An early 
paper, Quine [1941] is critical of systems, like that of Whitehead and Russell [1910], in 
which the second-order variables range over intensional entities like properties, 
propositional functions, or attributes. As is well-known, Quine is skeptical of such entities. 
There is no consensus on which properties exist, nor on conditions under which two 
properties are identical or distinct. According to Quine's slogan "no entity without 
identity," one is not entitled to speak of a kind of item unless there is a clear and 
determinate criterion of identity on the items. So a Quinean would frown upon the present 
decision to forgo an identity relation on the items in the range of second-order variables, 
claiming that this just postpones the problem. At some point, we have to say something 
about what the variables range over, and this would include giving an identity relation.
Quine [1941] went on to suggest that variables ranging over properties be replaced with 
variables ranging over respectable extensional entities like sets. However, he later argued 
that by invoking sets in this way, we have crossed the boundary out of logic and moved 
into mathematics proper (Quine [1986, ch. 5]). He refers to (so-called) second-order logic 
as set theory in disguise. One might think that nothing turns on this. Unlike political 
borders, we can set and move the boundaries between disciplines at will. The more 
substantial issue concerns the nature of logic itself. We return to the bad joke mentioned at 
the beginning of this chapter.
The variables of formal languages, of any order, can range over any type of entity, so long 
as there are coherent things to say about them. Readers who share Quine's qualms about 
intensional entities are free to follow his lead and interpret higher-order variables as 
ranging over extensional things, like sets. To be sure, some philosophers doubt the 
existence of abstract objects like sets, but Quine is not among them (once he went beyond 
Goodman and Quine [1947]). Such nominalists will not have much use for higher-order 
languages as interpreted by either standard semantics or Henkin semantics, since the 
higher-order variables are interpreted as ranging over sets. Some nominalists attempt to 
gain the benefit of second-order languages, with standard semantics, by invoking the plural 
interpretation indicated in section 3.4 above (see Lewis [1993]). So understood, the higher-
order variables do not have a distinctive range at all. But even this model theory, as well as 
that of ordinary first-order languages, is formulated in set theory. Models are themselves 
set-theoretic constructions. Thus our nominalist must either eschew model theory 
altogether or come up with an acceptable alternative. I will not address these issues further 
here, and simply declare a lack of 
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interest in making higher-order logic safe for nominalism. I will freely invoke set theory, at 
least in the model-theoretic metatheory. Whatever the items in the range of higher-order 



variables are taken to be, they are represented by sets of n-tuples in the various models in 
the model theory.
As shown above, second-order languages with Henkin semantics are essentially the same 
as multisorted first-order languages. Quine may be right that there is something misleading 
about this, but so long as the theorist keeps the proper perspective, there is no serious 
objection to these semantics. However, with Henkin semantics (restricted to faithful 
models), the only relations/sets that are assumed to exist are those relations/sets definable 
in the language, and perhaps some choice functions. The distinctive expressive resources 
of higher-order logic come with standard semantics, where we assume that the second-
order variables range over every relation/set and every function on the domain. This is the 
real target of contemporary criticisms of higher-order logic, including Quine's and I. Jané's 
companion article in the present volume (chapter 26).
Quine [1986, 68] wrote that "[s]et theory's staggering existential assumptions 
are … hidden … in the tacit shift from schematic predicate letter to quantifiable set 
variable." This, however, is an exaggeration. An advocate of second-order logic is not 
thereby committed to the entire iterative hierarchy. Suppose that we are considering a first-
order theory whose intended model has an infinite domain of size κ. In the corresponding 
second-order theory, construed with standard semantics, each predicate variable ranges 
over 2κ-many items. This, of course, is larger than κ, but it is hardly "staggering." For 
example, first-order arithmetic is already committed to a countably infinite universe. The 
total "ontology" of second-order arithmetic, on standard semantics, is the size of the 
continuum.
To be sure, the metatheory for second-order logic is a rich set theory, with axioms of 
infinity and power set. The presupposition of standard semantics is that each set x has a 
sufficiently determinate power set, in which we interpret the range of higher-order 
variables when x is the domain of discourse. Critics of second-order logic can and do 
challenge this assumption. The underlying issue concerns the extent to which this 
staggering metatheory compromises the status of second-order logic itself.
I might add that a lot of substantial mathematics is bound up with second-order logic with 
standard semantics. In section 4.2 above, for example, we saw that arithmetic truth is 
reducible to standard logical truth, in the sense that for any sentence Φ in the language of 
arithmetic, Φ is true (of the natural numbers) if and only if AR → Φ 
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is a standard logical truth, where AR is a categorical characterization of arithmetic. 
Something similar goes for any theory that has a categorical axiomatization. Truth-in-real-
analysis, truth-in-functional-analysis, and truth-in-the-first-inaccessible-rank are each 
reducible to standard second-order logical truth.



Moreover, a lot of set theory can be expressed directly in a second-order language, with no 
nonlogical terminology. For example, there is a sentence C that is a standard logical truth if 
and only if the continuum hypothesis holds, and there is another sentence D that is a 
logical truth if and only if the generalized continuum hypothesis holds (see Shapiro [1991, 
ch. 5, §5.1.2]). We saw above (section 2) that there is a sentence that expresses the axiom 
of choice, at least within a given domain of discourse. It is perhaps counterintuitive to hold 
that such principles are "logical."
It would be ironic for a Quinean to dismiss higher-order logic on the grounds that it 
recapitulates a fair amount of mathematics. Quine is famous for championing the thesis 
that there no sharp borders between disciplines. He argues that the sum total of our beliefs 
forms a seamless web, with mathematics thoroughly enmeshed. There is no sharp 
distinction—no difference in kind—between mathematics and any respectable science, 
such as chemistry. As a naturalist, Quine holds that epistemology should be a chapter of 
psychology. Logic, presumably, is a branch of epistemology. So why should logic, 
especially the logic of mathematics, be an exception to the seamlessness of the web of 
belief? Given the Quinean themes, why should one expect logic to be free of substantial 
mathematical resources and mathematical ontology? No other science is.
The dispute surely concerns the nature and purpose of logic. I submit, however, that there 
is no single purpose for logic to serve. One traditional goal of logical study is to present a 
calculus, a deductive system that represents the canons of correct inference. The idea is 
that a given proposition Φ is a consequence of a set Γ only if it is possible to justify Φ on 
the basis of Γ alone. This conception of logic is behind the Fregean goal of giving proofs 
of various mathematical propositions that are free of gaps (see chapters 5-6 of the present 
volume). No intuition and no empirical, or otherwise substantial, knowledge should be 
required in proving theorems on the basis of premises or axioms.
A famous and influential logician once told me that second-order logic presupposes that 
we know just about every truth of mathematics. He took this as a reductio ad absurdum 
against the project. We saw above (section 4.2) that every truth of arithmetic is a model-
theoretic consequence of the second-order axiomatization of arithmetic. Similarly, every 
truth of real analysis is a model-theoretic consequence of the axioms of the theory. The 
same goes for just about any mathematical theory with an intended interpretation, short of 
set theory itself. It seems that whenever mathematicians speak informally of a theory (short 
of set theory) that has a single intended model, up to isomorphism, then that intended 
structure has a categorical characterization in a second-order language with standard 
semantics.
So if the model-theoretic notion of second-order validity did meet the traditional epistemic 
goal of capturing gap-free chains of inference, idealized versions of ourselves would 
indeed know every arithmetic truth, every truth of real analysis, and so on. This does seem 
to be an unreasonable assumption. Even if it is true that "we" can know every truth, it is 
not wise to have one's logical theory presuppose it.
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The fact is that the model-theoretic consequence relation of second- or higher-order logic 
with standard semantics does not meet this traditional goal of providing a calculus. For one 
thing, standard-validity is defined in terms of models, not inference patterns. Of course, 
that much applies to any model-theoretic system, including that of first-order languages 
and second-order languages with Henkin semantics. In those cases, however, a 
completeness theorem links the model-theoretic consequence relation with the deductive 
one, and this provides a connection with the epistemic goal of codifying correct inference 
patterns. In contrast, the incompleteness of second-order logic shows that the consequence 
relation of second-order logic, with standard semantics, is highly noneffective (section 4.2 
above). Any effective deductive system is either unsound (in that it sanctions an invalid 
argument) or fails to codify at least one valid argument.
The study of canons of inference does not exhaust the traditional scope of logic. It is 
widely (but not universally) held that deductive systems must themselves adhere to a prior 
notion of logical consequence, often defined in modal terms. Near the beginning of the 
Prior Analytics, Aristotle defines a "syllogism" to be "a discourse in which, certain things 
having been supposed, something different from the things supposed results of  
necessity. … " Prior to reflection, there is no reason to expect that the pretheoretic, modal 
notion of logical consequence is effective, and that there is a complete deductive system 
for it.
I submit that model-theoretic consequence is an attempt to capture this pretheoretic, modal 
notion of logical consequence. The realm of models represents the possible interpretations, 
or meanings, of the nonlogical terminology. To say that a sentence Φ is a consequence of a 
set Γ is to say that Φ comes out true under every interpretation of the nonlogical 
terminology on which every member of Γ is true.7 This is consonant with the slogan that 
logical consequence is a matter of "form." What must be determined, of course, is what 
counts as a nonlogical term, and what the realm of interpretations is. From this perspective, 
the issue of standard semantics is whether the membership (or predication) relation and 
bound variables ranging over sets (or relations) is logical. Alfred Tarski once wrote:
…  sometimes it seems … convenient to include mathematical terms, like the 
[membership] relation, in the class of logical ones, and sometimes I prefer to restrict 
myself to terms of "elementary [i.e., first-order] logic." Is any problem involved here? 
(Tarski [1987, 29])
From this eclectic perspective, the question now concerns the theoretical benefits of 
standard semantics. What is to be gained by adopting this highly noneffective consequence 
relation? I submit that standard semantics captures important 
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aspects of mathematical practice, aspects that are relevant to the study of correct inference, 
since they register the intended meanings of mathematical terms.
It is widely agreed that mathematicians succeed in describing and communicating 
information about various notions and structures. For example, most thinkers hold that 
when mathematicians refer to "the natural numbers," "the real numbers," and so on, they 
are talking about the same objects, or at least the same structures up to isomorphism. 
Along the same lines, there is not much doubt that notions like finitude and well-
foundedness are clear and unequivocal, or that the minimal closure and ancestral relations 
are determinate. In short, there is almost a consensus that the informal language of 
mathematics has expressive resources sufficient for the ordinary description and 
communication of these basic structures and notions.
Part of the purpose of model theory is to delineate structures that are possible 
interpretations of various sentences containing nonlogical parameters. This is what it is to 
capture the semantics of informal mathematical languages. Using whatever linguistic 
resources are at their disposal, mathematicians (supposedly) manage to describe the natural 
number structure up to isomorphism, and they describe and communicate concepts like 
finitude and well-foundedness. So the expressive resources of the formal languages should 
match those of the mathematical discourse it models. As noted, first-order languages are 
inadequate to this task. As Jon Barwise [1985, 5] put it: 
As logicians, we do our subject a disservice by convincing others that logic is first-order 
and then convincing them that almost none of the concepts of modern mathematics can 
really be captured in first-order logic. 
And Hao Wang [1974, 154]: 
When we are interested in set theory or classical analysis, the Löwenheim-Skolem theorem 
is usually taken as a sort of defect (often thought to be inevitable) of the first-order 
logic. … [W]hat is established [by Lindström's theorems] is not that first-order logic is the 
only possible logic but rather that it is the only possible logic when we in a sense deny 
reality to the concept of uncountable…. 
See also Montague [1965], Corcoran [1980], Isaacson [1985], and Shapiro [1991, ch. 5].
To be sure, the aforementioned near consensus is not a consensus. Some prominent 
thinkers hold that there are no unambiguous notions of "finite," "countable," "natural 
number," and so on (e.g., Skolem [1922], Field [2001, chs. 11-12]). Such skeptical views 
are sometimes supported by the Löwenheim-Skolem theorems, and for that reason are 
dubbed "Skolemite relativism." On such views, the model theory of first-order logic (or 
Henkin semantics for higher-order languages) reflects the situation of the mathematician. 
Standard semantics for second-order logic is deceptive, since it assumes that there is an 
unequivocal understanding of locutions like "all properties" or "all subsets," and it is this 
that gives rise to the equally misleading categoricity results.
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Be this as it may, the majority of the mathematicians, logicians, and philosophers 
(including Quine) who reject higher-order logic also reject this Skolemite skepticism. Such 
thinkers, it seems, hold that there is a crucial gap between the informal language in which 
mathematics is done and the formal semantics that underlies this language (see Myhill 
[1951]). Logic must fail where informal language succeeds.
Jodi Azzouni [1994, ch. 1, sec. 3] claims that advocates of second-order logic, such as 
myself, claim that standard semantics solves the age-old problem of reference to 
mathematical objects (at least up to isomorphism) and that it somehow explains how 
mathematicians communicate with each other. Azzouni then points out that standard 
semantics cannot solve either problem (see also Wagner [1987] and Weston [1976]). 
Nonstandard, unintended interpretations are ruled out of the system by fiat—nonstandard 
models are simply not part of the semantics. Azzouni concludes that "second-order logic 
with standard semantics is treacherous: Its sirenlike notation can lull philosophers into an 
inadequate appreciation of how it gains its expressive power" (1994, p. 18).
I will leave it to the reader to determine who among the defenders of second-order logic 
are in fact lulled into a trance in this way. Most, I believe, are not blind to the connection 
with mathematics proper, and most advocates of higher-order logic do not make 
unreasonable claims on what is involved in understanding second-order languages. Alonzo 
Church, for example, was not lulled into Azzouni's trance, as indicated by the epigraph to 
this chapter: 
…  our definition of the [standard second-order] consequences of a system of 
postulates … can be seen to be not essentially different from [that] required for 
the … treatment of classical mathematics. … It is true that the non-effective notion of 
consequence, as we have introduced it … presupposes a certain absolute notion of ALL 
propositional functions of individuals. But this is presupposed also in classical 
mathematics, especially classical analysis. … (Church [1956, 326n]) 
The key term here is "presupposed." The thesis that we understand second-order languages 
with standard semantics is of-a-piece with the thesis that we understand ordinary 
mathematical discourse. It is no less—and no more—problematic. The substantial claim of 
advocates of higher-order logic is that standard semantics has an important role in 
foundational studies, but, again, this role is not that of explaining or justifying 
mathematical practice or of explaining how successful reference and communication 
works. Church added that "… logic and mathematics should be characterized, not as 
different subjects, but as elementary and advanced parts of the same subject."
I close with some epistemological features of the second-order axiomatizations of 
mathematical theories (assuming standard semantics) noted by Georg Kreisel [1967]. 
Recall that first-order axiomatizations typically replace a single, second-order axiom with 



an axiom scheme. The scheme itself has no special status, since it does not occur in the 
object-language. It is only used to describe 
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the theory in a finite number of words (in the metalanguage, or perhaps the meta-
metalanguage). In the theory itself, as formulated in the object-language, each instance of 
the scheme is a (separate) axiom. Kreisel argued that this is an unnatural way to codify a 
mathematical theory like that of arithmetic or real analysis. Suppose, for example, that 
someone is asked why he believes that each instance of the completeness scheme of first-
order real analysis is true of the real numbers. It is, of course, out of the question to give a 
separate justification for each of the axioms. Nor can one claim that the scheme 
characterizes the real numbers since, as we have seen, no first-order axiomatization can 
characterize any infinite structure. Kreisel argued that the reason mathematicians believe 
the instances of the axiom scheme is that each instance follows from the single second-
order completeness axiom (via the corresponding instance of comprehension).
A related issue is that each first-order scheme or, to be precise, the collection of instances 
of each scheme, is tied to the ingredients of the particular first-order language in use at the 
time. As noted, this is to restrict the induction and completeness principles to those 
properties or sets definable in the given language. Mathematicians, however, are quick to 
apply the induction and completeness principles to sets regardless of whether they are 
definable in the given first-order language. Indeed, they usually do not check for 
definability in this or that language. Kreisel [1967, 148]) wrote: 
The choice of the first-order schema is not uniquely determined by the second-order 
axiom! Thus, Peano's own axioms mention explicitly only the constant 0 and the successor 
function, … not addition nor multiplication. The first-order schema built up from 0 and 
[the successor function] is a weak, … decidable, subsystem of classical first-order 
arithmetic … and quite inadequate for formulating current informal arithmetic. 
The same point applies to second-order languages understood with Henkin or first-order 
semantics. Although such theories do have a single induction or completeness axiom, the 
opening higher-order quantifiers are implicitly restricted to those properties or sets that are 
present in a given model of the theory. And the only properties or sets present in every 
such model are those definable in the respective language in the model (and we have those 
properties or sets only with the restriction to faithful models).
The issue concerning the interpretation of the induction and completeness principles is 
manifest in the practice of embedding structures in each other. Kreisel wrote: 
 …  very often the mathematical properties of a domain D become only graspable when 
one embeds D in a larger domain D′. Examples: (1) D integers, D′ complex plane; use of 
analytic number theory. (2) D integers, D′ p-adic numbers; use of p-adic analysis. (3) D 



surface of a sphere, D′ 3-dimensional space; use of 3-dimensional geometry. Non-standard 
analysis [also applies] here… .(Kreisel [1967, 166]) 
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To follow the first example (modified slightly), when one sees that there is a structure 
isomorphic to the natural numbers in the complex plane, one can use complex analysis to 
shed light on the natural numbers. This works by applying the induction principle of 
arithmetic to sets of natural numbers definable in complex analysis, whether or not such 
sets can be defined in the language of arithmetic alone. One cannot tell in advance what 
resources are needed to shed light on a mathematical structure—even after the structure 
has been adequately characterized. The incompleteness theorem indicates that some 
theorems about the natural numbers proved in a rich theory, like complex analysis, are not 
provable in arithmetic alone.
In the case at hand, the induction principle is applicable simply because the set in question 
is a set of natural numbers (or is isomorphic to such a set). And the result is a theorem 
about the natural numbers. It would be a mistake to refuse to apply induction, simply 
because one has not defined the property in the language of arithmetic alone. This would 
run against the very nature of the natural numbers. As Shaughan Lavine [1994, 231 n. 24] 
put it: 
Part of what it is to define a property of natural numbers is to be willing to extend 
mathematical induction to it. To fail to do so is to violate our rules for extending and 
further specifying our arithmetical usage. 
Although, like Lavine, Dummett is no friend of higher-order logic, he echoes the same 
idea: 
It is part of the concept of natural number, as we now understand it, that induction with 
respect to any well-defined property is a ground for asserting all natural numbers to have 
that property. (Dummett [1994, 337]; emphasis added) 
The second-order induction axiom understood with standard semantics—and not the first-
order induction scheme and not Henkin or first-order semantics of second-order languages
—captures this feature of arithmetic truth. The same goes for the second-order 
completeness principle in analysis and just about every rich mathematical theory.
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26. Higher-order Logic Reconsidered
Ignacio Jané 

In this chapter we discuss canonical (i.e., full, or standard) second-order consequence and 
argue against it being a case of logical consequence. Our discussion is divided into three 
parts.
The first part comprises the first three sections. After stating the problem in section 1, we 
devote sections 2 and 3 to examining the role that the consequence relation is expected to 
play in axiomatic theories. This leads us to put forward two requirements on logical 
consequence, which we call "formality" and "noninterference." It is this last requirement 
that canonical second-order consequence violates, as we set out to substantiate.
This we do in the second part, which consists of sections 4 to 6. In section 4 we argue that 
canonical second-order logic is inadequate for axiomatizing set theory, on the grounds that 
it codes a significant amount of set-theoretical content. Objections to our criticism are 
considered, in particular that we conflate semantical with deductive consequence, that even 
first-order logic is set-theoretically laden, and that we overlook the distinction between 
logical and iterative sets. The last two objections are met in sections 5 and 6, respectively.
The third part, which runs from section 7 to the end, deals with the issue of whether 
canonical second-order consequence is a determinate relation. In section 7 we emphasize 
the claim that it rests on the assumption that many undecided set-theoretical questions have 
a definite answer. From this we argue that unless we view canonical second-order 



consequence as an applied branch of set theory, its justified use requires embracing some 
strong form of philosophical realism. In 
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section 8 we maintain that, in a relevant way, the use of canonical second-order 
consequence requires a stronger ontological commitment than set theory, and we sketch a 
non-Platonist account of the power set operation which, we submit, is suitable for set 
theory but not for the autonomous use of second-order consequence. As we point out in 
section 9, this account casts doubt on the import of the categoricity results for second-order 
languages. After a discussion of Boolos's plural interpretation of second-order 
quantification in section 10, the chapter ends with the suggestion that the existence of a 
complete calculus is an essential requirement of any fully determined, self-sufficient 
consequence relation, and thus of logical consequence—whatever it may reasonably be.

1.  The Question

We deal with first- and second-order formal languages, mainly from the point of view of 
their use in the formalization of actual mathematical theories. Each language is supposed to 
be endowed with a definite consequence relation which we take to be an integral part of the 
language. This means that in order to identify a language, it is not enough to list its 
symbols and give the rules for generating its terms and formulas. It must be determined as 
well which sentences follow from which sentences and from which sets of sentences; in 
other words, it must be determined what particular relation the consequence relation is. In 
the case of first-order languages we have two equivalent ways to describe the consequence 
relation: by means of a deductive calculus and through Tarski's definition. For second-
order languages canonically understood, the first option is not open.
We give a sketchy account of second-order languages, intended only to fix the setting and 
any terminological peculiarity. For a brief and clear exposition, refer to Enderton [11, ch. 
IV]; and for a thorough presentation to Shapiro [27, part II].
Second-order languages are extensions of first-order ones. Syntactically, the extension 
consists in the addition of n-ary predicate variables for each positive integer n. No new 
terms are added, but the set of formulas is expanded: for each n-ary variable X and n terms 
t 1 , … , t n , the expression Xt 1  … t n is a new atomic formula. From the atomic formulas, 
the rest are generated by the same rules as in first-order languages, taking into account that 
the new predicate variables are also quantifiable.
An interpretation for a second-order language has two components: (1) a structure 풜 for 
the similarity type of the language, which is the same as its first-order restriction, and (2) 



for each positive integer n, a nonempty set D n of n-ary relations on the universe of the 
structure, over which the n-ary predicate variables range (a 1-ary relation is a subset of the 
universe). This being enough to define satisfaction and truth, we shall speak freely of a 
second-order sentence being true 
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in a given interpretation. We call an interpretation whose first component is the structure 
풜 an interpretation over 풜. A model of a set of sentences is an interpretation in which all 
the sentences in the set are true.
Some conditions can be imposed on the interpretations over a structure 풜 with universe A, 
thereby decreeing which of them are admissible. In the full or canonical interpretation over 
풜, each D n contains all n-ary relations on A; in particular D 1 is the power set of A. In a 
Henkin interpretation one requires that the D n be closed under impredicative 
comprehension, that is, that all the comprehension axioms be true in the interpretation.1 

One may also demand that some further conditions be met, provided that they are statable 
by second-order formulas or schemas. The canonical interpretation is also a Henkin 
interpretation, but if A is infinite, there are other Henkin interpretations over 풜.2 When 
dealing with the canonical interpretation there is no need to mention the D n , because they 
are determined by A. Accordingly, we simply say that a sentence is true, or false, in the 
structure 풜.
Consequence for second-order languages is defined in the Tarskian way. A sentence φ is a 
second-order consequence of a set of sentences φ if and only if φ is true in all admissible 
models of Σ. What consequence relation this defines depends on which interpretations are 
admissible. Accordingly, we speak of the canonical second-order consequence relation, 
and of the various Henkin consequence relations (they vary according to which formulas 
the admissible interpretations are required to satisfy in addition to the comprehension 
axioms).
Many central mathematical structures and concepts can be characterized in second-order 
languages with the canonical semantics.3 We can characterize, each with finitely many 
formulas, the closure of a set under a finite number of given operations—thus the structure 
of the natural numbers with the successor operation—the concept of well-ordering, the 
field of the real numbers, and so on. In contrast to this strong expressive power, canonical 
second-order logic (the logic of second-order languages with the canonical semantics) 
lacks those properties that have made work on first-order logic so fruitful. It lacks the 
Löwenheim-Skolem property, it is not compact, it admits no complete proof procedure, not 
even for universally valid sentences.
On the other hand, the logic of second-order languages endowed with Henkin semantics 
has all these properties in common with first-order logic. For it, both 
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the upward and downward Löwenheim-Skolem theorems hold, it is compact, and it has a 
complete proof procedure. Indeed, Henkin second-order consequence can be reduced to 
first-order consequence.4 
We deal with the question of whether the canonical consequence relation of second-order 
languages is a case of logical consequence. We will argue that it is not. Of course, in order 
to do that, we must have some idea of what counts as logical consequence, but it is worth 
remarking that we don't have to bring in a fully precise notion of logical consequence in 
order to be able to answer the question in the negative. For this, it is enough to agree on 
one or more features that the consequence relation of a language should possess if it is to 
be considered logical and that second-order consequence lacks.
We don't mean to look for some alleged true nature of logic or of logical consequence in 
order to find these features. Instead, we follow what we may call a methodological 
approach by turning our attention to a context where it matters what we take logical 
consequence to be. Such a context is axiomatization. In discussing axiomatic theories, the 
notion of consequence is brought to the forefront, since it is needed to identify the theory 
we are dealing with. An axiomatic theory is given by a list of axioms in a certain language, 
but usually what matters about it are less the particular axioms than their consequences, as 
is obvious when we speak of different axiomatizations of the same theory. The theory 
consists of the consequences of the axioms, which means that the consequence relation at 
work is no less fundamental for the identification of the theory than the axioms.5 
One advantage of looking at axiomatic theories for the purpose of assessing the role of the 
consequence relation is that in many of them the distance from the 
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informal presentation to its formalized version is relatively short. This is so partly because 
even in informal axiomatizations the concepts that the theory is to deal with are duly 
specified, and this limits the freedom of formalization. This relative closeness may allow 
us to view the consequence relation of the formal language from a working perspective, 
thus helping us to gauge its adequacy to perhaps differing aims and conferring some 
valuable insight to our decisions.

2.  Axiomatic Theories

When building an axiomatic theory, one distinguishes between primitive and defined terms 
or notions. Not all primitive terms receive the same treatment. Among them, the specific 



ones are singled out as standing for the entities (concepts, relations, operations) the theory 
is intended to be about. In informal presentations only the specific terms are usually 
explicitly mentioned, but formalization requires a definite list of all primitive terms, among 
which we normally find the equality sign, the propositional connectives, and the first-order 
quantifiers.
It is common to refer to the nonspecific terms as "logical," and to the specific ones as 
"nonlogical." In a clear sense this is right. Since the logic of a language rests on its 
consequence relation, and since the consequence relation depends on the behavior of the 
nonspecific terms, these may be called "logical.#x201D; Nevertheless, if our task is to 
ponder whether the consequence relation of some particular languages is a case of logical 
consequence, it is advisable to keep to a more neutral terminology.
As a matter of fact, it is not hard to find axiomatic theories some of whose primitive 
nonspecific terms we would hardly count as logical. A simple and interesting example 
would be an axiomatization of Euclidean geometry presupposing the ordering of the real 
numbers. By this we mean an axiomatization like Hilbert's, but with a completeness axiom 
stating essentially that the order of any line is isomorphic to the order of the real numbers. 
In such an axiomatization, the terms standing for the set of real numbers and for its 
ordering relation would be nonspecific.
An essential, although imprecise requirement on axiomatization is that everything assumed 
about the specific (but not about all primitive) entities is to be explicitly stated in the 
axioms.6 This implies treating the specific terms formally (i.e., as parameters, as mere 
place-holders for entities of the appropriate category). And treating them thus 
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has the effect that the consequences of the axioms hold not only for the intended specific 
entities, but for 
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any entities for which the axioms hold. This is so fundamental to our conception of an 
axiomatic theory that many such theories are built with no specific entities intended. Any 
entities satisfying the axioms are as good as any other. Notice that the specific terms being 
treated formally is a property of the consequence relation of the theory, and thus of the 
language in which the theory is framed.
In informal axiomatizations, there always lurks the question of how well determined the 
consequence relation is. Often the consequence relation (and thus the theory itself) is left 
indeterminate in that, among other things, assumptions must be made about the entities for 
which the nonspecific terms stand, in order not only to draw certain consequences from the 
axioms but also for it to be a fact that these are indeed consequences, and thus belong to 



the theory. For instance, the axiomatization of Euclidean geometry hinted at two 
paragraphs above contains no axioms about the order of the real numbers, but the 
particular properties of this order are involved in determining what follows from the 
axioms, and hence in fixing the consequence relation.
In practice, this lack of determinacy is bearable, since one is concerned only with those 
theorems that have been proved, and from a given proof we can see what has been 
assumed. But such indeterminacy is not satisfactory in a foundational context, where we 
are not interested in developing the theory but rather in the question of what the theory is 
(i.e., of which sentences it consists).
In order to make the theory definite, the assumptions about the primitive nonspecific 
entities must be first singled out and made precise, and then incorporated into the theory, 
either through the axioms or through the consequence relation. If the former, we provide 
the original theory with new specific terms and axioms involving them, thus taking as 
specific some previously nonspecific terms (in our example, we should take the symbols 
for the set of real numbers and for its order as specific, and add the relevant axioms for 
them). The reformed theory has a wider subject matter than the original one, since it must 
deal with the new entities as well. If we choose the second way, we keep the assumptions 
as components of the consequence relation, either by building an auxiliary theory about 
them to be used in characterizing the consequence relation of our original axiomatic 
theory, or by some other means, as illustrated in the next section.

3.  Beyond Formality

The formal treatment of the specific terms, which amounts to the acknowledgment that the 
theorems hold not only for the intended specific entities, but for any entities satisfying the 
axioms, is a basic requirement of an axiomatic theory. We shall refer to it as the 
requirement of formality of the specific terms.
The fulfillment of this requirement, which is a requirement on the consequence relation 
regarding the specific terms, is not enough to guarantee the fulfillment of the more basic, 
even if deeply imprecise, requirement that motivates it, namely, that everything assumed 
about the specific entities is to be explicitly stated in the axioms. For in some cases, even 
when formality is present, the consequence relation can code significant assumptions about 
the specific entities, which thereby need not be explicitly stated. Particularly clear 
examples can be readily found with the use of Lindström quantifiers, which allow for 
cheap characterizations of structures or classes of structures with single sentences.7 As an 
example, we add to a first-order language the two-place quantifier Q, and extend the 
definition of formulas with the new clause that Qxy  is a formula whenever is. The 



satisfaction relation is extended thus: for any structure 풜 with domain A and any 
assignment s of members of A to the variables, 

•

where , and , <  is the real-number order. It is obvious 
that the sentence 

• (1) 
•

is a characterization of , < , that is, all its models are isomorphic to , < . Consequently, 
every first-order sentence true in , <  is a consequence of (1). However, it is clear that (1) 
does not explicitly state anything about the order of the real numbers; rather, it presupposes 
it all.
As a means for characterizing the order of the real numbers, Q is an uninteresting 
quantifier, but it can be very useful in some other natural contexts. Thus we can use it (or a 
variant thereof) in the above-mentioned axiomatization of Euclidean geometry to express 
that the order of the points of a line is isomorphic to that of the real numbers.
We bring into consideration a second example, more akin to canonical second-order 
consequence. Syntactically, the formulas are those of a monadic second-order language, 
but the uppercase variables range over all countable subsets of the universe of the structure 
over which the language is interpreted. Every model of the following set Σ of axioms 

1. xy ( z(zEx↔zEy)→x = y) 
2. X( yXy→ y(Xy z(zEy→¬Xz))) 
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3. X y z(zEy↔Xz) 
4. y X z(zEy↔Xz) 

is isomorphic to the structure HC, of the hereditarily countable sets with the membership 
relation.8 But the fundamental notion about this structure, namely, countability, is not 
spelled out in the axioms, yet it is implicitly assumed and essentially used, being coded in 
the quantification. To expose it, we need only to fix any regular cardinal κ and let the 
uppercase variables of the language range over subsets of cardinality less than κ. If we do 
so, the same set of formulas characterizes the structure H κ , of sets hereditarily of 
cardinality less than κ.9 



As these examples suggest, it is rather easy to build languages whose consequence relation 
stores large amounts of information about any desired class of mathematical entities or 
concepts. Building languages of this kind can be helpful for certain purposes, namely, 
when one wants to use or to apply facts about these concepts or entities in some other field 
without being distracted with lying down the details of what is being assumed. But it seems 
clear that a language with a consequence relation laden with characteristic assumptions 
about certain concepts or entities is unsuitable for axiomatizing a theory about those very 
concepts or entities. For in such a situation, the general principle that what is assumed 
about the specific entities should be explicitly stated in the axioms is clearly violated. In 
axiomatizations of this kind, the content of some theorems comes from the consequence 
relation rather than from the axioms. Thus, knowing that the above set of axioms 
characterizes HC, , we conclude that the set-theoretical axioms of infinity, union, and 
replacement are consequences of Σ. But if we want to see why this is so, we must be 
involved quite a bit with countability—about which the axioms say nothing, but 
presuppose everything.
These considerations help to enhance by contrast a general desideratum of logical 
consequence, namely, its universality of application. A language whose consequence 
relation is an instance of logical consequence could be used in principle to axiomatize 
theories about any entities or concepts whatsoever (provided only that it has the right stock 
of specific terms). Let's call this the requirement of 
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noninterference. It is hard to make it precise, but as the examples above show, there are 
cases where it is clearly violated. Our first argument against canonical second-order 
consequence being logical consequence will be that it violates this requirement in a 
strikingly clear way.

4.  Second-order Consequence

A valued strength of canonical second-order languages is their ability to characterize 
structures and classes of structures. This may be a ground for the use of canonical second-
order consequence, but not, of course, for its logical character. First what this strength 
depends on must be examined. After all, Lindström quantifiers are fully adequate for 
characterizing structures.
Second-order consequence is defined in terms of sets. Introducing second-order 
quantification over a structure 풜 amounts to being given, in addition to 풜, the power set 
of its domain A (as well as that of the n-fold product An, for each positive integer n). There 



is, however, a noticeable difference between using Lindström quantifiers and second-order 
means to characterize a structure: Lindström quantifiers are ad hoc, while second-order 
quantification is uniformly defined. Nonetheless, one could suspect that this uniformity 
and ensuing generality are due only to the fact that all mathematical structures considered 
are set-theoretical entities, and set theory provides all that is needed for implementing 
canonical second-order quantification over them. In other words, one might suspect that 
the strength and versatility of canonical second-order consequence comes from its 
incorporating a significant amount of set theory.
In order to assess the dependence on set theory of canonical second-order consequence, it 
may prove useful to examine F2, the second-order version of Zermelo-Fraenkel ZF with 
the canonical consequence relation. Although they are redundant, we take as its axioms 
those of ZF but with separation, replacement, and foundation in second-order form. For a 
more succinct equivalent version see Shapiro [27, p. 85].
The only specific term of F2 is the binary predicate E for the membership relation (we 
reserve ' ' for the metalanguage). In order to avoid circumlocutions and limit the use of 
formulas when discussing F2, we shall often refer to values of first-order variables as 
"sets" and to values of second-order variables as "classes" (either "classes" tout court or 
"relational classes," among which are the "functional classes"). Thus, we may render the 
second-order axioms of separation, replacement, and foundation, respectively as (1) every 
subclass of a set is a set; (2) the image of a set by a functional class is a set; and (3) every 
nonempty class has a E-minimal member.
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A remarkable property of F2, first established in Zermelo [34], is its quasi categoricity: 
every model of F2 is isomorphic to V κ , , for some inaccessible cardinal κ.10 Since 
whenever κ is inaccessible, V κ is a model of F2, it follows that if we add to F2 a 
sentence asserting that there are no inaccessible cardinals, the resulting theory is 
categorical. It also follows that every set-theoretical question involving only sets of 
accessible rank is answerable in F2 in the sense that its correct answer is a consequence 
of the axioms. In particular, all propositions of set theory about sets of reals which are 
independent of ZFC are decided in F2, although we don't know in which way. The most 
famous of these is Cantor's Continuum Hypothesis (CH), first conjectured by Cantor in 
1878 and the object of much research nowadays.
F2 decides CH in the sense that either CH or its negation is a canonical consequence of 
the axioms of F2. Since CH is independent of ZFC and the axioms of F2 are the 
second-order formulations of those of ZF, one might suspect that the answer to CH 
provided by F2 is contributed by the consequence relation rather than by the axioms. 
Admittedly, the distinction between what depends on the consequence relation and what on 
the axioms is not clear in general, but it turns out that the content of both CH and ¬CH can 



be expressed in a natural way without any appeal to the axioms, or even to the language of 
set theory. More precisely, there are sentences σ 1 and σ 2 of a pure second-order language 
such that (it can be shown in ZFC that) σ 1 is universally valid if and only if CH holds, and 
σ 2 is universally valid if and only if CH does not hold. Moreover, these sentences express 
in a strikingly direct way the content of CH and of ¬CH, respectively. This is worth 
emphasizing because the mere fact that for any set-theoretical sentence there is a pure 
second-order sentence σ which is universally valid if and only if is a consequence of F2 
is not by itself indicative of the set-theoretical commitment of canonical second-order 
consequence. We can always find such a sentence from the finite axiomatizability of F2. 
For if is the conjunction of the axioms of F2, is a consequence of F2 if and only if 
the sentence  → φ is universally valid, 
end p.790

which it is just in case the pure sentence U R( U,R → φU,R) is universally valid.11 We can 
thus take this last sentence as σ. The formulas that we presently exhibit concerning CH and 
¬CH are not of this form.
Cantor's first formulation of CH was that every set of real numbers is either countable or 
bijectable with the set all real numbers. Equivalently, if a is a countably infinite set and b is 
the power set of a, then every subset c of b is either injectable in a (c ⪯ a) or bijectable 
with b (c  b). By writing down the definitions of the concepts involved, we can produce 
formulas 1 , 2 , 3 , and 4 such that for any structure (endowed with the canonical 
interpretation), 

풜  1 (X)[A] iff A is a countably infinite subset of M 
풜  2 (X, Y)[A, B] iff B is a faithful copy of the power set of A 
풜  3 (Y, Z)[B, C] iff C  B, 
풜  4 (X, Y, Z)[A, B, C] iff C ⪯ A or C  B. 

Then σ 1 is the sentence 

•

while σ 2 is 

•

The formulas 1 , 3 , and 4 can be taken to be mere transcriptions of obvious set-
theoretical formulas.12 2 is the formula saying that there is a relation R such that 

1. xy (Rxy → (Xx  Yy)) 



2. W ( x(Wx → Xx) → !y (Yy  x (Rxy ↔ Wx))). 

This state of affairs has drastic consequences for the use of second-order languages (with 
the canonical interpretation) in axiomatizing set theory. CH is an important open problem 
of set theory, and in order to investigate it, we could consider adding CH as a tentative 
assumption to F2. But this maneuver is either 
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useless or fatal, because if CH is a consequence of F2, its addition is redundant, while if 
it isn't, its addition yields a contradictory theory.
One could object that this conclusion depends on conflating two distinct roles of the 
axioms, namely, as means for characterizing structures and as premises for deriving 
theorems.13 That CH is semantically decided by F2 follows from the quasi categoricity of 
F2, but in order to find what the consequences of F2 are, we must set up some proof 
procedure. Indeed, if we limit ourselves to the usual deductive calculi, then we can be sure 
that (provided F2 is consistent in the calculus) neither CH nor ¬CH will be deducible 
from F2. These calculi, then, are suitable tools for axiomatizing second-order set theory 
with the purpose of deriving theorems.
But this objection amounts to not taking second-order consequence seriously.14 As soon as 
a second-order language is given the canonical interpretation, this (presumably) determines 
the consequence relation, regardless of any deductive calculus. It is this consequence 
relation that we are concerned with. And with respect to it, either F2 + CH or 
F2 + ¬CH will be contradictory (i.e., will have a contradiction as a semantic consequence). 
That no contradiction be derived in some incomplete calculus is irrelevant to this.
A look at the axioms of the basic deductive calculus for second-order consequence makes 
it evident how, when using a second-order language, part of the content of the explicit set-
theoretical axioms as formulated in a first-order language is transferred from the axioms of 
the theory to the consequence relation. Consider the separation schema of ZF: for each 
first-order formula (x) with no free occurrences of b, 

• (2) 
•

meaning that any condition on the elements of a set a determines a subset of a. In F2, the 
schema becomes the axiom 

• (3) 
•



which can be rendered fairly faithfully as: "every subclass (i.e., every true subset) of a set 
a is a subset of a."
The axiom (3) is presumably stronger than the schema (2), but its strength depends on the 
implicit assumption that any condition determines a class.15 In order for this strength to be 
available in a deduction from the axiom, a calculus for second-order consequence will 
include the comprehension schema: 
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• (4) 
•

From (3) and (4) (and other rules that we may ignore here), we get (2).
We take the presence of such a schema in sound deductive calculi as evidence that 
canonical second-order consequence carries set-theoretical content relevant enough to be 
explicitly expressed in any first-order axiomatization, thus suggesting that the requirement 
of noninterference for logical consequence is being violated.
Comprehension axioms are not the only axioms in a deductive calculus that make it 
evident that the content of canonical second-order consequence overlaps widely with set 
theory. Other such axioms are forms of the set-theoretical axiom of choice. One of them 
is16 

• (5) 
•

Being among the axioms of a sound calculus, (5) is supposed to unfold second-order 
consequence. Now, from (5) and the rest of the calculus we can derive in F2 the usual 
axiom of choice in set theory, which, in one of its many equivalent forms, says that for 
every relation r there is a function f with the same domain such that for every x  dom (r), 
x, f(x)   r.
Thus, if the usual calculus with (5) is sound for second-order consequence, then the axiom 
of choice (AC) is a consequence of the axioms of F2, so that F2 + ¬AC is 
contradictory. Accordingly, canonical second-order consequence is unsuitable not just for 
investigating but even for axiomatizing set theory without choice.
One could dismiss this complaint by replying that the second-order logic which is adequate 
for dealing with choiceless set theory is a logic without choice. But this reply amounts 
again to not taking canonical second-order consequence seriously. If canonical second-
order consequence is a determinate relation, then either F2 has AC as a consequence or it 
doesn't. If it does (thus, if (5) is sound), then a second-order consequence without choice is 
some other consequence relation.



The insistence on the determinacy of second-order consequence is crucial. If second-order 
canonical consequence is not a determinate relation, then theories formulated in a language 
with canonical consequence are not determined by their axioms, and the alleged 
categoricity results for second-order axiomatizations become questionable.
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5.  On the Existence of Structures

One might object that our complaint that canonical second-order consequence is too 
involved with set-theoretical matters is overstretched, adducing that, albeit to a lesser 
degree, it applies to first-order consequence as well. The objection to our complaint could 
be put thus. If, regardless of the language considered, we define the consequence relation 
according to Tarski (that is, if we declare that a sentence is a consequence of a set of 
sentences Σ just in case is true in all models of Σ), then what sentences turn out to be 
consequences of a given set will depend on what structures there are, and this is a set-
theoretical matter. This dependence can easily be exemplified in the case of first-order 
consequence. For example, we can find a first-order sentence which is universally valid if 
and only if there are no sets of five or more members; more interestingly, we can produce a 
first-order sentence which is universally valid if and only if there are no infinite 
structures.17 Thus, since the question of whether there exist infinite sets is certainly 
mathematical, first-order consequence includes or codes some definite mathematical 
content. Moreover, paraphrasing what has been said about canonical second-order 
consequence, if there are no infinite sets, then any first-order theory which has no finite 
models will be not only false but also contradictory.
We must be careful here. Whether or not we accept that there are infinite sets, we do 
accept that there are infinitely many sets or, at any rate, infinitely many objects, even if 
there is no set containing them all. If we are willing to discuss ordinary formal languages, 
we certainly accept a potentially infinite class of formulas, deductions of arbitrary length, 
and so on. Thus we reason about infinitely many things, and so our logic (that is, the logic 
we use when we reason informally about these mathematical objects) applies to them. 
Accordingly, whether or not we are willing to accept infinite sets, our logic does not 
condone the inference from " xy (fx = fy → x = y)" to " y xfx = y," or from "R is a  
transitive and irreflexive relation" to 'there is a maximal element with respect to R,' which 
are suitable for reasoning only about finite structures. According to the informal logic we 
reason by, these inferences are not valid, obvious counterexamples to them being provided 
by the successor operation on the natural numbers and the order relation among them, 
respectively. We reason about natural numbers, whether or not they make a set.



If we turn to set theory in order to build a theory of consequence for first-order languages 
agreeing with our logical practice in ordinary mathematical reasoning, our set theory must 
admit infinite sets, to serve as counterparts of the infinite multiplicities of numbers, 
formulas, and so on about which we reason. 
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Otherwise, the logical theory we obtain will be manifestly inadequate. We should note that, 
strictly speaking, our set theory need not have an axiom of infinity, for the infinite 
counterparts of infinite multiplicities could be dealt with as proper classes. What must be 
asked of our set theory is that it be strong enough to allow one to define the syntactic and 
semantic notions of first-order languages and, perhaps, to prove the completeness theorem 
for first-order logic. This does not require much in the way of existence of sets or classes, 
since the model of a consistent set of sentences Σ obtained from the standard, Henkin's 
proof is arithmetical in Σ. Strictly speaking, only this is indispensable, namely, that the 
mathematical reconstruction of first-order consequence that we carry out in our set theory 
be in accordance with the informal version (at least as far as can be discerned). If our set 
theory is unsuitable for this purpose (perhaps because it is too weak), then we are not 
interested in its version of first-order consequence.
In short, if our mathematical reconstruction of first-order consequence is such that it 
declares a sentence σ to be a consequence of a set of sentences Σ if and only if σ is true in 
all finite models of Σ, then we declare it simply wrong. The crucial thing here is that we 
have a fairly good idea of what the relation of consequence is for first-order languages; we 
know at least that the usual rules of inference are correct, and this is enough (as the 
completeness theorem tells us) to accept the set-theoretical reconstruction as adequate.
But this, we contend, is not the situation as regards canonical second-order consequence, of 
which we have only the set-theoretical definition. Now, this contention might be objected 
to out of hand by appealing to our understanding of second-order reasoning previous to set 
theory, to the use of second-order inferences before the advent of set theory—but such an 
objection would miss the point. All that our non-set-theoretical practice of second-order 
languages requires is already embodied in Henkin consequence,18 against which we have 
now nothing to say. It is precisely the requirement that the uppercase (unary) variables 
range exactly over all subsets of the universe of the structure that distinguishes canonical 
consequence from Henkin's, and what endows it with its impressive strength. Indeed, if the 
consequence relation of F2 were Henkin's, then neither CH nor its negation would be a 
theorem; more to the point, if σ 1 and σ 2 are the sentences construed above as expressing 
the continuum hypothesis and its negation, respectively, then neither σ 1 nor σ 2 is 
universally valid as regards Henkin consequence. This fact highlights an important 
difference between first-order and canonical second-order consequence. In the case of first-
order logic, our inferential practice directed us toward a set theory allowing for infinite 



sets; here it does not direct to a set theory either with CH or with ¬CH. The set-theoretical, 
canonical version of second-order consequence goes significantly further than our logical 
practice, and cannot be justified by it.
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6.  Logical Versus Iterative Sets

One can object that our criticism of canonical second-order consequence as coding strong 
set-theoretical content is misguided, on the grounds that it overlooks a significant 
distinction, that between the logical and the iterative notions of set. Only the former, it is 
claimed, is needed to account for canonical second-order consequence, while the latter is 
the object of set theory proper. A set in the logical sense is said to be a subset of some 
domain, while an iterative set is an object in the cumulative hierarchy of sets.19 Now, put 
this way, there seems to be no difference to account for, since we can view the cumulative 
hierarchy as an ordinal indexed sequence of increasing domains in such a way that the 
(logical) subsets of each domain are the members of the next. Since an iterative set is 
simply a subset (and a member) of any of these domains, it follows that all iterative sets are 
logical sets—or at least objects standing for them.
In order to find a sound distinction, we are asked to look more closely into what is needed 
for second-order quantification. It appears that we don't need to account for the whole 
power set operation, which assigns to each set its power set; when defining truth in a 
structure for second-order formulas, we need to focus only "on the subsets of a fixed 
universe or domain. That is, the context of the theory determines, or presupposes, a range 
of the first-order variables. A set is a subset of this universe (only). … Thus, in arithmetic, 
a logical set is a collection of numbers; in geometry, a logical set is a collection of points 
(or regions); and so on. There are no logical sets simpliciter, only logical sets within a 
given context".20 Accordingly, for the canonical use of a second-order language, only the 
power set of the domain of objects that the language is about is needed, but by no means 
the whole power set operation.
Now, this limited scope may suffice when using a language for merely descriptive 
purposes, but it is not enough to support the logical functions which make second-order 
languages with the canonical interpretation strong; in particular it cannot account for their 
capacity of structure characterization and for second-order consequence. Consider a 
second-order characterization of the order , <  of the real numbers by the sentence σ 
expressing that < is a conditionally complete linear order without end points with a 
countable dense subset. In order to see that σ is categorical, it is not enough to evaluate σ 
in , < . σ must also be evaluated in all relational structures, or at least in all dense linear 



orders without end points, in order to exclude those that are not conditionally complete or 
separable. The reason why some such order A, is not a model of σ is to be 
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found in the contents of 풫. Thus, the power set of A needs to be taken into account to 
guarantee the categoricity of σ. The point of this remark is not that all the structures (of the 
relevant similarity type) have to be considered in order to exclude them as models of σ, but 
rather that, in addition to the structures, the whole power set of each of their domains must 
be surveyed as well.
The same happens when we turn to canonical consequence. In order for it to be 
determinate whether a sentence is a canonical consequence of a sentence ψ, it is not 
enough to be determinate what structures there are, but also what is the content of the 
power set of each domain. Since the power set of the domain of a structure is not given 
along with the structure, but is secured from it by the semantics itself, we must conclude 
that the full power set operation is needed for the proper account of canonical second-order 
consequence.
There is, however, a notion of set which is different from the one discussed so far and 
which can rather naturally be regarded as logical. It is the notion of a conceptual set (or 
class) given as the collection of all objects falling under some definite concept. This is to 
be opposed to the notion of a combinatorial set, an arbitrary collection of objects of a 
domain, regardless of there being any concept under which all and only its members fall. 
The combinatorial notion of set is the one that set theory is about, and thus the one needed 
for canonical second-order consequence. The conceptual notion can be attributed to Frege, 
who dismissed the idea behind combinatorial sets21 and its relevance to logic.22 Only if 
second-order consequence rested on a notion of set like the conceptual one could it be 
argued, with Frege, that second-order consequence is a case of logical consequence. But 
the ensuing consequence relation would not be the canonical one, but rather a variant of 
Henkin's.23 

7.  On the Determinacy of Canonical Second-order Consequence

When we say that canonical second-order consequence carries strong set-theoretical 
content, we are assuming that this is a determinate relation, at least for each fixed 
similarity type. It has to be a determinate relation if a list of axioms is 
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to determine a single theory as the totality of its consequences. Thus, when we argued that 
there is a pure second-order sentence which is universally valid if and only if the 
continuum hypothesis is true, we implicitly assumed that it is a fact whether such a 
sentence is valid (and that it is also a fact whether CH is true).
We have argued that the strong set-theoretical content coded by canonical second-order 
consequence makes it unsuitable for axiomatizing set theory. We want to emphasize that 
our complaints had nothing to do with the lack of a complete proof procedure (we have not 
been concerned at all with proofs). We complained about the specific set-theoretical 
content that the consequence relation contributes to the theory beyond the axioms. This 
becomes especially evident when we think of the many pure second-order sentences whose 
canonical validity is equivalent to some distinctly set-theoretical claim—which quite often, 
as in the CH case, can be seen to be expressed in a natural way by the sentence in question.
The equivalence of the validity of particular pure second-order sentences with set-
theoretical assertions suggests a skeptical view of the determinacy of canonical second-
order consequence. Namely, it suggests that whenever we speak of canonical second-order 
consequence, we are alluding only to a highly underdetermined relation, and that difficult 
set-theoretical decisions have to be made in order to turn it into a determinate one. And 
many of such decisions are open issues in set theory.
It also suggests that in order to admit that second-order consequence is a determinate 
relation, one has to acknowledge that a significant number of set-theoretical questions have 
a definite answer; that among the possibly conflicting ways we have of extending current 
set theory, exactly one is right. In other words, claiming that canonical second-order 
consequence is determinate requires taking a strong realist view of set theory. This counts 
against second-order consequence as being usable as logical consequence, since the use of 
logic as such should not depend on adopting a disputed philosophical position.24 
It may be thought that we are going too far in involving philosophical realism in this issue; 
that mere methodological, or working, realism is enough; that we don't have to bring into 
consideration a notion of truth stronger than that implicit in mathematical practice, 
whatever that is.25 When set theorists speak of measurable cardinals, we don't have to 
attribute to them any reference to a Platonic world in which these cardinals, if they exist, 
dwell. Why, then, assume such a thing with regard to second-order consequence?
We claim that we have to assume something like this if we want to use canonical second-
order consequence as the self-sufficient consequence relation of axiomatic theories. For if 
the axioms must determine the theory completely, then 
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everything required to settle which particular sentences follow from the axioms, and which 
particular sentences don't follow from them, is to be embodied in the consequence relation. 



This should be the case if canonical second-order consequence were an instance of logical 
consequence.26 
As a matter of fact, the standard use of canonical second-order consequence is not as 
logical consequence. In ordinary mathematical practice, one deals with second-order logic 
as applied set theory. Second-order languages with the canonical interpretation are, rather, 
set-theoretical tools which are handled in a set-theoretical context. The set-theoretical 
setting may be implicit, but it makes itself felt as soon as difficulties arise and we turn to a 
set theory book for help. In such a setting, no question about the determinacy of second-
order consequence arises, since no question arises about the determinacy of the power set 
of any set we happen to be dealing with; all questions are internal to set theory, and all 
internal questions are treated as if they had a definite answer. This is just an aspect of 
classical reasoning, as can be easily shown: whatever proposition p is, p V ¬p is a 
tautology and, as such, it is taken as true. Now according to the common use of the term 
"true," a disjunction is true just in case at least one of the disjuncts is, and a negation is true 
just in case the negated proposition is false. From this it follows, taking any conjecture (as 
the continuum hypothesis) as p, that either it is true or it is false.
Nevertheless, this piece of reasoning works only inside the set-theoretical setting (but 
logic, as such, should be usable outside the setting, namely, to systematize the setting 
itself). If any argument is needed, even one applying to set theory, it is that all we said in 
the previous paragraph is sensible when we take the setting to be some informal 
counterpart of first-order ZFC with a truth predicate, and it stays sensible even if we 
believe that all there is to sets is what this theory can prove.
We want to add a remark about the ontological commitment of canonical second-order 
logic. In order to refute Quine's assertion that second-order logic has "staggering existential 
assumptions,"27 Boolos points to the fact that the sentence X x y(Xx  Xy  x ≠ y) is not 
universally valid to conclude that "despite its affinities with set theory and its vast 
commitments, second-order logic is not committed to the existence of even a two-
membered set" (Boolos [4, p. 40]). But this, we submit, is wrong. Boolos' line of reasoning 
would apply only if second-order logic were taken to be a set of theses, for only then 
would it be appropriate to judge its ontology by looking at its validities. But it is out of 
place if we view logic as dealing with the consequence relation of a language and if, as in 
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our case, consequence is defined in terms of structures. To assess the ontological 
commitment in this case, we have to look at what structures are required to exist in order 
that the consequence relation be a determinate relation. And this we find not by looking at 
the logical validities, but rather at the sentences that are not universally valid. That a 
sentence σ is not universally valid means that there is a structure failing to satisfy it. 



Hence, a logic that does not declare σ universally valid is committed to the existence of 
some such structure.

8.  Subsets

It is a notorious circumstance that we don't know how to explain what an arbitrary subset 
of an infinite set is, let alone to describe the exact content of its power set. This wouldn't be 
much of a drawback if we had a procedure for generating all subsets of an infinite set from 
its members, but there is none. If all we know about a particular set is that it is infinite, 
then, even if allowed to use a name for each one of its members, we won't be able to 
specify a single infinite subset with infinite complement. So, how do we know that there is 
any? Unless we assume some form of the axiom of choice, it is consistent with our 
assumptions about sets as codified in ZF that there are infinite sets all of whose subsets are 
either finite or cofinite.28 Even when, as in the case of the set of the natural numbers, we 
know how to specify infinitely many infinite subsets of the given set, we also know that 
every enumerating rule will leave out some of them.
Both set theory and second-order logic have to give some account of power sets, but not 
with the same urgency. Sets (and their power sets) are the subject matter of set theory, 
which thus can be loosely described as a theory pursued to gain knowledge of sets. 
Lacking a clear explanation of the power set operation is not a defect in set theory, since 
getting such an explanation is, rather, one of the aims it has to reach—not a starting point. 
Second-order logic, for its part, makes use of the power set operation, and an essential use 
at that, since on it rests the determinacy of the consequence relation. As we remarked 
above, any divergence in accounting for the content of power sets is bound to disturb 
canonical second-order consequence; in other words, different accounts of their content 
will give rise to different consequence relations. Accordingly, the autonomous use of 
second-order consequence (as opposed to its internal use in set theory, that is, to what we 
have described as its use in a set-theoretical setting) requires an explanation of (1) what is a 
set of objects of a domain and, most important, of (2) what is the exact content of the 
power set of a set—in terms of the content of the set.
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Let us fix some infinite set. For definiteness and simplicity we take the set of the natural 
numbers. Whatever a set of natural numbers may be, we may regard it as the collection of 
its elements. This may be insufficient to account for full set theory, where sets are treated 
as objects, but it seems to be sufficiently adequate for our present purposes. We don't want 



to assume, at least not for the time being, that collections are objects; they may be mere 
pluralities or classes as many in Russell's sense (Russell [25, pp. 68, 76]).
There is a rather clear general notion of a collection of natural numbers, namely, that of a 
plurality specifiable with certain definite means. This general notion encompasses a variety 
of particular notions, obtained by fixing the means allowed for specification—for example, 
that of a collection first-order definable in the structure , + ,· . Each particular choice of 
means yields a definite notion of subset with a definite extent, but none of them can deliver 
a power set rich enough to serve as the range of the unary variables of canonical second-
order languages. No restriction of means is congenial with the intended absolute character 
of canonical second-order consequence.
However, placing no restrictions on the means allowed for specification, that is, taking a 
set to be (or to correspond to) a collection specifiable with any means whatever, will not 
do, because such a notion of a collection would lack definite extent: since it is not 
determinate, what a possible means of specification is, it would hardly be determinate what 
collections there are.
The customary way of overcoming all limitations is to get rid of specifications altogether 
and to introduce the idea of an arbitrary, or combinatorial, set, that is, of a collection 
obtained "as the result of infinitely many independent acts deciding for each number 
whether it should be included or excluded" (Bernays [3, p. 260]). Of course, this is only a 
metaphor, since no agent is assumed to carry out the infinitely many steps of such a 
selection, not even in principle.
This proposal is apparently less effective than the previous one. By allowing arbitrary 
means of specification, our notion of collection was open-ended (there is no such thing as 
the totality of all arbitrarily specifiable sets of natural numbers), but at least we knew what 
an individual such set is. With combinatorial sets we have nothing but a metaphor which 
becomes even obscurer when we leave the domain of the natural numbers and consider in 
the abstract any (unstructured) infinite set. As Hermann Weyl put it: 
The notion that an infinite set is a "gathering" brought together by infinitely many 
individual arbitrary acts of selection … is nonsensical. … I contrast the [predicative] 
concept of set … with the completely vague concept of function which has become 
canonical in analysis since Dirichlet and, together with it, the prevailing concept of set. 
(Weyl [33], 23) 
There is no doubt, however, that the combinatorial notion of set has been fruitful as a 
motivation for axioms in set theory. With its help we can justify 
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impredicative separation and the axiom of choice. But it doesn't explain what a subset of a 
given infinite set is or what subsets an infinite set has. Moreover, the combinatorial notion 
of set is sensible only in a Platonist setting.29 From a Platonist perspective, there is no need 



to be precise on what combinatorial sets are in order to succeed in referring to them. 
Indeed, if the combinatorial sets all exist, then, even if our hints about their nature fail to 
characterize them with any accuracy, they can nonetheless be good enough to single them 
out by separating them from other entities. But as an account of "combinatorial set," the 
Platonist way is helpless.30 
We want to sketch a non-Platonist account of the power set operation which, albeit 
insufficient for second-order logic, is good enough for set theory. In order to overcome our 
inability to find a suitable notion of subset with a definite extent, we invert the priority 
relation between subsets and power set. Thus, we don't introduce the power set 풫 of a set 
a as the totality of all subsets of a; rather we define a subset of a to be a member of 풫—
the latter being envisioned as some maximal closed totality of subsets of a. The idea is that 
all we need to assume about the power set of a is that it is a definite, closed totality (as 
opposed to an open-ended, increasable multiplicity) and that it is maximal. Surely these are 
not meant to be mathematical conditions, but neither is the requirement of being a 
combinatorial set. Nevertheless, they should be of help in motivating our choice of 
mathematical axioms. Maximality is understood as implying that no matter what collection 
of elements of a we would ever specify, 풫 will contain a set corresponding to it. In 
particular, all subsets of a which we know how to specify in any given context should be in 
풫, just like those which are specifiable in terms of other members of 풫, which is thus 
envisaged as closed under various operations, some of them inspired by the metaphor of 
combinatorial sets. Of course, we don't want to add any axiom asserting or implying that 
any totality closed under such and such operations is the power set of a, but we may 
eventually add new axioms saying or implying that 풫 is closed under some new 
operations. By so doing, we won't enter into conflict with previous results, but we will 
possibly reject some previous interpretations as deficient.31 This need not be understood as 
discovering new facts about sets, but rather as further determining our notion of set (and of 
subset). As to this further determination, it can be attributed to a deeper analysis of our 
original concept of set, but also to a refining of this concept. Nothing mathematical 
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depends on which stand we take. The important thing is that set theory does not have to be 
grounded on a fixed, absolute power set operation.
The set-theoretical cumulative hierarchy need not be seen as a single, well-determined 
universe of sets. This hierarchy, which can be thought of as generated by the iterated 
application of the power set operation along the ordinals, depends on these two parameters: 
the extent of power sets and the length of the ordinal sequence. According to set theory, 
they are both maximal, each in its own way: all ordinals are considered, and the power set 
of a set a contains all subsets of a. The mathematical import of these two alls is articulated 
in the theory, whose axioms are motivated, at least partly, by insights or ideas which are 



hard to make precise. The key idea behind the maximality of the ordinal sequence is that it 
is absolutely infinite in Cantor's sense. Of course, this notion of absolute infinity is not 
embodied in the theory, and even when engaged in philosophical reflection, we do not 
want to insist, let alone presuppose, that absolutely all ordinals (if that makes actual sense) 
are taken into account. Nevertheless, the idea that the ordinal sequence is absolutely 
maximal in its way is not idle, since it helps to motivate the choice of certain axioms of 
infinity. Something analogous is the case with respect to the intended maximality of power 
sets. Not, of course, that the way power sets are maximal is analogous to the way the 
ordinal sequence is. What is analogous is that the idea of the maximality of power sets 
works mainly as a motivating guide which cannot be fully expressed as a mathematical 
condition. It motivates the rejection of putative axioms that, like Gödel's axiom of 
constructibility, restrict the riches of power sets. Moreover, both in the case of the ordinal 
sequence and in that of the power set operation, there is no reason why maximality should 
be realized in an absolute sense.
If this outline of the power set operation is sound, canonical second-order logic is either an 
internal development of set theory, and thus not properly logic, or else it rests on a myth. 
But then, Henkin's emerges as the right semantics for the consequence relation of second-
order languages. It does not require that to each domain an absolutely maximal power set 
corresponds, but only approximations to this intended, inaccessible ideal which are closed 
under whatever conditions we can state. Thus, all expressible assumptions we need to 
make about the existence of second-order entities will be fulfilled in Henkin 
interpretations, and will be taken into account in the shaping of the consequence relation—
which now will be a determinate relation (as we argue in section 11).

9.  A Remark on Categoricity

Our account of the power set operation impinges on the import of categoricity in canonical 
second-order languages. The meaning of a categoricity result is clear in 
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a set-theoretical setting (i.e., for second-order logic as an application of set theory). In this 
setting (thus under the implicit assumption of a fixed assignment of a power set to every 
set), the import of categoricty is clear: a categorical set of sentences has a unique model up 
to isomorphism. However, from a higher, or external, standpoint, from which we perceive 
that no assignment has been fixed, categoricity is, at most, a relative matter—relative to 
just one of the ineffable and perhaps differing ways of complying with the ideal of 
maximality of power sets. From such a standpoint (the one we took in the preceding 



section) we see that despite categoricity, no single structure may have been absolutely 
characterized.32 
10.  The Plural Interpretation
George Boolos ([5], [6]) has proposed a plural interpretation of second-order quantification 
according to which second-order monadic variables do not range over the power set of the 
domain of the structure the language is interpreted in, but range over the domain itself, 
albeit plurally. Thus, the formula 

•

which we usually read as "Every nonempty set (of whatever objects we are considering) 
has a least element," can be read plurally as "whenever there are some objects, one of them 
is the least." Similarly, the comprehension axiom X x(Xx ↔ (x)) can be read as "there 
are some objects which are precisely those satisfying the condition " or, more leisurely, as 
"there are some objects such that each of them satisfies the condition , and each object 
that satisfies the condition is one of them." Since there are conditions that no object 
satisfies, this example shows that the reading of " X …" needs some correction in order to 
take into account would-be empty pluralities. But we can ignore this point.33 
A second-order sentence (with only monadic quantified second-order variables) is assumed 
to be true in a structure when given the plural interpretation just in case it is true in the 
canonical sense. More to the point, if A is the domain 
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of the structure under consideration, it is assumed that for each B  A there are some 
objects in A which are precisely the elements of B. Thus, the various pluralities called up 
by the existential quantifier coincide with the collections corresponding to all subsets of A. 
That is to say, there are as many ways of referring plurally to some objects in A as there are 
subsets of A.
This is fundamental, since the plural version of the second-order consequence relation is 
meant to coincide with the canonical one. The only difference between the two accounts 
lies in the ontology required to make each work: the objects of the domain and all sets 
thereof in the canonical version, only the objects of the domain in the plural one.
We can very simply characterize the power set operation with the help of second-order 
quantification, whether plurally or canonically conceived. If A is a set and D is any 
collection of subsets of A, then D = 풫(A) if and only if the structure A D, A, D, is a 
model of the sentences 

1. xy (Exy → Px  Qy) 
2. xy (Qx  Qy  z (Ezx ↔ Ezy) → x = y) 
3. X ( x(Xx → Px) → y (Qy  z (Ezy ↔ Xz))), 



where P, Q and E are interpreted, respectively, as A, D, and the membership relation 
between objects in A and sets in D.
Let A be an infinite set and suppose that D is a rich but incomplete collection of subsets of 
A. In particular, D is to contain all subsets of A we know how to specify. It is clear that the 
structure A  D, A, D, satisfies the first two formulas above, but since D falls short of 
being the power set of A, the third one will be false in it. Thus, it will satisfy 
X ( x(Xx → Px)  y (Qy → z (Ezy ↔ ¬Xz))), 
that is, in plural parlance, there are some objects in A which coincide with the members of 
no set in D. Which objects these are we cannot say, for if we could, then the set whose 
members they are would be in D, contrary to our assumption. This makes it plain that 
understanding the ways of plural quantification needed to account for the full strength of 
canonical second-order consequence is tantamount to understanding the idea of a 
combinatorial set.34 Indeed it is harder, since in the case of sets, one could at least appeal to 
their independent existence in order to account for them, but with plural quantification 
there seems to be nothing on which to base the assumption that some objects can be 
summoned that do not coincide with the elements of any set in D. Of course, we can base 
this 
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assumption on the existence of sets: it is the existence of a set a not in D which guarantees 
that there are some objects (namely, the members of a) which coincide with no set in D. If 
we do this, then, although sets are not used in evaluating second-order formulas in a 
structure, they are nevertheless needed to ensure that plural quantification works properly. 
This is not an important gain (if it is a gain at all), and moreover it is not adequate for the 
principal use to which plural second-order quantification is meant to be put, namely, to 
allow second-order quantification on the universe of sets without commitment to the 
existence of proper classes (Boolos [5, pp. 65-66]). What is required is to account for what 
we could describe as all the ways of there being some objects without presupposing that a 
set corresponds to each of these ways.
One side effect of this requirement is that plural second-order logic cannot be salvaged as 
an application of set theory. On the other hand, the objection that we have leveled against 
the legitimacy of a truly maximal totality of collections of (say) natural numbers applies 
also to the plural interpretation. There nothing was supposed about the nature of 
collections. They could be treated as objects, but also as mere pluralities. The argument we 
gave there against canonical second-order quantification is not that it requires strong 
ontological resources, but rather that the notion of an arbitrary (combinatorial) collection 
(even as a mere plurality) of objects of a domain A cannot be accounted for from below, 
that is, by appealing only to objects in A. What makes obscure the idea of the totality of all 



subsets of A is not worries (nominalistic or otherwise) about the individual nature of sets, 
but the utter arbitrariness of the collections corresponding to them—that is, of the 
pluralities of objects selected by no agent with no statable rule, pluralities that we are 
supposed to muster when we say that there some objects that so and so.
The main reason alleged for the legitimacy of plural quantification is that we understand it 
well enough in ordinary language.35 However, assuming that we understand it well enough 
for everyday purposes is not a ground for believing that it can support canonical second-
order consequence. The ways of singular 
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and plural quantification are not equally smooth. Suppose we are given a definite domain 
A with all its elements. To explain singular quantification on A, we have to take into 
account no more than what we are given, whereas to explain plural quantification, we have 
to bring into consideration all possible ways of sorting elements of A. In view of the 
parallel complexities of the power set operation, it is more than doubtful that competence 
in one's mother tongue can accomplish that.

11.  Completeness and Determinacy

We have raised two main charges against canonical second-order consequence. We have 
argued that unless a strong realist position is taken, canonical second-order consequence 
cannot be assumed to be a determinate relation. We have also argued that, even assuming 
that it is a determinate relation, it is not a case of logical consequence, since it cannot be 
used as a noninterfering consequence relation for axiomatic set theory. By far, the first 
charge is the stronger.
In view of the importance that a consequence relation be determinate, it would be desirable 
to have a warrant for determinacy. The existence of a sound and complete deductive 
calculus is such a warrant, for if the consequences of any recursively given list of axioms 
can be recursively generated, then the question of whether a definite sentence is among 
them will have a definite answer—whether or not we have an algorithm for it. To be sure, 
the claim of determinacy of the deducibility (thus of the consequence) relation rests on the 
assumption that the natural number sequence is a definite one. But this is already 
presupposed in the mere description of a formal language—for instance, in the definiteness 
of the notion of a formula as a finite sequence of symbols generated according to certain 
given rules. Without such an assumption one cannot even entertain a rigorous notion of an 
axiomatic theory. Thus, we don't have to argue for it now.



Besides guaranteeing its determinacy, the existence of a suitably chosen deductive calculus 
can be of help in deciding whether a given consequence relation should be taken as 
logical.36 More profitably, by examining the explicit list of the axioms and rules of a given 
complete calculus, we can assess the assumptions behind the consequence relation, thus 
allowing us to gauge to what extent it can be used as the noninterfering consequence 
relation of some particular axiomatic theory. As an example, the presence of the 
comprehension axioms in a complete 
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calculus for Henkin's second-order consequence shows that this consequence relation is not 
suitable for axiomatizing set theory, although it can be fruitfully used in other theories, 
among them number theory.
As this example suggests, the explicitness of the axioms and rules of a complete deductive 
calculus may allow us to isolate part of the interfering content of a given consequence 
relation and to transfer it to the axioms of the theory being axiomatized. In set theory, this 
would correspond to passing from the second-order Henkin version of ZF to first-order 
Morse-Kelly.37 
By doing this we can perhaps convince ourselves that the ensuing consequence relation is 
free of any content concerning the specific entities of the theory we are axiomatizing, and 
thus the noninterference requirement is met—but only as regards this particular theory. For 
it is clear that if the trimmed consequence relation is not altogether trivial (that is, if a set 
of sentences implies some sentence not in the set), then it must code some content. Every 
nontrivial consequence relation has to embody some implicit assumptions about the 
primitive nonspecific entities of the theory under consideration. These are the assumptions 
on which rests the validity of some particular inferences and the invalidity of some 
others.38 
The question, then, is how to render these unstated assumptions innocuous. One obvious 
danger which has to be avoided is that of disagreement among practitioners. If the 
assumptions remain unstated, how do we know that they are definite and that we are 
dealing with one fixed consequence relation?39 It is at this point that the existence of a 
deductive calculus settles the matter, since whatever those assumptions are, the 
determinacy of the consequence relation is guaranteed. In a deductive calculus the hidden 
assumptions about the workings of the primitive nonspecific terms are not stated, but their 
effect in fixing the consequence relation can be fully ascertained. It is a safe stopping point 
in the process of trimming a consequence relation. What we get may still not be a case of 
logical consequence, but it will be closer to it.
If these considerations are right, then admitting a deductive calculus is an essential feature 
of any self-sufficient consequence relation (in particular, of any sort of logical 
consequence)—not because a calculus is an instrument for proving theorems, but because 



the existence of a complete calculus is the surest guarantee that any given list of axioms 
determines a definite theory. Canonical second-order consequence is very far from this.
end p.808
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